KUMARAGURUCOLLEGE OF TECHNOLOGY, An autonomous Institution Affiliated to Anna University, Chennai COIMBATORE – 641 049.

B.TECH., INFORMATION TECHNOLOGY

REGULATIONS 2017

CURRICULUM AND SYLLABI

III to VIII Semesters

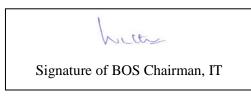
Department of Information Technology

huter
Signature of BOS Chairman, IT

VISION

The department of Information Technology aspires to become a school of excellence in providing quality education, constructive research and professional opportunities in Information Technology.

MISSION


- To provide academic programs that engage, enlighten and empower the students to learn technology through practice, service and outreach
- ✤ To educate the students about social responsibilities and entrepreneurship
- To encourage research through continuous improvement in infrastructure, curriculum and faculty development in collaboration with industry and institutions

PROGRAMEDUCATIONAL OBJECTIVES (PEOs)

- **PEO1 :** Graduates will have progressive learning and successful career in Information, Communication Technologies and their applications
- **PEO2 :** Graduates will be leaders in their chosen field
- **PEO3 :** Graduates will utilize the acquired technical skills and knowledge for the benefit of society

PROGRAMOUTCOMES (POs)

- **PO1 : Engineering knowledge:**Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 : Problem analysis:**Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 : Design/development of solutions:**Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4 : Conduct investigations of complex problems:**Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- **PO5 :** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6 :** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7 : Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8 : Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9 :** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10 : Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 : Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 : Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Technical Skills: Apply the fundamental knowledge to **develop computer based solutions** in the areas related to information management and networking.

2. Leadership Skills: Demonstrate **professionalism and ethics** in managing academic/ non-academic activities as a team and an individual.

3. Social Responsibility: Develop attitude to understand the societal issues and apply the acquired professional skills to provide feasible IT based solutions

hitte Signature of BOS Chairman, IT

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE – 641 049 REGULATIONS 2017

B.TECH INFORMATION TECHNOLOGY

CURRICULUM

			Pre-							
S.No	Course Code	Course Title	Course Mode	CT	L	Τ	P	J	C	requisite
1	U17MAT3104	Discrete Mathematics	Theory	BS	3	1	0	0	4	-
2	U17ECT3011	Principles of	Theory	ES	3	0	0	0	3	-
		Communication								
3	U17ITT3001	Computer Architecture	Theory	PC	3	0	0	0	3	-
4	U17ITI3202	Data Structures and	Embedded -	PC	3	0	2	0	4	-
		Algorithms – I	Theory & Lab							
5	U17ITI3203	Object Oriented	Embedded -	ES	3	0	2	0	4	-
		Programming	Theory & Lab							
6	U17INI3600	Engineering Clinic I	Embedded –	ES	0	0	4	2	3	-
	Lab & Project									
	lits	21								
	26									

		SEMESTE	CR – IV							Pre-requisite
S.No	Course Code	Course Title	Course Mode	CT	L	Τ	P	J	С	
1	U17MAI4201	Probability and	Embedded -	BS	3	0	2	0	4	-
		Statistics	Theory & Lab							
2	U17ITT4001	Operating Systems	Theory	PC	3	0	0	0	3	-
3	U17ITI4202	Data Structures and	Embedded - PC 3 0 2 0					4	U17ITI3202	
		Algorithms – II	Theory & Lab							
4	U17ITI4303	Database	Embedded - PC		3	0	0	2	4	-
		Management	Theory							
		Systems	&Project							
5	U17ITI4204	Computer Networks	Embedded -	PC	3	0	2	0	4	U17ECT3011
			Theory & Lab							
6	U17INI4600	Engineering Clinic II	Embedded -	ES	0	0	4	2	3	-
			Lab & Project							
		lits	22							
		ek	29							

hitte Signature of BOS Chairman, IT

		SEMEST	FER – V							Pre-requisite
S.No	Course Code	Course Title	Course Mode	СТ	L	Т	P	J	С	
1	U17ITT5001	Cryptography and Network Security	Theory	PC	3	0	0	0	3	U17ITI4204
2	U17ITI5202	Data Mining TechniquesEmbedded - Theory & LabPC30204							4	U17ITI4303, U17MAI4201
3	U17ITI5203	Mobile and Pervasive Computing	Embedded - Theory & Lab	PC	3	0	2	0	4	U17ITI4204
4	U17ITI5304	Software Engineering	Embedded - Theory & Project	PC	3	0	0	2	4	-
5	U17ITE	Professional Elective I	Theory	PE	3	0	0	0	3	-
6	U17	Open Elective	Theory	PE	3	0	0	0	3	-
7	U17INI5600	Engineering Clinic III	Embedded – Lab & Project	ES	0	0	4	2	3	-
		lits	24							
		eek	27							

		SEMEST	ER – VI							Pre-	
S.No	Course Code	Course Title	Course Mode	СТ	L	Т	Р	J	C	requisite	
1	U17ITT6001	Information Security	rmation Security Theory				0	0	3	U17ITT5001	
2	U17ITT6002	Internet of Things – Architecture and Protocols	Theory	PC	3	0	0	0	3	U17ITI4204	
3	U17ITI6203	Web Technology	Embedded - Theory & Lab	PC	3	0	2	0	4	U17ITI3203	
4	U17ITI6304	Big Data Analytics	Embedded - Theory & Project	PC	3	0	0	2	4	U17ITI5202	
5	U17INI6600	Engineering Clinic IV	Embedded – Lab & Project	ES	0	0	4	2	3	-	
6	U17	Open Elective	PE	3	0	0	0	3	-		
		lits	20								
	Total Contact Hours/week 2										

SEMESTER – VII												
S.No	Course Code	Course Title	Course Mode	CT	L	Τ	Р	J	С	requisite		
1	U17ITT7001	Social Media Marketing	Theory	HS	3	0	0	0	3	-		
2	U17ITI7202	Cloud Computing	Embedded -	PC	2	0	2	0	3	U17ITI4204		
			Theory and Lab									
3	U17ITI7203	Machine Learning	Embedded -	PC	3	0	2	0	4	U17ITI5202		
			Theory and Lab									
4	U17INT7000	Professional	Theory	HS	3	0	0	0	3	-		

hitte Signature of BOS Chairman, IT

		Communication & Analytical Reasoning								
5	U17ITE	Professional Elective II	Theory	PE	3	0	0	0	3	-
6	U17ITP7704	Project Phase I	Project	PW	0	0	0	6	3	-
	Total Credit									
	Total Contact Hours/week									

SEMESTER – VIII											
S.No	Course Code	Course Title	Course Mode	СТ	L	Т	Р	J	С	requisite	
1	U17ITP8701	Project Phase II	Project	PW	0	0	0	24	12	U17ITP7704	
	Total Credits 12										
	Total Contact Hours/week 0										

Grand Total Credits: 161

	LIST OF MANDATORY COURSES											
S.No	Course Code	Course Title	Course Mode	СТ	Semester							
1.	U17VEP3503	Human Excellence-Family Values	Lab	HS	3							
2.	U17VEP4504	Human Excellence-Professional Values	Lab	HS	4							
3.	U17INT5000	Constitution of India	Theory	MC	5							
4.	U17VEP5505	Human Excellence-Social Values	Lab	HS	5							
5.	U17VEP6506	Human Excellence-National Values	Lab	HS	6							
6.	U17VEP7507	Human Excellence-Global Values	Lab	HS	7							

		PROGRAMME ELI	ECTIVES						
S.No	Course Code	Course Title	Course Mode	СТ	L	Τ	P	J	C
		Data Analyti	cs						
1.	U17ITE0001	Artificial Intelligence	Theory	PE	3	0	0	0	3
2.	U17ITE0002	Deep Learning	Theory	PE	3	0	0	0	3
3.	U17ITE0003	Data Visualization	Theory	PE	3	0	0	0	3
		Cyber Securi	ty						
4.	U17ITE0004	Information Coding Techniques	Theory	PE	3	0	0	0	3
5.	U17ITE0005	Web Application Security	Theory	PE	3	0	0	0	3
6.	U17ITE0006	Biometric Systems Theory			3	0	0	0	3
7.	U17ITE0007	Blockchain Technology	Theory	PE	3	0	0	0	3
		Network and l	ΤοΤ						
8.	U17ITE0008	Adhoc and Sensor Networks	Theory	PE	3	0	0	0	3
9.	U17ITE0009	Next Generation Networks	Theory	PE	3	0	0	0	3
10.	U17ITE0010	Software Defined Networks	Theory	PE	3	0	0	0	3
		Other Electiv	es						
11.	U17ITE0011	Distributed Systems	Theory	PE	3	0	0	0	3
12.	U17ITE0012	Principles of Compiler Design	Theory	PE	3	0	0	0	3
13.	U17ITE0013	Graphics and Multimedia	Theory	PE	3	0	0	0	3
14.	U17MAE0101	Partial Differential Equations and Transforms	Theory	BS	3	1	0	0	4

hitte

Signature of BOS Chairman, IT

SEMESTER III

U17MAT3104 DISCRETE MATHEMATICS (Common to CSE/IT)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes:

After successful completion of this course, the students should be able to

CO1: Understand the concepts of set theory and apply them to situations involving inclusion and exclusion

CO2: Acquire the knowledge of relations, and analyse equivalence relations and their properties.

CO3: Understand and analyse the properties of different kinds of functions.

CO4: Apply mathematical induction to prove mathematical facts, analyse and use the concept of permutation and combination and solve recurrence relations.

CO5: Evaluate the validity of logical arguments and construct simple mathematical proofs.

CO6: Determine whether given graphs are isomorphic and apply Dijkstra's algorithm to find the shortest path.

Pre-requisite courses:

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
COs	Os Programme Outcomes(POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO
										10	11	12
CO1	М	М										
CO2	Μ		S									
CO3	L											
CO4	Μ		S									
CO5	S	S	S									S
CO6	S	S	S									S

Course Assessment methods:

DIRECT
1. Continuous Assessment Test I, II
2. Written Assignment, Offline quiz, Written tests-2
3. End Semester Examination
INDIRECT
1. Course-end survey

Topics covered:

SET THEORY

9+3 Hours

Algebra of sets – The power set – Ordered pairs and Cartesian product – principle of inclusion and exclusion.

Signature of BOS Chairman, IT

hitte

Relations on sets -Types of relations and their properties - Equivalence relations -Relational matrix and the graph of relation – Operations on relations.

FUNCTIONS

Functions -Type of functions - Injective, surjective and bijective functions -Composition of functions – Inverse functions –Permutation functions.

COMBINATORICS

Mathematical induction- The basics of counting-Permutations and combinations-Recurrence relations-Solving linear recurrence relations

LOGIC

Propositions- Logical operators- Normal forms -Rules of inference-Consistency and inconsistency-Propositional logic- Proofs-Predicates- Quantifiers- Universe of discourse -Logical equivalences and implications for quantified statements-Rules of specification and generalization – Validity of arguments.

GRAPH THEORY

Graphs- Types of graphs- Matrix representation of graphs- Graph isomorphism- Walk - Path-Cycles- Eulerian graphs -Hamiltonian graphs- Planar graphs- Euler formula- Shortest path algorithm: Dijkstra's algorithm

Theory: 45 Tutorial: 15 Practical:0 Project: 0 Total: 60 Hot	eory: 45 Tu	rial: 15 Practical:	:0 Project: 0	Total: 60 Hours
--	-------------	---------------------	---------------	------------------------

REFERENCES

- 1. Liu C.L, "Elements of Discrete Mathematics, Second Edition, McGraw Hill 1985.
- 2. Mott J.L, Kandel A. and Baker T.P.,"Discrete Mathematics for Computer Scientists and Mathematicians, Second Edition, Prentice Hall India, 1986.
- 3. J.P.Trembly, R. Manohar, Discrete Mathematical Structures with applications to Computer Science, TMHInternational Edition (Latest Edition).
- 4. NarsinghDeo, Graph Theory with Applications to Engineering and Computer Science, Prentice – Hall, Engle Cliffs, N. J.
- 5. Harary F, Graph Theory, Narosa, 1969.
- 6. Thomas H.C., A Leiserson C.E., Rivest R.L, Stein C.A., "Introduction to a Algorithms(2nd Edition),MIT press and McGraw-Hill.2001.

7+2 Hours

9+3 Hours

11+4 Hours

9+3 Hours

U17ECT3011 **PRINCIPLES OF COMMUNICATION**

Course Outcomes:

L	Τ	Р	J	С
3	0	0	0	3

After successful completion of this course, the students should be able to

CO1: Describe the fundamental concepts of communication systems

- CO2: Compare analog modulation schemes.
- CO3: Explain digital modulation schemes.
- CO4: Classify standard base band data transmission techniques.

CO5: Paraphrase the spread spectrum techniques and multiple access techniques

Pre-requisite: Nil

					CO /I	PO Maj	pping					
COs					Programme Outcomes(POs)							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2	М	W										
CO3	Μ	W	W									
CO4	М											
CO5	М	W										

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

Topics covered:

INTRODUCTION TO COMMUNICATION SYSTEMS

Basics of Communication System- Electromagnetic Spectrum - Need for Modulation.

ANALOG MODULATION:

Principles of amplitude modulation - AM envelope, Frequency spectrum and bandwidth, Modulation index and percent modulation, AM power distribution - AM Modulator and Demodulator, AM transmitter and receivers - TRF, Super heterodyne receivers. Angle Modulation - FM and PM, Mathematical representation, waveform, Bandwidth, FM modulators and Demodulators. Direct and Indirect FM transmitters.

DIGITAL MODULATION TECHNIQUE

Introduction, Binary ASK, PSK, QPSK and Binary FSK, Concepts of M-ary Modulation schemes.

huter Signature of BOS Chairman, IT

12 Hours

3 Hours

BASEBAND DATA TRANSMISSION

Sampling theorem, Reconstruction of message from its samples, PCM, line coding techniques DPCM, DM, ADM, ISI, Time Division multiplexing, Digital Multiplexers.

SPREAD SPECTRUM AND MULTIPLE ACCESS TECHNIQUES

Introduction, Pseudo-noise sequence, DS spread spectrum with coherent binary PSK, Processing gain, Probability of error, FH spread spectrum, multiple access techniques

Theory: 45Tutorial: 0Practical:0Project: 0Total: 45 Hours

REFERENCES

- 1. Wayne Tomasi, —Electronic Communication Systems: Fundamentals through Advanced, Pearson Education, 2001.
- 2. Simon Haykin, —Digital Communications, John Wiley & Sons, 2003
- 3. Simon Haykin, —Communication Systems, John Wiley & Sons, 4thedn., 2001.
- 4. Taub & Schilling, —Principles of Communication Systems, TMH, 2ndedn., 2003
- 5. Blake, —Electronic Communication Systems, Thomson Delman, 2ndedn., 2002.

10 Hours

Nich	
Signature of BOS Chairman	, IT

U17ITT3001 COMPUTER ARCHITECTURE

COURSE OBJECTIVES:

- To understand the basic structure of a digital computer.
- To discuss the operation of various components of computing systems.
- To study the different ways of communicating with I/O devices
- To enhance the processor operation by employing pipelining

Course Outcomes:

After successful completion of this course, the students should be able to

- **CO1:** Explain micro level operations of computer using the concepts of hardware and software coordination.
- **CO2 :** Compare different types of memories and their performances.
- **CO3:** Apply the knowledge of binary arithmetic operations to understand the design of hardware components
- **CO4:** Enumerate various control methodologies using programming and their effect on the hardware components
- **CO5**: Describe the performance enhancement techniques for data handling and I/O handling

Pre-requisite: Nil

	CO/PO Mapping										I	SO			
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs					Prog	ramme	Outcor	nes(PO	s)						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	1	2	3
CO1	S												Μ		
CO2	Μ	Μ										М	Μ		
CO3	S												Μ		
CO4	S	Μ											Μ		
CO5		S											Μ		

Course Assessment methods:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

BASIC STRUCTURE OF COMPUTERS

7 Hours

Functional Units - Basic Operational Concepts - Bus Structures - Software Performance -Memory Locations and Addresses - Memory Operations - Instruction and Instruction Sequencing - Addressing Modes - Assembly Language - Basic I/O Operations - Stacks and Queues.

hill
Signature of BOS Chairman, IT

L	Т	Р	J	С
3	0	0	0	3

MEMORY SYSTEM

Basic Concepts - Semiconductor RAM- Internal Organization of Memory Chips- Static Memories- ROM- Speed, Size and Cost - Cache Memories - Performance Considerations - Virtual Memory

ARITHMETIC UNIT

Addition and Subtraction of Signed Numbers - Design of Fast Adders - Multiplication of Positive Numbers - Signed Operand Multiplication and Fast Multiplication - Integer Division - Floating Point Numbers and Operations.

BASIC PROCESSING UNIT

Fundamental Concepts - Execution of a Complete Instruction - Multiple Bus Organization -Hardwired Control – Micro programmed Control – Microinstructions- Micro program Sequencing-Wide Branch Addressing

PIPELINING AND I/O ORGANIZATION

Pipelining - Basic Concepts - Data Hazards - Instruction Hazards - Superscalar operation- Out – of-Order Execution- Interrupts - Direct Memory Access.

Theory: 45Tutorial: 0Practical:0Project: 0Total: 45 Hours

REFERENCES

- 1. Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization", 5th Edition McGraw-Hill, 2014.
- 2. R.D.Dowsing, F.W.D.Woodhams and Ian Marshall, "Computers From Logic To Architecture", Mcgraw Hill Publishing Company, UK, 2000
- 3. Ian East, "Computer Architecture And Organization", Pitman Publishing, (A Division Of Longman Group UK Limited), Taylor & Francis E-Library, 2005
- 4. William Stallings, "Computer Organization and Architecture Designing for Performance", 9th Edition, Prentice Hall, 2012.
- 5. David A.Patterson and John L.Hennessy, "Computer Organization and Design: The hardware / software interface", 4th Edition, Morgan Kaufmann, 2008.
- 6. John P.Hayes, "Computer Architecture and Organization", 3rd Edition, McGraw Hill, 2002.

Wiltz

Signature of BOS Chairman, IT

8 Hours

11 Hours

9 Hours

U17ITI3202 DATA STRUCTURES AND ALGORITHMS -I

L	Т	Р	J	С
3	0	2	0	4

COURSE OBJECTIVES:

- Master the implementation of linked data structures such as stack, queues, linked lists, trees etc.
- To choose the appropriate data structure and algorithm design method for a specific application

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

CO1:Explain the fundamentals of analysis of algorithm

CO2:Explain mathematical analysis for recursive and non-recursive Algorithms

CO3:Explain various searching and sorting algorithms.

CO4:Explain the concepts of Linked list, Stack, Queue and tree data structure

CO5:Identify and use appropriate data structure to solve problems.

CO6: Demonstrate the usage of various data structures using simple applications

Pre-requisites: Nil

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak										PS	50		
COs					Prog	ramme	Outcon	nes(PO	s)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Μ	
CO1	Μ												М	
CO2	Μ											W	М	
CO3	Μ	W										М	М	
CO4	Μ	W										М	Μ	
CO5	S	S										М	Μ	
CO6	S	S										S	Μ	

Course Assessment methods

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

hitte Signature of BOS Chairman, IT

Theory Component contents

UNIT I: INTRODUCTION TO ALGORITHM ANALYSIS

Notion of Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency: Analysis Framework -Asymptotic Notations and Basic Efficiency Classes. Mathematical Analysis of Non-recursive Algorithms and RecursiveAlgorithms.

UNIT II: SORTING AND SEARCHING

Selection sort- Bubble sort - Insertion sort - Quick sort, Shell sort, Merge sort- External soring Searching techniques: Sequential search, Binary search. Hashing - Hash Functions- Collision Resolution strategies.

UNIT III: LINKED LIST AND STACK

Review of Pointers- Linked lists -Types- Operations - Creation, Insertion, Deletion, Modification, Merging, Splitting, Traversal - Applications: Polynomial operations, Set operations, Hash table implementation

Stacks - Operations - Applications of Stack - Infix to Postfix Conversion, Expression Evaluation – Tower of Hanoi problem, Maze Problems

UNIT IV: QUEUES

Queues - Operations on Queues, Queue Applications- Job scheduling, Circular Queue-Operations- Round robin scheduling, Dequeue. Priority Queues with Binary Heaps- - Binary Heap Implementation - The Structure Property- The Heap Order Property- Heap Operations

UNIT V: TREES

General Trees Representation ary Search Tree- Threaded Binary Tree -Balanced Binary Search Trees- AVL Tree - AVL Tree Implementation - Applications of trees-Directory structure – Expression tree – B Trees

REFERENCES:

- 1. M.A.Weiss, "Data Structures and Algorithm Analysis in C", Second edition, Pearson Education Asia, 2007.
- 2. Ellis Horowitz, SartajSahni and SanguthevarRajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Universities Press, Hyderabad, 2008.
- 3. Jean Paul Tremblay and Paul G. Sorenson, An introduction to data structures with applications 2nd edition, Tata McGraw-Hill, 20014
- 4. Gilberg and Ferouzan, Data Structures using C, Pearson Education 2004.
- 5. Robert L. Kruse, Clovis L. Tondo, Bruce P. Leung, 'Data Structures and Program Design in C', PHI, 1996.
- 6. Alfred V. Aho, John E. Hopcroft and Jeffry D. Ullman, Data Structures & Algorithms, Pearson Education, New Delhi, 2009.

Theory: 45 Tutorial: 0 Practical: 0 **Project: 0** **Total: 45 Hours**

-	Tree	Trave	rsals	Bina
	A 371	Trac	A 371	Tro

huch
Signature of BOS Chairman, IT

9

9

9

9

LAB COMPONENTS:

LIST OF EXPERIMENTS

- 1. Implementing searching algorithms linear and binary
- 2. Implementing sorting algorithms selection sort, insertion sort, quick sort
- 3. Implementing polynomial operations using Linked list
- 4. Implementing Set operations using Linked List
- 5. Implementing stack using array and Linked List
- 6. Implementing stack applications(Balancing Paranthesis, Infix to postfix conversion)
- 7. Implementing queue applications(Job scheduling- FIFO, Round Robin)
- 8. Implementing priority queue
- 9. Implementing Binary Search trees
- 10. Implementing AVL trees

Theory: 0	Tutorial: 0	Practical: 30	Project: 0	Total: 30 Hours
-----------	-------------	---------------	------------	-----------------

	With	
Signature o	f BOS Chairman,	IT

.

U17ITI3203 OBJECT ORIENTED PROGRAMMING

	L	Т	Р	J	С
ſ	3	0	2	0	4

COURSE OBJECTIVES:

- Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc.
- Understand fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries, etc.
- Be aware of the important topics and principles of software development.
- Write computer programs to solve specified problems.
- Use the Java SDK environment to create, debug and run simple Java programs.

Course Outcomes

After successful completion of this course, the students should be able to

- CO1: Interpret the need of various OOPS concept
- **CO2** : Apply the OOPS concepts for developing application
- **CO3** : Apply the concepts of packages and interfaces to write simple applications
- **CO4 :** Explore the importance of strings and stream classes
- **CO5** : Summarize the importance of exception handling and threads
- **CO6** : Apply the concepts of collections for handling data

Pre-requisites : Nil

					CO	PO M	apping						PSO		
(S/M/	W indic	ates stre	ength of	correla	tion)	S-Stro	ng, M-l	Medium	n, W-W	eak					
COs	COs Programme Outcomes(POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	1	2	3
CO1	Μ	М											W		
CO2	S	М	Μ		Μ							М	Μ	Μ	
CO3	S	М	Μ		Μ								Μ		S
CO4	М	М											Μ		
CO5	М	М											Μ		
CO6	S	М	Μ	Μ								М	Μ		

Course Assessment methods

Direct	
1.	Continuous Assessment Test I, II (Theory component)

- 2. Assignment, Group Presentation (Theory component)
- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

hitte Signature of BOS Chairman, IT

Collections

Overview of Collections Interfaces, List Interface and its implementations, Generics, List looping, Stack, Priority Queues, Map in Java

Practical: 0 **Theory: 45 hours** Tutorial: 0 **Project: 0** Total: 45 Hours

LAB COMPONENTS

- 1. Basic programs
- 2. Working with classes and objects
- 3. Programs in inheritance
- 4. Programs in polymorphism
- 5. String Handling
- 6. Programs in Exception handling
- 7. Programs in multithreading
- 8. Stack and Queue implementation using collection interfaces

Practical: 30 **Total: 30 Hours** Theory: 0 Tutorial: 0 **Project: 0**

REFERENCES

- 1. Herbert Schildt, "The Complete Reference-Java", Tata McGraw Hill, Ninth edition, 2014
- 2. Deitel and Deitel, "Java: How to Program", Ninth Edition, Prentice Hall, Tenth Edition.2014
- 3. Bruce Eckel, "Thinking in Java", Fourth Edition, Pearson Education, 2006
- 4. Cay S. Horstmann, Gary Cornell, "Core Java, Volume I-Fundamentals", Eighth Edition, Sun Microsystems, 2011.

Signature of BOS Chairman, IT

hith

Theory Component Contents Object Oriented Programming basics

Introduction to OOP - Attributes, Methods, Modelling Real World using OOP - Data types - Variables and Arrays - Operators - Control Statements - Classes and Objects -Constructors.

Inheritance & Polymorphism

Inheritance – types of inheritance –Method overriding – Polymorphism – Method overloading – constructor overloading – Dynamic Method Dispatch - Packages – defining and packages – interfaces – implementing and extending interfaces

I/O and Strings

I/O basics: Streams – Byte streams and Character streams – Files – String handling – String operations – String methods – Wrapper classes

Exceptions & Multithreading

Exception Handling – Using try and catch – Built-in Exceptions – User-defined Exception. Threading - Life cycle of a thread - Thread Implementation - Synchronization - Inter-thread Communication

9 Hours

9 Hours

9 Hours

9 Hours

U17INI3600 ENGINEERING CLINIC I

L	Т	Р	J	С
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:

- **CO1:** Identify a practical problems and find a solution
- **CO2:** Understand the project management techniques
- CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite:

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	COs Programme Outcomes(POs)													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

COURSE ASSESSMENT METHODS:

Direct
1. Project reviews 50%
2. Workbook report 10%
3.Demonstration Viva-voce 40%
Indirect
1. Course Exit Survey

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the III semester, students will focus primarily on IOT with C programming using Aurdino

vitte Signature of BOS Chairman, IT

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

LIST OF MANDATORY COURSES

U17VEP3503

FAMILY VALUES (Mandatory)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After successful completion of this course, the students should be able to

- **CO 1:**Develop skills in maintaining the harmony in the family.
- CO 2:Create impulsive activities for healthy family
- **CO 3:**Be receptive to troubled Individuals
- **CO 4:**Gain healthy life by practicing Kundalini Yoga & Kayakalpa
- **CO 5:**Possess Empathy among family members.
- **CO 6:**Reason the life and its significance

Pre-requisites :

1. U17VEP1501 / PERSONAL VALUES

2. U17VEP2502 / INTERPERSONAL VALUES

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
COs		Programme Outcomes(POs)										
										PO12		
CO1									S			
CO2							Μ					
CO3										М		
CO4												S
CO5						S						
CO6								Μ				
Course	e Asses	sment	metho	ods								
Direc	t											
1.Gro	up Act	ivity /	Individ	dual pe	rforma	nce an	d assig	nment				

2.Assessment on Value work sheet / Test

Indirect

1. Mini project on values / Goodwill Recognition

Values through Practical activities:

1. Family system: Introduction to Family Values – elements of family values – Adjustment, Tolerance, Sacrifice - Family structure in different society – work life balance.

2. Peace in Family :Family members and their responsibility - Roles of parents, children, grant parents -. Respectable women hood

3. Core value:Empathy: Unconditional love - Respect - Compassion - sacrifice–Care &share - helping – emotional support- hospitality – cleanliness

4. Blessing: Blessing - methods - Vibration effect - Benefits - Reason for misunderstanding in the Family and resolution through blessings.

5. Healthy Family: Good relationship with neighbors - Counseling - Simplified Kundalini Yoga - Kaya Kalpa Yoga

Workshop mode

REFERENCES

- 1. FAMILY www.download.nos.org/331courseE/L-13%20FAMILY.pdf
- 2. FRAMEWORK FOR ACTION ON VALUES EDUCATION IN EARLY CHILDHOOD – UNESCO – PDF –www.unesdoc.unesco.org/images/0012/001287/128712e.pdf

3. TRUE FAMILY VALUES Third Edition - Tparents Home www.tparents.org/Library/Unification/Books/TFV3/_TFV3.pdf

- 4. FAMILY VALUES IN A HISTORICAL PERSPECTIVE The Tanner Lectures on www.tannerlectures.utah.edu/_documents/a-to-z/s/Stone95.pdf
- 5. PROBLEMS OF INDIA'S CHANGING FAMILY AND STATE ... the United Nations www.un.org/esa/socdev/family/docs/egm09/Singh.pdf

Signature of BOS Chairman, IT

SEMESTER IV

Signature of BOS Chairman, IT

U17MAI4201

PROBABILITY AND STATISTICS (Common to CSE, IT)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Compute correlation between variables, and predict unknown values using regression.

CO2: Understand and apply the concept of probability and random variables and predict

probabilities of events in models following normal distribution.

CO3 : Perform hypothesis testing and interpret the results.

CO4 :Understand the principles of design of experiments and perform analysis of variance.

CO5: Sketch control charts and comment on the process control.

CO6: Apply the above concepts to solve problems using R Studio.

Pre-requisites: NIL

					CO	/PO M	apping						
(S/M/	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs		Programme Outcomes(POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	S	S							Μ	Μ		М	
CO2	S	S							Μ	М		М	
CO3	S	S							Μ	Μ		М	
CO4	S	S							Μ	Μ		М	
CO5	S	S							Μ	Μ		М	
CO6	S	S							М	М		М	

Course Assessment methods

DIRECT

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Open Book Test; Cooperative Learning Report, Assignment; Journal Paper Review, Group Presentation, Project Report, Poster Preparation, Prototype or Product
- 3. Demonstration etc (as applicable) (Theory component)
- 4. Pre/Post Experiment Test/Viva; Experimental Report for each Experiment (lab Component)
- 5. Model Examination (lab component)
- 6. End Semester Examination (Theory and lab components)

INDIRECT

1. Course-end survey

THEORY COMPONENT

CORRELATION AND REGRESSION

Correlation – Karl Pearson's Correlation coefficient – Spearman's Rank Correlation – Regression lines.

6 Hours

PROBABILITY AND RANDOM VARIABLES

Axioms of probability - Conditional probability - Total probability - Bayes' theorem - Random

hicth	
Signature of BOS Chairman, IT	

- 2. Application of descriptive statistics Mean, Median, Mode and standard deviation
- 3. Applications of Correlation and Regression
- 4. Application of Normal distribution
- 7. Application of Chi-square test
- 8. ANOVA one way classification
- 9. ANOVA two way classification
- 10. Control charts for variables (mean and range chart)

Theory: 0 **Tutorial: 0** Practical: 30 **Project: 0** Total: 30 Hours

variable – Distribution function – properties – Probability mass function – Probability density

NORMAL DISTRIBUTION

function - moments- moment generating functions.

Normal distribution – Moments, Moment Generating functions and properties.

TESTING OF HYPOTHESIS

Small samples tests based on t and F distributions (single mean, difference of means, paired t- test and variance ratio test) - Chi-square test for independence of attributes and goodness of fit

DESIGN OF EXPERIMENTS

Analysis of Variance (ANOVA) - Completely Randomized Design (CRD) - Randomized Block Design (RBD) – Latin Square Design (LSD).

STATISTICAL QUALITY CONTROL

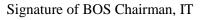
Concept of process control - Control charts for variables: Mean and Range charts - Control charts for attributes: p, np, c – charts.

REFERENCES

- 1. Veerarajan T., Probability, Statistics and Random Processes, Tata McGraw Hill,3rd edition, 2008.
- 2. Gupta S. P, "Statistical Methods", Sultan Chand & Sons Publishers, 2014.
- 3. Johnson R. A., Miller & Freund's "Probability and Statistics for Engineers", Sixth Edition, Pearson Education, Delhi, 2000.
- 4. Gupta.S.C and Kapoor.V.K, Fundamentals of Mathematical Statistics, 11th extensively revised edition, Sultan Chand & Sons, 2007.
- 5. Walpole R. E., Myers S.L. & Keying Ye, "Probability and Statistics for Engineers and Scientists", Pearson Education Inc, 9th edition, 2012.
- 6. Gupta S.C, and KapurV.K "Fundamentals of Applied Statistics", Sultan Chand, New Delhi, 4th Edition, 2014.
- 7. Charles Henry Brase and Corrinne PellilloBrase "Understandable Statistics", D.C. Heath and Company, Toronto, 9th edition, 2007.

Theory: 45 Tutorial: 0 Practical: 30 **Project: 0 Total : 45 Hours** LAB COMPONENT : Using R Studio

- 1. Introduction to R programming


- 5. Application of Student t test
- 6. Application of F test

8 Hours

5 Hours

5 Hours

9 Hours

Nich

U17ITT4001

OPERATING SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To learn the fundamentals of Operating Systems and various computing environment.
- To learn the mechanisms of OS to handle processes and threads and their communication
- To learn the mechanisms involved in file, disk and memory management in contemporary OS

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- **CO1** Experiment with various CPU scheduling algorithms with the understanding of operating system concepts
- CO2 Apply the methods for process coordination
- **CO3** Apply the various memory management strategies
- **CO4** Illustrate the various file management strategies
- **CO5** Apply the disk scheduling policies

Pre-requisite: Nil

	CO/PO Mapping									PSO					
(S.	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
				Pı	rogran	nme O	utcom	es(POs	5)						
COs	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	Μ										Μ	Μ		
CO2	S	Μ										Μ	Μ		
CO3	S	Μ										Μ	Μ		
CO4	S	М										Μ	Μ		
CO5	S	М										Μ	Μ		

COURSE ASSESSMENT METHODS:

Direct
1. Continuous Assessment Test I, II
2. Assignment, Group Presentation
3. End Semester Examination
Indirect

1. Course-end survey

Signature of BOS Chairman, IT

hit

THEORY COMPONENT CONTENTS:

INTRODUCTION AND PROCESS MANAGEMENT

Introduction: Operating System Structure - Operating System Operations - Process Management - Memory Management - Storage Management

System Structures: Operating System Services – System Calls – Types of System Calls – System Programs - Process Concept- Process Scheduling - Operations on Processes -Inter-process Communication–Multithreaded Programming: Overview – Multithreading Models - Threading Issues.

Process Scheduling: Basic Concepts - Scheduling Criteria - Scheduling Algorithms

PROCESS COORDINATION

Synchronization: The Critical-Section Problem – Peterson's Solution – Synchronization Hardware - Mutex Locks - Semaphores - Classic problems of Synchronization -Monitors-Deadlocks: System Model - Deadlock Characterization - Methods for Handling Deadlocks – Deadlock Prevention – Deadlock Avoidance – Deadlock Detection – Recovery from Deadlock

MEMORY MANAGEMENT

Memory-Management Strategies: Swapping – Contiguous Memory Allocation – Paging - Structure of the Page Table - Segmentation.

Virtual-Memory Management: Demand Paging - Copy-on-Write - Page Replacement -Allocation of Frames – Thrashing

FILE MANAGEMENT

File System: File Concept – Access Methods – Directory and Disk Structure – Protection File System Implementation: File System Structure - File System Implementation -Directory Implementation – Allocation Methods – Free-space Management.

SECONDARY-STORAGE MANAGEMENT

Mass Storage Structure: Disk Structure – Disk Scheduling – Disk Management – Swap-Space Management

Case Study: Linux system, Windows 7

Tutorial: 0 Practical: 0 **Project: 0 Total: 45 Hours** Theory: 45

REFERENCES:

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", John Wiley & Sons (Asia) Pvt. Ltd, Ninth Edition, 2014.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", 4th edition Prentice Hall of India Pvt. Ltd. 2014.
- 3. William Stallings, "Operating Systems: Internals and Design Principles", Pearson
- 4. Harvey M. Deitel, "Operating Systems", Pearson Education Pvt. Ltd, Third Edition, 2003.

Signature of BOS Chairman, IT

Nuch

8 Hours

7 Hours

10 Hours

11 Hours

U17ITI4202 DATA STRUCTURES AND ALGORITHMS II

L	Т	Р	J	С
3	0	2	0	4

COURSE OBJECTIVES:

- Analyze the asymptotic performance of algorithms.
- Write rigorous correctness proofs for algorithms.
- Demonstrate a familiarity with major algorithms and data structures.
- Apply important algorithmic design paradigms and methods of analysis.
- Synthesize efficient algorithms in common engineering design situations.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Explain the fundamentals of analysis of algorithm
- CO2 Explain mathematical analysis for recursive and non-recursive Algorithms
- **CO3** Explain the design techniques Brute force, Divide and Conquer, Decrease and Conquer, Dynamic programming
- CO4 Explain the design techniques Greedy algorithms, back tracking, Branch and Bound
- CO5 Explain the concepts of NP complete problems
- **CO6** Implement various algorithms design techniques suitable for real world applications.

Pre-requisites: U17ITI3202 - DATA STRUCTURES AND ALGORITHMS I

	CO/PO Mapping									I	SO)			
(S/M/	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs				P	rogra	mme	Outco	mes(P	Os)						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	М	W										Μ	Μ		
CO2	М	W	М									Μ	Μ		
CO3	М	W										Μ	Μ		
CO4	Μ	W										Μ	Μ		
CO5	М	W										Μ	Μ		
CO6	S	S	М	М						М		S	Μ		

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

Nich

Signature of BOS Chairman, IT

THEORY COMPONENT CONTENTS

INTRODUCTION TO ALGORITHM ANALYSIS

Notion of Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency: Analysis Framework -Asymptotic Notations and Basic Efficiency Classes. Mathematical Analysis of Non-recursive Algorithms and Recursive Algorithms.

BRUTE FORCE AND DIVIDE AND CONQUER

Brute Force Method - Sequential Search and Brute Force string matching, Exhaustive search. Divide and Conquer – Merge Sort, Decrease and Conquer-Josephus problem

DYNAMIC PROFRAMMING AND GREEDY

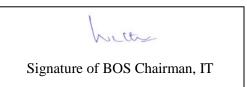
Dynamic Programming - Warshall's and Floyd's Algorithm- Greedy Technique - Knapsack problem – Job sequencing with deadlines, Huffman trees

BACKTRACKING AND BRANCH AND BOUND

Backtracking - N-Queen's Problem - Sum of subsets-Hamiltonian Circuit problem- Branch and Bound- Assignment Problem-Traveling Salesman Problem

NP COMPLETE

Tractable and Intractable Problems: Computability of Algorithms, Computability classes - P, NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems


REFERENCES:

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education Asia, 2008.
- 2. Ellis Horowitz, Sartaj Sahni and SanguthevarRajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Universities Press, Hyderabad, 2008.
- 3. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest and Clifford Stein, "Introduction to Algorithms", Second Edition, Prentice Hall of India, New Delhi, 2007
- 4. Narasimha Karumanchi, "Data Structure and Algorithmic Thinking with Python", Carrer Monk publications, 2017
- 5. Brad Miller and David Ranum, "Problem Solving with Algorithms and Data Structures using Python", Franklin Beedle, 2014.
- 6. https://www.tutorialspoint.com/python/

Theory: 45 Tutorial: 0 **Practical: 0 Project: 0**

LAB COMPONENTS: LIST OF EXPERIMENTS

- 1. Implementing Dijikstra's algorithm
- 2. Implementing Prim's algorithm
- 3. Implementing Brute force string Matching Algorithm
- 4. Implementing Josephus problem

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

Total: 45 Hours

- 5. Implementing 8- queen problem
- 6. Implementing Knight tour problem
- 7. Implementing Merge Sort Quick Sort
 8. Implementing Floyd's and Warshall's Algorithms
- 9. Implementing Huffman trees

Theory: 0	Tutorial: 0	Practical: 30	Project: 0	Total: 30 Hours
			- J	

hit

Signature of BOS Chairman, IT

DATABASE MANAGEMENT SYSTEMS

L	Т	Р	J	С
3	0	0	2	4

COURSE OBJECTIVES:

U17ITI4303

- To understand the different issues involved in the design and implementation of a database system.
- To study the physical and logical database designs, database and relational modeling
- To understand and use data manipulation language to query, update, and manage a database
- To develop an understanding of essential DBMS concepts such as: database security, integrity, concurrency,
- To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS situation.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- **CO1** Outline an ER model for a defined problem
- **CO2** Explain the basic concepts of query processing and query optimization algorithms.
- **CO3** Describe the concepts of transaction and storage management.
- **CO4** Explain the basic concepts of database security and NoSQL
- **CO5** Design a database for a given problem.
- CO6 Develop an RDBMS application

Pre-requisites:	Nil
-----------------	-----

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-											PSO)		
	Weak											1, 11 -			
COs				P	rograr	nme (Dutcor	nes(P	Os)						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	Μ					Μ						Μ		
CO2	М	Μ											Μ		
CO3	Μ	Μ											Μ		
CO4	М								Μ				Μ		
CO5	S	Μ			Μ		Μ		S	S		М	Μ	Μ	Μ
CO6	S	Μ			Μ		Μ		S	S		М	Μ	Μ	Μ

hitte Signature of BOS Chairman, IT

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Project report (Project Component)
- 4. Project Review and Presentation (Project Component)

Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS

INTRODUCTION

Database system Architecture: Data Abstraction – Data Independence – Data Definition Language – Data Manipulation Language.

Data Models: E-R model - network model - relational and object oriented data models integrity constraints – data manipulation operations.

DATABASE DESIGN

Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DMK constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQL server.

Relational Database Design: Domain and data dependency - Armstrong's axioms -Normal forms – Dependency preservation – Lossless design.

DATA STORAGE AND QUERYING

Data Storage: Overview of Physical Storage Media - RAID - File Organization -Organization of Records in Files - Data Dictionary Storage.

Data Indexing and Hashing: Basic Concepts - Ordered Indices - B+ Tree Index Files -Multiple Key Access - Static and Dynamic Hashing.

Query Processing: Evaluation of relational algebra expressions – Query equivalence – Join Strategies – Query optimization algorithms.

TRANSACTION MANAGEMENT

Transaction processing: Transaction Concept - Transaction Model - ACID property -Serializability.

Concurrency Control: Lock Based Protocols - Time Stamped Based Protocols - Deadlock Handling.

Recovery System: Failure Classification – Storage - Log Based Recovery - Shadow Paging.

ADVANCED TOPICS

Database Security: Authentication - Authorization and access control - DAC, MAC and RBAC models - Intrusion detection - SQL injection.

NoSQL:Working with Column oriented Databases – Hbase distributed storage architecture - Document store internals - Understanding Key-Value Stores in Memcache and Redis -

Mith Signature of BOS Chairman, IT

9 Hours

9 Hours

9 Hours

9 Hours

Eventually consistent Non-Relational Databases – Performing CRUD operations: Creating Records, Accessing Data, updating and deleting Data

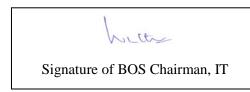
Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours

REFERENCES:

- 1. Abraham Silberschatz, Henry Korth, and S. Sudarshan, Database System Concepts, Sixth edition, McGraw-Hill.2011.
- 2. R. Elmasri and S. Navathe, Fundamentals of Database Systems, Sixth Edition, Pearson Education, 2011
- 3. Thomas M. Connolly and Carolyn E. Begg, "Database Systems A Practical Approach to Design, Implementation, and Management", fifth edition, Pearson Education, 2010.
- 4. C.J.Date, A. Kannan and S. Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 5. Tiwari, Shashank. Professional NoSQL. John Wiley & Sons, 2011.(Unit V)

Online Courses and Video Lectures:

1. http://nptel.ac.in


PROJECT COMPONENTS:

LIST OF EXPERIMENTS

- 1. DDL and DML commands
- 2. Transaction control commands and aggregate functions
- 3. Joins and Nested Queries
- 4. Constraints and Views
- 5. High level programming language extensions (Control structures, Procedures and Functions).
- 6. Cursors and Triggers
- 7. Embedded SQL
- 8. Sample projects like
 - i. Hospital Management
 - ii. Railway Ticket Reservation
 - iii. Student Mark List Processing
 - iv. Employee Pay Roll Processing
 - v. Inventory Control

Theory: 0 Tutorial: 0 Practical: 0 Project: 30

Total: 30 Hours

COMPUTER NETWORKS

L	Т	Р	J	С
3	0	2	0	4

COURSE OBJECTIVES:

- Learn the data communication system and the importance of layered architecture
- Describe the various network and data link layer protocols.
- Make use of the network layer concepts to solve a problem.
- Explain the functions of transport layer and application layer protocols.

COURSE OUTCOMES:

After Successful completion of this course, the students will be able to :

- **CO1** Outline the data communication system and the purpose of layered architecture
- **CO2** Explain the data link layer protocols.
- **CO3** Outline the network layer protocols.
- **CO4** Apply the network layer concepts to solve a problem.
- **CO5** Illustrate the functions of transport layer protocols.
- **CO6** Summarize the application layer protocols.

Pre-requisite : U17ECT3011 – PRINCIPLES OF COMMUNICATION

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-														PSO		
Weak																
Programme Outcomes (POs)																
COs	Р	PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	PO	1	2	3	
	Ο	2	3	4	5	6	0	8	9	10	11	12				
	1						7									
CO 1	Μ												Μ			
CO 2	S	W	W							W	W		Μ			
CO 3	S	W								W	W		Μ			
CO 4	S	Μ	Μ							W	W	W	Μ			
CO 5	S	W	W							W	W		Μ			
CO 6	Μ									W	W		Μ			

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Pre/Post experiment Test/Viva (Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

Nith Signature of BOS Chairman, IT

THEORY COMPONENT CONTENTS:

DATA COMMUNICATIONS

Data Communication- Networks-The OSI Model- Layers in the OSI Model - TCP/IP Protocol Suite - Addressing - Transmission Media

DATA LINK LAYER

Encoding - Framing - Error Detection - Reliable Transmission - IEEE 802.3 - IEEE 802.5 – IEEE 802.11 – IEEE 802.15.1

NETWORK LAYER

Circuit Switching - Packet Switching - Switching and Bridging - Cell Switching -Internetworking -Sub netting - IPv6 - Routing Techniques: Distance vector (RIP) -Link state (OSPF) — Interdomain Routing (BGP).

TRANSPORT LAYER

UDP – TCP – Congestion Control and Resource Allocation: TCP Congestion Control – Congestion Avoidance Mechanisms - Quality of Service: Integrated Services -Differentiated Services.

APPLICATION LAYER

Domain Name System - Electronic Mail (SMTP, MIME, IMAP) - File Transfer (FTP) -WWW (HTTP) – Network Management (SNMP).

Theory: 45 Tutorial: 0 Practical: 0 Project: 0 **Total: 45 Hours**

REFERENCES:

- 1. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers Inc., 2011.
- 2. William Stallings, "Data and Computer Communications", Tenth edition, Pearson Education, 2013.
- 3. Behrouz A Forouzan, "Data Communications and Networking", Fifth edition, Tata McGraw-Hill, New Delhi, 2013.
- 4. James F. Kurose, Keith W. Ross, "Computer Networking, A Top–Down Approach Featuring the Internet", Sixth edition, Pearson Education, 2012.

LAB COMPONENTS:

List of Experiments:

- 1. Develop client server based TCP applications using UNIX socket programming functions.
- 2. Develop client server based UDP applications using UNIX socket programming functions.
- 3. Implementation of HTTP or DNS and ARP or RARP protocols.
- 4. Implementation of sliding window and CRC protocols.
- 5. Implementation of distance vector / link state routing protocols.

Signature of BOS Chairman, IT

hitte

10 Hours

10 Hours

5 Hours

10 Hours

- 6. Study of network simulation tools such as NS3/QUALNET/OPNET/Packet Tracer.
- 7. Performance analysis of routing protocols using Wireshark.
- 8. Performance analysis of TCP and UDP protocol using simulation tool
- 9. Demonstrate the working of network tools such as Ping, TCPDump, Traceroute, Netstat, IPconfig.

Theory: 0 Tutorials: 0 Practical: 30 Project: 0 Total

hitte

U17INI4600 ENGINEERING CLINIC II

L	Т	Р	J	С
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:

- **CO1:** Identify a practical problems and find a solution
- **CO2:** Understand the project management techniques
- **CO3:** Demonstrate their technical report writing and presentation skills

Pre-requisite:

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs		Programme Outcomes(POs)												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

COURSE ASSESSMENT METHODS:

Direct
1. Project reviews 50%
2. Workbook report 10%
3.Demonstration Viva-voce 40%
Indirect
1. Course Exit Survey

huch	
Signature of BOS Chairman, IT	

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

LIST OF MANDATORY COURSES

U17VEP4504

PROFESSIONAL VALUES

(Mandatory)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After successful completion of this course, the students should be able to

- CO 1: Develop the ethical values in both professional and personal life
- **CO 2**: Develop ability to take decision to reinforce professional life
- CO 3: Rational in professional skills required for diverse society
- CO 4: Excel in ingenious attitude to congregate professional life

CO 5: Research into the professional stand

CO 6: Spruce an Individual with decorum to achieve professional life

Pre-requisites :

1. U17VEP1501 / PERSONAL VALUES

2. U17VEP2502 / INTERPERSONAL VALUES

3.U17VEP3503 / FAMILY VALUES

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
COs		Programme Outcomes(POs)										
	PO1	PO2	PO3	PO4	PO5	PO6	1	PO8	PO9	PO10	PO11	PO12
CO1								S				
CO2				Μ								
CO3			S									
CO4												S
CO5								Μ				
CO6										Μ		
Course	e Asses	sment	metho	ods								
Direc	t											
1.Gro	up Act	ivity /	Indivi	dual pe	rforma	nce an	d assig	nment				
2.Ass	2.Assessment on Value work sheet / Test											
Indir	Indirect											

1. Mini project on values / Goodwill Recognition

Values through Practical activities:

1.Professional skills With Values: Positive Attitude, Adaptability, Responsibility, Honesty and Integrity, Self Esteem, & Self Confidence

2.Building Innovative work cultures:Creative thinking, Critical thinking, Conflict Resolution, Problem Solving, & Decision making

huch	
Signature of BOS Chairman, IT	

3.Professional Work Ethics:Types of Ethics, Etiquette, personality Grooming, Emotional quotient, Human Dignity, Safety & Role of Professional in Social Responsibility

4.Engineering Ethics:Engineering Council of India - Objectives - Code of Ethics - Social responsibility -Professional Quality - Ethical issues - Effects - Strategy - Corruption, Consequences, Cures

5.Case studies in engineering ethics:Discussion of case studies relating to Public safety, health, welfare, Quality of product, Improper conduct by management, Product responsibility, Intellectual property

Workshop mode

REFERENCES

1. LEARNING TO DO SOURCEBOOK 3 - UNESCO-UNEVOC -PDF www.unevoc.unesco.org/fileadmin/user_upload/pubs/LearningToDo.pdf

2. DECLARATION OF PROFESSIONAL VALUES AND ETHICAL STANDARDS www.garda.ie/Documents/User/declarationvalues.pdf

3. KARMA YOGA - SWAMI VIVEKANANDA www.vivekananda.net/PDFBooks/KarmaYoga.pdf

4. PROFESSIONAL ETHICS IN ENGINEERING - Sasurie College of Engineering www.sasurieengg.com/.../GE2025%20Professional%20Ethics%20in%20Engineering.

5. ENGINEERING ETHICS CASE STUDY; Challenger www.ucc.ie/en/processeng/staff/academic/ebyrne/.../PE1006PptNotesLect7.pdf

SEMESTER V

U17ITT5001 CRYPTOGRAPHY AND NETWORK SECURITY

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To understand the fundamentals of Cryptography
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand the various key distribution and management schemes.
- To understand how to deploy encryption techniques to secure data in transit across data networks

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Explain security attacks and issues in computer systems and networks.
- CO2 Apply the mathematics. symmetric and asymmetric algorithms related to cryptography
- **CO3** Explain the purpose and working of authentication and system level security algorithms
- CO4 Apply the appropriate security mechanism for different computing environment
- **CO5** Apply appropriate security methods to solve real life applications

Pre-requisite: U17ITI4204 - COMPUTER NETWORKS

CO/PO Mapping										PSO)			
(S/	S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	1	2	3
	1	2	3	4	5	6	7	8	9	0	1	2			
CO1	Μ	М										М	Μ		
CO2	S	М										М	Μ		
CO3	Μ	М										М	Μ		
CO4	S	М			Μ			Μ				Μ			Μ
CO5	Μ	М						S				Μ			Μ

COURSE ASSESSMENT METHODS:

Direct
1. Continuous Assessment Test I, II
2. Assignment, Group Presentation
3. End Semester Exam
Indirect
1. Course Exit Survey

THEORY COMPONENT CONTENTS

INTRODUCTION

OSI Security Architecture - Classical Encryption Techniques - CipherPrinciples-DataEncryptionStandard-BlockCipherDesignPrinciples and Modes of Operation-

hult	
Signature of BOS Chairman, IT	

Signature of BOS Chairman, IT

hitte

Evaluation Criteria for AES-AES Cipher- Triple DES- Placement of Encryption Function-Traffic Confidentiality.

PUBLICKEYCRYPTOGRAPHY

Introduction to Number Theory -Key Management - Diffie-Hellman Key Exchange – Elliptic Curve Architecture and Cryptography – Confidentiality using Symmetric Encryption–Public Key Cryptography and RSA.

AUTHENTICATIONANDHASHFUNCTION

Authentication Requirements – Authentication Functions – Message Authentication Codes–Hash Functions–Security of Hash Functions and MACs – Secure Hash Algorithm – HMAC Digital Signatures – Authentication Protocols–Digital Signature Standard.

NETWORKSECURITY

Authentication Applications: Kerberos – X.509 Authentication Service– Electronic Mail Security–PGP–S/MIME-IP Security–Web Security- Practical implementation of security using GPG Suite.

SYSTEMLEVELSECURITY

Intrusion Detection —Firewall Design Principles–Trusted Systems. Case study: Biometric authentication and Ethical Hacking

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours

REFERENCES:

- 1. WilliamStallings, "Cryptography and Network Security Principles and Practices", Sixth edition, Prentice Hall of India, 2014.
- 2. AtulKahate, "Cryptography and Network Security", 2nd Edition, Tata McGraw Hill, 2008
- 3. Bruce Schneier, "Applied Cryptography", JohnWiley&SonsInc, 2001.
- 4. CharlesPfleeger and Shari Lawrence P fleeger, "Security in Computing", Fourth edition, PearsonEducation, 2015.

9 Hours

9 Hours

9 Hours

U17ITI5202

DATA MINING TECHNIQUES

L	Т	Р	J	С
3	0	2	0	4

COURSE OBJECTIVES:

- Identify the scope and necessity of Data Mining algorithms for the society.
- To understand various tools of Data Mining and their techniques to solve the real time problems.
- To develop further interest in research and design of new Data Mining techniques.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Summarize the data pre processing process
- CO2 Explain the association rule Mining algorithm for correlation analysis
- CO3 Apply decision tree algorithm for classification
- CO4 Apply and analyze Bayesian networks algorithm for classification
- CO5 Apply various clustering algorithms for different datasets
- **CO6** Model a simple application with data mining tools.

Pre-requisite: U17ITI4303 - DATABASE MANAGEMENT SYSTEM U17MAI4201 – PROBABILITY AND STATISTICS

(S	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak]	PSO)			
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	1	2	3
	1	2	3	4	5	6	7	8	9	0	1	2			
CO1	Μ	Μ											Μ		
CO2	М	М											Μ		
CO3	S	Μ											Μ		
CO4	S	S	М			М							Μ		
CO5	S	М	М			М							Μ		
CO6	S	S	М	М	М	М	М		М	М		М	Μ	М	Μ

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Model examination (Lab component)
- 4. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

Signature of BOS Chairman, IT

hitte

THEORY COMPONENT CONTENTS

INTRODUCTION TO DATA MINING

Data mining - Related technologies - Machine Learning, DBMS, OLAP, Statistics - Data Mining Goals - Stages of the Data Mining Process - Data Mining Techniques - Knowledge Representation Methods – Applications

DATA PRE PROCESSING

Data preprocessing-Data mining primitives – Data mining query language - Concept description – Data generalization and characterization – Analytical characterization – Mining descriptive statistical measures in large databases- Mining frequent patterns, Associations, and Correlations

CLASSIFICATION AND PREDICTION

Introduction – Decision tree induction – Bayesian classification – Back propagation – Lazy learners – Other classification methods – Prediction – Evaluating the accuracy-Case study in social media analysis

CLUSTERING TECHNIQUES

Similarity and distance measures – Hierarchical algorithms – Partition algorithms – Outlier analysis -Case study in social media analysis

APPLICATIONS OF DATA MINING

Web mining – Web content mining – Structure and Usage mining – Spatial mining – Time series and sequence mining – Graph mining

Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours

REFERENCES:

- 1. J. Han, MKamber, "Data Mining: Concepts and Techniques", Third edition, Elsevier, New Delhi, 2011.
- 2. Dunham M, "Data Mining: Introductory and Advanced Topics", Prentice Hall, New Delhi, 2002.
- 3. Trevor Hastie, Robert Tibshirani, Jerome Friedma, "The Elements of Statistical Learning: Data Mining, Inference and Prediction", Prentice Hall, New Delhi, Second Edition, 2009.
- 4. Hand.D, Mannila H, Smyth.P, "Principles of Data Mining", MIT press, USA, 2001.

LAB COMPONENT:

Perform the following experiments on any one of the data mining tools like <u>RapidMiner</u>, <u>WEKA,R-Programming</u>, <u>Orange</u>, <u>Dendrogram (Hierarchal clustering)</u> for any real time applications

- 1. Discover Association Rule Mining
- 2. Classification algorithms-Decision Tree, CART, Random Forest, J48, ZeroR
- 3. Clustering algorithms-K-Means, K-Medoids, Hierarchal clustering

Theory: 0Tutorial: 0Practical: 30Project: 0Total: 30 Hours

9 Hours

9 Hours

9 Hours

9 Hours

U17ITI5203 MOBILE AND PERVASIVE COMPUTING

L	Т	Р	J	С
3	0	2	0	4

COURSE OBJECTIVES:

- To make students familiar with fundamentals of mobile communication systems.
- To study the working principles of wireless LAN and its standards
- To build skills in working with Wireless Networking Protocols

Course Outcomes

After successful completion of this course, the students would be able to

- CO 1: Outline the basic concepts and principles in mobile computing.
- CO 2: Explain GSM architecture and protocols.
- CO 3: Analyze characteristics of different types of wireless LAN network protocols
- CO 4: Explain the principles of 4G networks.
- CO 5: Identify the pervasive and ubiquitous computing characteristics as well as context-aware computing and their applications.
- C0 6: Design and develop mobile applications using android platform.

Pre-requisite: U17ITI4204-COMPUTER NETWORKS

				0	CO/PC) Map	ping							PSO	
(S/M/W	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	Programme Outcomes (POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO 1	Μ												Μ		
CO 2							Μ		Μ				Μ		
CO 3	М	М			S	Μ				М		Μ	Μ		
CO 4	Μ												Μ		
CO 5		М			S		Μ		Μ			Μ	Μ		
CO 6	S	S		S	S	Μ		Μ	Μ			Μ	S	Μ	Μ

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Model examination (Lab component)
- 4. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS WIRELESS COMMUNICATION

9 Hours

Cellular systems- Frequency Management and Channel Assignment- Types of Handoff and their Characteristics -Dropped Call Rates & their Evaluation - MAC - SDMA - FDMA - TDMA - CDMA - Cellular Wireless Networks.

vitte Signature of BOS Chairman, IT

MOBILE COMMUNICATION SYSTEMS

GSM - Architecture -Location Tracking and Call Setup - Mobility Management- Handover-Security - GSM SMS --International roaming for GSM- call recording functions-subscriber and service data management -Mobile Number portability - GPRS -Architecture-GPRS and procedures PDP procedures-attach detach _ context procedure-combined RA/LA update procedures-Billing.

WIRELESS NETWORKS

Introduction to wireless LANs - IEEE 802.11 WLANs - Physical Layer- MAC sublayer -Introduction - Mobile IP - IP packet delivery - Agent discovery -Tunnelling and Encapsulation -IPV6 - Mobile ad-hoc network - Routing - Destination Sequence distance vector - Dynamic source routing TCP enhancements for wireless protocols - Traditional TCP - Congestion control fast retransmit/fast recovery -Implications of mobility - Classical TCP improvements - Indirect TCP, Snooping TCP - Mobile TCP - Time out freezing - Selective retransmission - Transaction oriented TCP.

OVERVIEW OF A MODERN 4G TELECOMMUNICATIONS SYSTEM

Introduction - LTE - A System Architecture - LTE RAN - OFDM Air Interface - Evolved Packet Core- LTE Requirements - LTE-Advanced - LTE-A in Release - OFDMA - Introduction -OFDM Principles - LTE Uplink - SC - FDMA - Summary of OFDMA.

PERVASIVE COMPUTING

Pervasive Computing- Principles, Characteristics- Interaction Transparency, Context aware, Automated Experience Capture. Architecture for Pervasive Computing- Pervasive Devices-Embedded controls- Smart Sensors and Actuators -Context Communication and Access Services.

Total hours:45 Theory: 45 **Tutorial : 0 Practical : 0 Project : 0**

REFERENCES:

- 1. Jochen H. Schller, Mobile Communications, Second Edition, Pearson Education, New Delhi. 2007.
- 2. JuhaKorhonen, Introduction to 4G Mobile Communications, Artech House Publishers, 2014.
- 3. M. Bala Krishna, Jaime LloretMauri, Advances in Mobile Computing and Communications: Perspectives and Emerging Trends in 5G Networks, CRC 2016
- 4. SengLoke, "Context-Aware Computing Pervasive Systems", Auerbach Pub., New York, 2007.
- 5. UweHansmannetl, "Pervasive Computing", Springer, New York, 2001.
- 6. William Stallings, "Wireless Communications and Networks", Pearson Education, 2009.
- 7. KavehPahlavan, PrasanthKrishnamoorthy, "Principles of Wireless Networks", First Edition, Pearson Education, 2003.
- 8. Andreas F. Molisch, "Wireless Communications", 2nd Edition, Wiley 2010.
- 9. SengLoke, "Context-Aware Computing Pervasive Systems", Auerbach Pub., New York, 2007.

hitte

9 Hours

8 Hours

10 Hours

LAB COMPONENT:

List of Experiments:

1. Create an android application using Layouts, Widgets and Event listeners.

- 2. Create an android application using Activities, Indents, Fragments and Notifications.
- 3. Create an android application using Menus.
- 4. Create an android application Storage, Media and Animations.
- 5. Create an android application using Location and Google Map.
- 6. Create an android application using Database Framework.
- 7. Create an android application using Localization and Sensors.

Theory: 0 Tutorial: 0 Practical: 30 Project: 0 Total hours: 30

U17ITI5304

SOFTWARE ENGINEERING

L	Т	Р	J	С
3	0	0	2	4

COURSE OBJECTIVES:

- Knowledge of basic SW engineering methods and practices, and their appropriate application.
- Describe software engineering layered technology and Process frame work.
- A general understanding of software process models such as the waterfall and evolutionary models.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Apply software engineering principles and techniques
- CO2 Translate end-user requirements in to software requirements
- **CO3** Develop, maintain and evaluate large-scale software systems
- CO4 Implement an efficient, reliable, robust and cost-effective software solutions
- CO5 Identify software project planning & Management activities
- **CO6** Model a simple application following software engineering principles.

Pre-requisite: Nil

	CO/PO Mapping]	PSO	1			
(S/	M/W	W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
		Programme Outcomes(POs)													
COs	Р	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	1	2	3
	01	2	3	4	5	6	7	8	9	0	1	2			
CO1	Μ	М											Μ		
CO2	Μ	М	М	Μ									Μ		
CO3	Μ	М	М	Μ	W								Μ		
CO4											Μ	W	Μ		
CO5	S	S							Μ				Μ	Μ	Μ
CO6	S	S								М			М	М	Μ

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. End Semester Examination (Theory)
- 4. Project report (Project Component)
- 5. Project Review and Presentation (Project Component)

Indirect

1. Course-end survey

huter

THEORY COMPONENT CONTENTS

INTRODUCTION

Software Engineering Discipline, Software, Generic vs. Custom-made software productsdistinctive characteristics of software products. Software Development Models: Life cycle models-Linear ,Sequential, Evolutionary, Unified models, Agile development -Agile Manifesto and Principles, Overview of Scrum, Extreme Programming, Feature Driven development, Lean Software Development, Design and development practices in Agile projects, Test Driven Development, Continuous Integration, Refactoring, Pair Programming, Simple Design, User Stories, Agile Testing, Case study in agile processing model.

REQUIREMENTS ENGINEERING

Classification of Requirements-System Requirements and Software Requirements, Functional and Non-Functional requirements, Requirement Engineering Tasks.

System Models: Domain Analysis and Modeling, Data Models, Functional Models-Structured Analysis Model, Object Oriented Models- Cloud, State, Use Case Models, Sequence and Activity diagrams, Relationship among the Object Oriented Models, Building Object Oriented Analysis Models

SOFTWARE DESIGN AND IMPLEMENTATION

Architectural Design-Decomposition strategy, Partitions and Layers, Structured System Design-Use of Heuristics for Design Refinements, Object-Oriented Design- User Interface Design-Reusable Components, Patterns, Frame works, Coding - Choice of Programming Language, **Coding Standards**

SOFTWARE TESTING

Software Testing: Conventional Testing and SDLC Testing, Formal Technical Reviews, Walkthroughs, Inspections, Black-Box vs. Glass-Box Testing, Testing Strategies , Quality Dimensions, Process Quality and Product Quality, Quality Assurance Planning, Quality Measurements, Software Configuration Management.

SOFTWARE PROJECT MANAGEMENT

Software Projects, Project Feasibility Study, Project Planning, Project Organization, Estimation of Project Effort-Measuring Software Attributes and Productivity, COCOMO for Effort Estimation. Risk Management, Project Scheduling, Measurement during Software Projects. Software Maintenance: Planning for Maintenance, maintenance Activities, Reengineering

Theory: 45 **Tutorial : 0 Practical : 0 Project : 0 Total hours:45**

REFERENCES:

- 1. R.S. Pressman, "Software Engineering A Practitioner's Approach", Eighth edition, McGraw Hill International Edition, 2014.
- 2. Stephen Schach, "Software Engineering", Seventh edition, TMH, New Delhi, 2007.
- 3. PankajJalote, "An Integrated Approach to Software Engineering", Third edition, NarosaPublishing House, 2005.
- 4. M.Blaha and J.Rumbaugh, "Object Oriented Modeling and Design with UML", Second

9 Hours

9 Hours

9 Hours

9 Hours

edition, Prentice-Hall India, 2006.

- 5. I Sommerville, "Software Engineering", Seventh edition, Pearson Education, 2004
- 6. "Agile Software Development with Scrum"By Ken Schawber, Mike Beedle, Publisher: Pearson
- 7. "Agile Testing: A Practical Guide for Testers and Agile Teams", By Lisa Crispin, Janet Gregory, Publisher: Addison Wesley

PROJECT COMPONENT:

Make use of tools like Trello, DevOps **List of Projects**

- 1. A Car Rental System
- 2. Accounts Management Software
- 3. Airline Reservation System
- 4. Army Management System
- 5. ATM System
- 6. Auto Repair Shop Management System
- 7. Automotive Store Management System
- 8. Banking System
- 9. Bus Ticket Reservation
- 10. Cafeteria Ordering System
- 11. Car Insurance System
- 12. Clothing Store Management
- 13. College Management System
- 14. Ebook Shopping
- 15. Enterprise Resource Planning System
- 16. Event Organizing, Planning and Management System
- 17. Gym Workout Application
- 18. Hospital Management System
- 19. Hostel Accommodation System
- 20. Hotel Management System

Theory: 0 Tutorial: 0 **Practical:** 0 Project: 30

> hit Signature of BOS Chairman, IT

Total: 30 Hours

U17INI5600 ENGINEERING CLINIC III

L	Т	Р	J	С
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:

- **CO1:** Identify a practical problems and find a solution
- **CO2:** Understand the project management techniques
- **CO3:** Demonstrate their technical report writing and presentation skills

Pre-requisite:

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs					Pr	ogram	me Ou	itcome	es(POs	5)				
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

COURSE ASSESSMENT METHODS:

Direct
1. Project reviews 50%
2. Workbook report 10%
3.Demonstration Viva-voce 40%
Indirect
1. Course Exit Survey

huch	
Signature of BOS Chairman, IT	

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

LIST OF MANDATORY COURSES

U17VEP5505

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After successful completion of this course, the students should be able to

CO 1: Understand the transformation from self to society

CO 2:Acquire knowledge about disparity among Human Beings

CO 3: Realize the new ethics in creating a more sustainable Society

CO 4: Develop skills to manage challenges in social issues

CO 5: Acquire the skills for Management of Social work & HolisticSociety

CO 6: Validate the social liabilities at dissimilar situations

Pre-requisites :

1. U17VEP1501 / PERSONAL VALUES

2. U17VEP2502 / INTERPERSONAL VALUES

3.U17VEP3503 / FAMILY VALUES

4.U17VEP4504 / PROFESSIONAL VALUES

CO/PO Mapping S-Strong, M-Medium, W-Weak (S/M/W indicates strength of correlation) Programme Outcomes(POs) COs PO7 PO1 PO2 PO3 PO4 PO5 PO6 PO8 PO9 PO10 PO11 PO12 CO1 S CO2 S CO3 Μ CO4 S CO5 S Μ CO6

Course Assessment methods

Direct
1. Group Activity / Individual performance and assignment
2.Assessment on Value work sheet / Test
Indirect
1. Mini project on values / Goodwill Recognition

Values through Practical activities:

1. Self and Society:Relation between self and society – Different forms of society - Elements of Social structures – Realization of Duties and Responsibilities of Individual in the Society

huch	
Signature of BOS Chairman, IT	

2. Social Values: Tolerance – Responsibility – Sacrifice – Sympathy - Service – peacenonviolence - right conduct- Unity – forgive – dedication – Honest

3. Social issues :Disparity among Human beings- Poverty-Sanitation -corruption- un employment-superstition – religious intolerance & castes – terrorism.

4. Emerging Ethics for Sustainable Society: Unison of Men in Society - Positive Social Ethics - Cause and Effect - Ensuring an Equitable Society- Effect of Social Media in society - development of Education and Science in the Society

5. Social Welfare:Social welfare Organization - Programme by Government and NGO's -Benefits of Social Service - Balancing the Family and Social Life – Development of Holistic Society

Workshop mode

REFERENCES

- 1. SOCIAL PROBLEMS IN INDIA ForumIAS.com PDF
 - discuss.forumias.com/uploads/File upload/.../711b18f321d406be9c79980b179932.pd...
- 2. INVESTING IN CULTURAL DIVERSITY AND INTERCULTURAL DIALOGUE: UNESCO ...

www.un.org/en/events/culturaldiversityday/pdf/Investing_in_cultural_diversity.pdf

3. INDIAN SOCIETY AND SOCIAL CHANGE - University of Calicut www.universityofcalicut.info/SDE/BA sociology indian society.pdf

- CULTURE, SOCIETY AND THE MEDIA Eclasswww.eclass.uoa.gr/.../MEDIA164/.../%5BTony_Bennett,_James_Curran,_Michael_ G
- 5. SOCIAL WELFARE ADMINISTRATION IGNOU

www.ignou.ac.in/upload/Bswe-003%20Block-2-UNIT-6-small%20size.pdf

U17INT5000

CONSTITUTION OF INDIA (Mandatory course)

L	Т	T P J				
2	0	0	0	0		

Course Outcomes:

After successful completion of this course, the students will be able to:

- **CO 1:** Gain Knowledge about the Constitutional Law of India
- **CO 2:** Understand the Fundamental Rights and Duties of a citizen
- **CO 3:** Apply the concept of Federal structure of Indian Government
- CO 4: Analyze the Amendments and Emergency provisions in the Constitution
- **CO 5:** Develop a holistic approach in their life as a Citizen of India

Pre-requisites :NIL

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	ProgrammeOutcomes(POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1						Μ			W			S			
CO2						S		S				Μ			
CO3									Μ	S		W			
CO4								W	Μ			Μ			
CO5						Μ		Μ				S			
CO6															

Course Assessment methods

Direct												
1. Group Activity / Quiz/ Debate / Case studies												
2. Class test / Assignment												
Indirect												
Surveys												

THEORY COMPONENT:

Module.1: Introduction to Indian Constitution

4 hours Meaning of the constitution law and constitutionalism - Historical perspective of the Constitutic and characteristics of the Constitution of India

Module.2:Fundamental Rights

8 hours Scheme of the fundamental rights - Right to Equality - Fundamen al Right under Article 19 -Scope of the Right to Life and Liberty - Fundamental Duties and its legal status - Directive Principles of State Policy – Its importance and implementation

Module.3:Federal Structure8 hoursFederal structure and distribution of legislative and financial powers between the Union and
the States - Parliamentary Form of Government in India - The constitutional powers and
status of the President of India

Module.4:Amendment to Constitution6 hoursAmendment of the Constitutional Powers and Procedure - The historical perspectives of the
constitutional amendments in India

Module.5:Emergency Provisions4 hoursNational Emergency, President Rule, Financial Emergency Local Self Government –
Constitutional Scheme in India

Theory: 30 Tutorial: 0	Practical: 0 Project: 0	Total: 30 hours
------------------------	-------------------------	-----------------

REFERENCES

 <u>Constitution of India - Ministry of Law & Justice</u> – PDF format awmin.nic.in/coi/coiason29july08.pdf
 <u>Introduction to the Constitution of India by</u> DurgadasBasu
 The Constitution of India – Google free material www.constitution.org/cons/india/const.html
 <u>Parliament of India</u> – PDF format download.nos.org/srsec317newE/317EL11.pdf
 The Role of the President of India – By Prof.Balkrishna
 Local Government in India – E Book - <u>Pradeep Sachdeva</u> https://books.google.com/books/.../Local_Government_in_In...

SEMESTER – VI

U17ITT6001 INFORMATION SECURITY

ſ	L	Т	P	J	С
	3	0	0	0	3

COURSE OBJECTIVES:

- To learn various types of security threats, attacks and its issues
- To understand the principles, major issues and basic approaches in information security
- To gain knowledge on various security models and policies

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Describe threats to information security and security SDLC.
- CO2 Identify the security threats and attacks.
- CO3 Analyze the mechanism to assess and control risk.
- **CO4** Describe the types of security policies and standards.
- **CO5** Identify security issues related to personnel decisions, and qualifications of security personnel.

Pre-requisite: U17ITT5001 – CRYPTOGRAPHY AND NETWORK SECURITY

CO/PO Mapping													PSO		
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak															
Programme Outcomes(POs)															
COs	PO	РО	PO	PO	1	2	3								
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	Μ					Μ		Μ					Μ		Μ
CO2	Μ					Μ		Μ				Μ	Μ		Μ
CO3	М					Μ		S				Μ			Μ
CO4	М					Μ		S							Μ
CO5	М				S	Μ		S				Μ			Μ

COURSE ASSESSMENT METHODS:

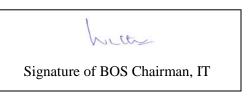
Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment/Case studies, Group Presentation
- 3. End Semester Exam

Indirect

1. Course Exit Survey

THEORY COMPONENT CONTENTS


INTRODUCTION

9 Hours

History - Information Security - Critical characteristics of information - NSTISSC security model

- Components of an information system - Securing the components - Balancing security and access

- The SDLC - The security SDLC.

SECURITY INVESTIGATION

Need for security - Business needs - Threats - Attacks - Legal - Ethical and professional issues.

SECURITY ANALYSIS

Risk management: Identifying and assessing risk - Assessing and controlling risk .

LOGICAL DESIGN

Blueprint for security - Information security policy - Standards and practices - ISO 17799/BS 7799 – NIST models - VISA international security model - Design of security architecture - Planning for continuity - Data Protection and Information Security in India.

PHYSICAL DESIGN

Security technology – IDS - Scanning and analysis tools –Access control devices - Physical security - Security and personnel.

Case studies on HIPAA, PCI, SOX

REFERENCES:

- 1. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", Fourth Edition, Thomson Publishing, India Edition, 2011.
- 2. Micki Krause, Harold F. Tipton, "Handbook of Information Security Management", Vol 1-3 CRC Press LLC, 2004.
- 3. Stuart McClure, et al., "Hacking Exposed", Tata McGraw-Hill, Sixth edition2009.
- 4. Matt Bishop, "Computer Security Art and Science", Pearson/PHI, 2002.

Signature	of BOS	Chairman,	IT

Nith

9 Hours

9 Hours

9 Hours

U17ITT6002 INTERNET OF THINGS – ARCHITECTURE AND PROTOCOLS

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To understand the architecture of IoT
- To understand the protocols related with IoT
- To understand the relationship of IoT with other domains

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Explain the architectural overview of IoT
- CO2 Describe the IoT Reference Architecture and real-world design constraints
- CO3 Discuss the various protocols for IoT
- CO4 Explain the Security constraints behind IoT
- **CO5** Analyze IoT applications in real time scenario.
- **CO6** Describe the relationship of IoT with other domains

Pre-requisite: U17ITI4204 COMPUTER NETWORKS

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												PSO			
Programme Outcomes(POs)											-				
COs	PO	РО	PO	1	2	3									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Μ												Μ		
CO2	Μ	Μ											Μ		Μ
CO3	М		W										Μ		
CO4	М							Μ					Μ		
CO5	Μ	S		Μ			М					М	Μ		Μ
CO6	Μ				М		М						Μ		

COURSE ASSESSMENT METHODS:

Direct
1. Continuous Assessment Test I, II
2. Assignment, Group Presentation
3. End Semester Exam
Indirect
1. Course Exit Survey

THEORY COMPONENT CONTENTS OVERVIEW

9 Hours

IoT-An Architectural Overview– Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area networking, Data management,

huch	
Signature of BOS Chairman, IT	

Signature of BOS Chairman, IT

hitte

Business processes in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge Management

REFERENCE ARCHITECTURE

IoT Architecture State of the Art - Introduction, State of the art, Reference Model and architecture, IoT reference Model - IoT Reference Architecture. Real-World Design Constraints- Introduction, Technical Design constraints, Data representation and visualization, Interaction and remote control.

PROTOCOLS

PHY/MAC Layer -Wireless HART, Z-Wave, Bluetooth Low Energy, Zigbee Smart Energy, Network Layer-IPv4, IPv6, 6LoWPAN, Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)(TLS, DTLS) – Session Layer-HTTP, CoAP, XMPP, AMQP, MQTT

SERVICE LAYER PROTOCOLS & SECURITY

Service Layer -oneM2M, ETSI M2M, OMA, BBF - Security in IoT Protocols - MAC 802.15.4, 6LoWPAN, RPL, Application Layer

IOT IN CLOUD AND DATA ANALYTICS

Connecting IoT to cloud - Cloud Storage for IoT - Data Analytics for IoT - Software & Management Tools for IoT. CASE STUDIES: Various Real time applications of IoT- Home Automation – Environment – Energy – Agriculture – Industry - Health care applications

Theory: 45 Tutorial: 0 Practical: 0 **Project: 0 Total: 45 Hours**

REFERENCES:

- 1. "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press)
- 2. "Internet of Things: A Hands-on Approach", by ArshdeepBahga and Vijay Madisetti (Universities Press)
- 3. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.
- 4. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 642-19156-5 e-ISBN 978-3-642-19157-2, Springer 978-3-
- 5. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications
- 6. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014
- 7. Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM -MUMBAI
- 8. https://onlinecourses.nptel.ac.in/noc17_cs22/course
- 9. https://www.coursera.org/specializations/internet-of-things
- 10. http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

9 Hours

9 Hours

9 Hours

U17ITI6203 WEB TECHNOLOGY

L	Т	Р	J	С
3	0	2	0	4

COURSE OBJECTIVES:

- To create interactive web pages using HTML and JavaScript.
- To learn the importance of client side and server side technologies
- To develop client /server based applications using different technologies
- To learn the importance of web services

COURSE OUTCOMES :

After successful completion of this course, the students should be able to

- CO1 Understand and build dynamic and interactive web sites
- CO2 Interpret the role of XML and AJAX in web applications
- CO3 Develop applications using PHP and MySQL
- CO4 Develop interactive web applications using Node js and MongoDB
- CO5 Make use Java based technologies (JSP and Servlet) to develop applications.
- CO6 Develop Rest based web services

Pre-requisite: U17ITI3203 – OBJECT ORIENTED PROGRAMMING

						PO Ma		-							
(S/)	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak							eak		PSO)				
Programme Outcomes(POs)															
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	ſ	3
	1	2	3	4	5	6	7	8	9	10	11	12	1	Ζ	3
CO1	Μ	Μ								М		Μ	Μ		
CO2	Μ	Μ											Μ		
CO3	S	S	Μ		М				Μ	М		М	Μ		
CO4	S	S	Μ		Μ				Μ	М		М	S	Μ	Μ
CO5	S	S								М		М	S	Μ	Μ
CO6	S	S								М		М	S	М	Μ

COURSE ASSESSMENT METHODS:

Direct				
1	Continuous	Assassment Test I	Π	(Th

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Pre/Post experiment Test/Viva(Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

hitte

THEORY COMPONENT CONTENTS

CLIENT SIDE TECHNOLOGIES

Introduction to HTML- Introduction to Cascading Style Sheets -Client-Side Programming: Introduction to JavaScript – Functions – Objects – Arrays – Built - in Objects –Using JSON to represent Objects-DOM - Event Handling.

CLIENT SIDE TECHNOLOGIES:XML, AJAX, ANGULAR JS

XML: Documents and Vocabularies -XML DTD-XML Schema-XSLT-XML parsers-AJAX: AJAX Framework.

Introduction to AngularJS -Features of AngularJS -Expressions and Data Biding -Working with Directives-Controllers-Filters-Modules-Forms

SERVER SIDE TECHNOLOGIES-PHP

PHP Basics-Arrays-Functions-Form handling with data- Pattern Matching --Storing the data in DB

SERVER SIDE TECHNOLOGIES: Node is and MongoDB 9 Hours

Node js - Introduction - Advantages of Node JS -HTTP module - Building APIs using modules, events and packages.

MongoDb --Introduction --create database-Manipulating Mongo Db documents from Node.jsaccessing MongoDB from node.js.

WEBSERVICES

Servlet - JSP - Restful Based Web services: Architecture-java. API for Restful Based Web Services-Developing and consuming Restful based web services in Java - Introduction to enterprise beans-types-Lifecycle of enterprise beans

Theory: 45 **Tutorial: 0 Practical: 0 Project: 0 Total hours: 45**

REFERENCES

- 1. Deitel&Deitel, et.al "Internet & World Wide Web How To Program", Pearson Education, Fifth Edition, 2011.
- 2. Marty Hall and Larry Brown "Core Servlets and Java Server Pages, Volume1", Prentice Hall Education, Second Edition, 2006.
- 3. Robert W. Sebesta, "Programming the World Wide Web", Eighth edition, Pearson pulications,2015.
- 4. Frank P.Coyle, "XML, Web Services and the Data Revolution", Addison-Wesley, 2002.
- 5. Brad Dayley, Brendan Dayley, Caleb Davley "Node.js, MongoDB and Angular Web Development", second edition, Addison Weselv.2018.
- 6. Ken Williamson, "Learning AngularJS: A Guide to AngularJS Development", O'Reilly Medisa Inc., 2015
- 7. www.w3schools.com
- 8. https://nodejs.org/en/docs/guides/
- 9. <u>https://www.tutori</u>alspoint.com

Signature of BOS Chairman, IT

hitte

9 Hours

9 Hours

9 Hours

LAB COMPONENTS:

List of Experiments:

- 1. To create a simple html file to demonstrate the use of different tags.
- 2. Client side scripts for validating web form controls and creating events using Java Script
- 3. Program using JSON and Javascript
- 4. Program using XML Schema
- 5. Program using XSLT/XSL and AJAX
- 6. Web application development using PHP
- 7. Web application development using JSP with JDBC
- 8. Creation of Restful based web services and consume it an application
- 9. Web application development using Node is and MongoDB
- 10.Creation of web enabled applications using Struts/Spring Framework

Theory: 0 Tutorial: 0 Practical: 30 Pro	oject: 0 Total hours: 30
---	--------------------------

hult	
Signature of BOS Chairman, IT	

U17ITI6304

BIG DATA ANALYTICS

L	Т	Р	J	С
3	0	0	2	4

COURSE OBJECTIVES:

- Understand the Big Data Platform and its use cases
- Provide an overview of Hadoop architecture
- Develop data analytics solutions using python

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

CO1:Outline the big data technologies used for storage, analysis and manipulation of data **CO2:**Explain Big Data eco system and its components

CO3: Analyze the Big Data stored in HDFS using Hadoop Map Reduce framework

CO4:Understand the Pig scripting and HBase architecture

CO5: Apply the Hive concepts, Hive Data types, loading and querying for Big Data **CO6:** Explain the MongoDB architecture and its operations

Pre-requisites: U17ITI5202 – DATA MINING TECHNIQUES

CO/PO Mapping										PSC)				
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak															
Programme Outcomes (POs)															
COs	PO	PO	PO	РО	PO	PO	Р	PO	PO	PO	PO	PO	1	2	3
COS	1	2	3	4	5	6	0	8	9	10	11	12			
							7								
CO 1	М								Μ				Μ		
CO 2	М				S							Μ	Μ		
CO 3	М	М		М	S	М	М					Μ	S		
CO 4	М								М				Μ		
CO 5	S		М	М	S	М						М	S		S
CO 6	S	М			Μ								Μ		

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. End Semester Examination (Theory)
- 4. Project report (Project Component)
- 5. Project Review and Presentation (Project Component)

Indirect

1. Course-end survey

hit Signature of BOS Chairman, IT

THEORY COMPONENT CONTENTS

INTRODUCTION

Introduction to Big Data - Big Data Challenges - Big Data Architecture - Hadoop & its Features - Hadoop Ecosystem - Hadoop 2.x Core Components - Hadoop Storage: HDFS (Hadoop Distributed File System) - Hadoop Processing: MapReduce Framework - Different Hadoop Distributions

HADOOP COMPONENTS

Hadoop 2.x Cluster Architecture - Hadoop Cluster Modes -Common Hadoop Shell Commands - Hadoop 2.x Configuration Files - Single Node Cluster & Multi-Node Cluster set up -Basic Hadoop Administration - Traditional way vs MapReduce way - Why MapReduce - YARN Components - YARN Architecture - YARN MapReduce Application Execution Flow - YARN Workflow - Anatomy of MapReduce Program -Input Splits, Relation between Input Splits and HDFS Blocks – MapReduce: Combiner &Partitioner

PIG and HBase

Introduction to Apache Pig – MapReduce vs Pig - Pig Components & Pig Execution - Pig Data Types & Data Models in Pig - Pig Latin Programs - Shell and Utility Commands - Pig UDF & Pig Streaming - Testing Pig scripts with Punit - Aviation use-case in PIG

Apache HBase: Introduction to NoSQL Databases and HBase - HBase v/s RDBMS - HBase Components - HBase Architecture - HBase Run Modes - HBase Configuration - HBase Cluster Deployment

HIVE

Introduction to Apache Hive - Hive vs Pig - Hive Architecture and Components - Hive Metastore - Limitations of Hive - Comparison with Traditional Database - Hive Data Types and Data Models - Hive Partition - Hive Bucketing - Hive Tables (Managed Tables and External Tables) - Importing Data - Querying Data & Managing Outputs - Hive Script & Hive UDF

MONGODB

Introduction to MongoDB – Architecture – Schema Design and Modelling – CRUD operations - Integration of MongoDB with Hadoop and Data Migration MongoDB with Hadoop (MongoDB to Hive)

Theory: 45Tutorial : 0Practical : 0Project : 0Total hours:45

REFERENCES:

- 1. Tom White, "HADOOP: The definitive Guide", O Reilly 2012.
- 2. Chris Eaton, Dirk deroos et al., "Understanding Big Data", McGraw Hill, 2012.
- 3. Kyle Banker, Peter Bakkum, et al.," MongoDB in Action", Second Edition, Manning Publications, 2016
- 4. Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.
- 5. Wes McKinney, "Python for Data Analysis", O'Reilly Media.2012
- 6. Sebastian Raschka, "Python Machine Learning", Packpub.com, 2015

Signature of BOS Chairman, IT

hitte

9 Hours

9 Hours

9 Hours

9 Hours

PROJECT COMPONENTS: LIST OF PROJECTS

- 1. Twitter data sentimental analysis using Hive.
- 2. Health care Data Management using Apache Hadoop ecosystem
- 3. Stock Market Data Processing using Big Data.
- 4. Retail data analysis using Hadoop.
- 5. Climatic Data analysis using Hadoop.
- 6. Facebook data analysis using Hadoop and Hive.
- 7. Air line on time performance using Hadoop.

Theory: 0	Tutorial: 0	Practical:0	Project: 30	Total: 30 Hours
-----------	-------------	-------------	-------------	------------------------

hitte

1

U17INI6600 ENGINEERING CLINIC IV

L	Т	Р	J	С
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:

- **CO1:** Identify a practical problems and find a solution
- **CO2:** Understand the project management techniques
- **CO3:** Demonstrate their technical report writing and presentation skills

Pre-requisite:

(S/M/	CO/PO Mapping(S/M/W indicates strength of correlation)S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

COURSE ASSESSMENT METHODS:

Direct
1. Project reviews 50%
2. Workbook report 10%
3.Demonstration Viva-voce 40%
Indirect
1. Course Exit Survey

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the VI semester, students will focus primarily on Reverse engineering project to improve performance of a product

vitte Signature of BOS Chairman, IT

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

hette	
Signature of BOS Chairman,	IT

١

LIST OF MANDATORY COURSES

U17VEP6506

NATIONAL VALUES (Mandatory)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After successful completion of this course, the students should be able to

- CO 1:Acquire knowledge on the Essence of Indian Knowledge Tradition
- CO 2:Know the great Indian personalities and follow their trail
- CO 3: Understand the specialty of democracy
- CO 4: Disseminate our Nation and its values to propagate peace
- CO 5: Contribute with their energy and effort for a prosperous India

CO 6: Propagate the youth and the contribution for development of our Nation

Pre-requisites :

1. U17VEP1501 / PERSONAL VALUES 2. U17VEP2502 / INTERPERSONAL VALUES 3.U17VEP3503 / FAMILY VALUES 4.U17VEP4504 / PROFESSIONAL VALUES 5.U17VEP5505 / SOCIAL VALUES

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs		Programme Outcomes(POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1						S							
CO2									Μ				
CO3							Μ						
CO4								S					
CO5											S		
CO6												М	

Course Assessment methods

Direct

1.Group Activity / Individual performance and assignment 2.Assessment on Value work sheet / Test

Indirect

1. Mini project on values / Goodwill Recognition

Values through Practical activities:

1. Essence of Indian Knowledge Tradition:

Basic structure of Indian Knowledge System - Modern Science and Indian Knowledge System - Yoga and Holistic Health care - Case studies - Philosophical Tradition - Indian Linguistic Tradition - Indian Artistic Tradition.

2. Great Indian Leaders : Ancient rulers - Freedom fighters - Social reformers -Religious and Spiritual leaders - Noble laureates -Scientists – Statesman.

3. Largest Democracy : Socialist -Secular - Democratic and Republic – special features of Indian constitution – Three pillar of Indian democracy - Fundamental rights – Duties of a citizen – centre state relationship.

4. India's Contribution to World peace : Nonaligned Nation – Principle of Pancha Sheela – Mutual respect, non-aggression, non-interference, Equality and cooperation – Role of India in UNO -Yoga India's gift to the world.

5. Emerging India :World's largest young work force - Stable Economic development - Labor market & Achievement in space technology – Value based Social structure. Emerging economic superpower.

Workshop mode

REFERENCES

1. KNOWLEDGE TRADITIONS AND PRACTICES OF INDIA, *CBSE Publication cbseacademic.nic.in/web_material/Circulars/2012/68_KTPI/Module_6_2.pdf*

2. CULTURAL HERITAGE OF INDIA - SCERT Kerala www.scert.kerala.gov.in/images/2014/HSC.../35_Gandhian_Studies_unit-01.pdf

 LEARNING TO DO: VALUES FOR LEARNING AND WORKING TOGETHER -UNESCO www.unesdoc.unesco.org/images/0014/001480/148021e.pdf

4. INDIA AFTER GANDHI.pdf - Ramachandra Guha - University of Warwick www2.warwick.ac.uk/fac/arts/history/students/modules/hi297/.../week1.pdf

5. INDIA'S CONTRIBUTION TO THE REST OF THE WORLD - YouSigma www.yousigma.com/interesting facts/indiasgifttotheworld.pdf

6. INDIA AS AN EMERGING POWER - International Studies Association web.isanet.org/Web/Conferences/.../11353cac-9e9b-434f-a25b-a2b51dc4af78.pdf

hult	
Signature of BOS Chairman, IT	

SEMESTER - VII

Signature of BOS Chairman, IT

U17ITT7001

SOCIAL MEDIA MARKETING

L	Т	P	J	C		
3	0	0	0	3		

COURSE OBJECTIVES:

- Explain how to develop effective social media marketing strategies for various types of industries and businesses.
- Describe the major social media marketing portals that can be used to promote a company, brand, product, service or person.
- Discuss the evolution of social media marketing and identify related ethical issues to communicate its impact on businesses

COURSE OUTCOMES:

After Successful completion of this course, the students will be able to:

- **CO1:** Identify and describe the different social media services, tools, and platforms.
- **CO2:** Demonstrate understanding and evaluate new tools and social media platforms.
- **CO3:** Develop skills in using the predominant social media tools for business marketing.
- **CO4:** Discover innovative uses for social media in a variety of business areas and processes.
- **CO5:** Develop a strategic plan for identifying opportunities for using social media.

Pre-requisites: Nil

	(S/M/	W indi	cates st	trength			(appin g) S		g, M-M	edium, V	W-Weak		PSO		
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S									Μ		Μ		Μ	
CO2	S	S			S					М		М		Μ	
CO3	S		S							М		М		Μ	
CO4	S									М		Μ		Μ	
CO5	S	S	S		S	S			М	М	S	М		Μ	

COURSE ASSESSMENT METHODS:

DIRECT						
1. Continuous Assessment Test I, II						
2. Assignment, Group Presentation						
3. End Semester Examination						
INDIRECT						
1. Course-end survey						

Nich

Signature of BOS Chairman, IT

THEORY COMPONENT CONTENTS

Understanding Facebook and leveraging Facebook for Marketing

Introduction to basic FB terminologies-Creating a powerful personal profile for business-Marketing applications of Face book- Fundamentals of creating and maintaining fan pages-Creating groups for marketing-Face book marketing checklist.

Introduction to Twitter as a Marketing Tool

Setting up a Twitter profile- Fundamental of Twitter: Tweet, direct messages, replies and Trending topics-Managing your Twitter experience- Fundamentals of Tweet Deck-Managing multiple Twitter accounts- Tweet management- Twitter Grader- Twitter Counter-Tweet burner-Twitter marketing checklist- Tree induction techniques.

Fundamentals of YouTube for Creating Compelling Online Presence 10 hours

Fundamentals of video marketing- Creating a YouTube channel- Creating your own Internet TV channel for marketing

Using LinkedIn for Marketing

LinkedIn for B2b marketing- creating a profile in LinkedIn Powerful corporate searches and connections - Recommendations and testimonials.

Understanding Content Marketing and Using Blogs to build and engage audience

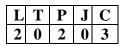
9 Hours

Basics of inbound marketing-Webinars and tele- seminars-Podcasting basics- creating blogs and building a following White papers and info graphics- Fundamentals of content curation

Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45Hours

REFERENCES:

- 1. Liana Li Evans, "Social Media Marketing :Strategies for Engaging in Facebook, Twitter & Other Social Media", Que Press; Ed 2010
- 2. Andrew Macarthy," 500 Social Media Marketing Tips: Essential Advice, Hints and Strategy for Business: Facebook, Twitter, Pinterest, Google+, YouTube, Instagram, LinkedIn, and More!", Springer 2017
- 3. Ann Handley, "Content Rules: How to Create Killer Blogs, Podcasts, Videos, Ebooks, Webinars (and More) That Engage Customers and Ignite Your Business ",Johnwiley and sons,2012
- 4. Barker, "Social Media Marketing: A Strategic Approach", Cengage; 1 edition 2013



10 Hours

8 Hours

U17ITI7202

CLOUD COMPUTING

COURSE OBJECTIVES:

- To understand cloud computing challenges and services
- To acquire knowledge about various cloud tools
- To develop different optimization algorithm for cloud environment

COURSE OUTCOMES:

After Successful completion of this course, the students will be able to:

- **CO1** Develop private cloud using tools
- CO2 Identify cloud service and its applications
- **CO3** Illustrate functions of web service with cloud service
- **CO4** Apply virtualization concepts for real time problems
- CO5 Develop Economic based scheduling algorithm
- **CO6** Create algorithm using different Queuing model

Pre-requisite: U17ITI4204-COMPUTER NETWORKS

						appin								200	
(S/N	/I/W 1no	dicates sti	rength	of cor	relation	i) S	-Stro	ng, M	-Med	lıum,	W-W	eak		PSO	
Programme Outcomes(POs)															
COs	РО	PO	PO	PO	PO	PO	Р	Р	Р	Р	Р	PO	1	2	3
COS	1	2	3	4	5	6	0	0	0	0	0	12			
							7	8	9	10	11				
CO1	Μ	М			S							Μ	Μ		
CO2	Μ	М			S							Μ	Μ		
CO3	Μ	М			S							Μ	Μ		
CO4	Μ	М			S							Μ	Μ		
CO5	S	S			S							S	S		
CO6	S	S			S							S	S		

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Pre/Post experiment Test/Viva(Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab components

Indirect

1 Course Exit Survey

THEORY COMPONENT CONTENTS

CLOUD INTRODUCTION

7 Hours

Cloud Computing Fundamentals: Cloud Computing definition, Types of cloud, Cloud services: Benefits and challenges of cloud computing, Evolution of Cloud Computing, usage scenarios and

hitte	
Signature of BOS Chairman, IT	

Signature of BOS Chairman, IT

hitte

Applications, Business models around Cloud – Major Players in Cloud Computing - Issues in Cloud - Eucalyptus - Nimbus - Open Nebula, CloudSim

CLOUD SERVICES AND FILE SYSTEM

Types of Cloud services: Software as a Service - Platform as a Service – Infrastructure as a Service - Database as a Service - Monitoring as a Service - Communication as services. Service providers- Google App Engine, Amazon EC2, Microsoft Azure, Sales force. Introduction to Map Reduce, GFS, HDFS, Hadoop Framework

COLLABORATING WITH CLOUD

Collaborating on Calendars, Schedules and Task Management - Collaborating on Event Management, Contact Management, Project Management - Collaborating on Word Processing, Databases - Storing and Sharing Files- Collaborating via Web-Based Communication Tools -Evaluating Web Mail Services – Collaborating via Social Networks – Collaborating via Blogs and Wikis

VIRTUALIZATION FOR CLOUD

Need for Virtualization – Pros and cons of Virtualization – Types of Virtualization – System Vm, Process VM, Virtual Machine monitor – Virtual machine properties - Interpretation an and binary translation, HLL VM - Hypervisors – Xen, KVM, VMWare, Virtual Box, Hyper-V

Theory: 45 Tutorial: 0 **Practical: 0 Project: 0**

LIST OF EXPERIMENTS

1.Study and compare various simulators in cloud computing.

2.Setup a Private Cloud Using Open Stack or Eucalyptus.

3. Develop Market oriented cloud computing model using Aneka toolkit

4. Compare energy conscious algorithm using green cloud simulator

5. Develop Economic based scheduling algorithm for cloud computing

6.Create algorithm using different Queuing model for cloud computing

REFERENCES

- 1. Bloor R., Kanfman M., Halper F. Judith Hurwitz -Cloud Computing for Dummies (Wiley India Edition),2010
- 2. John Rittinghouse & James Ransome, —Cloud Computing Implementation Management and Strategyl, CRC Press, 2010.
- 3. Antohy T Velte, Cloud Computing : —A Practical Approach, McGraw Hill, 2009
- 4. Michael Miller, Cloud Computing: --Web-Based Applications That Change the Way You Work and Collaborate Online, Que Publishing, August 2008.
- 5. James E Smith, Ravi Nair, —Virtual Machines, Morgan Kaufmann Publishers, 2006.
- 6. http://cloud-standards.org/wiki/index.php?title=Main_Page

Theory:0 Practical: 30 **Project: 0 Total: 30 Hours** Tutorial: 0

7 Hours

8 Hours

Total: 45 Hours

U17ITI7203

MACHINE LEARNING

L	Т	Р	J	С
3	0	2	0	4

COURSE OBJECTIVES:

- To understand the need for machine learning for various problem solving
- To study the various supervised, semi-supervised and unsupervised learning algorithms in machine learning
- To understand the latest trends in machine learning
- To design appropriate machine learning algorithms for problem solving

COURSE OUTCOMES:

After Successful completion of this course, the students will be able to:

- CO1 Differentiate between supervised, unsupervised, semi-supervised machine learning approaches
- **CO2** Discuss the decision tree algorithm and identity and overcome the problem of overfitting
- **CO3** Discuss and apply the back-propagation algorithm and genetic algorithms to various problems
- CO4 Apply the Bayesian concepts to machine learning
- **CO5** Analyse and suggest appropriate machine learning approaches for various types of problems

Pre-requisite: U17ITI5202–DATA MINING TECHNIQUES

		Windi	aataa a				appin	-	- N <i>I</i> N <i>I</i>	odium V	W Weel		PSO)
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												_		
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	S											Μ		
CO2	Μ	Μ											Μ		
CO3	Μ	Μ	Μ										Μ		
CO4	Μ	М	Μ										Μ		
CO5	М	М	М	М	М				М			Μ	Μ	Μ	Μ

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Assignment, Group Presentation (Theory component)
- 3. Pre/Post experiment Test/Viva(Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab components)

Indirect

1. Course-end survey

hutte

Signature of BOS Chairman, IT

THEORY COMPONENT CONTENTS

INTRODUCTION

Learning Problems – Perspectives and Issues – Concept Learning – Version Spaces and Candidate Eliminations – Inductive bias – Decision Tree learning – Representation – Algorithm – Heuristic Space Search.

NEURAL NETWORKS AND GENETIC ALGORITHMS

Neural Network Representation – Problems – Perceptrons – Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evaluation and Learning.

BAYESIAN AND COMPUTATIONAL LEARNING

Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier – Bayesian Belief Network – EM Algorithm – Probability Learning – Sample Complexity – Finite and Infinite Hypothesis Spaces – Mistake Bound Model.

INSTANT BASED LEARNING

K- Nearest Neighbour Learning – Locally weighted Regression – Radial Basis Functions – Case Based Learning.

ADVANCED LEARNING

Learning Sets of Rules – Sequential Covering Algorithm – Learning Rule Set – First Order Rules – Sets of First Order Rules – Induction on Inverted Deduction – Inverting Resolution – Analytical Learning – Perfect Domain Theories – Explanation Base Learning – FOCL Algorithm – Reinforcement Learning – Task – Q-Learning – Temporal Difference Learning

Theory: 45	Tutorial: 0	Practical:0	Project: 0	Total: 45 Hours
------------	-------------	-------------	------------	------------------------

REFERENCES:

- 1. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
- 2. EthemAlpaydin, —Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004.
- 3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
- 4. Kevin P. Murphy, Machine Learning A Probabilistic Perspective, The MIT Press, 2012
- 5. Jason Bell, —Machine learning Hands on for Developers and Technical Professionals, First Edition, Wiley, 2014
- 6. Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Data, First Edition, Cambridge University Press, 2012.

LAB COMPONENT:


List of Projects:

- 1.Supervised and Unsupervised learning
- 2. Social Media Analysis
- 3.Sentimental Analysis
- 4.Recommender Systems
- 5.Prediction algorithms

Theory: 0 Tutorial: 0 Practical:30

Project: 0

Total: 30 Hours

9 Hours

9 Hours

9 Hours

9 Hours

U17INT7000 PROFESSIONAL COMMUNICATION & ANALYTICAL REASONING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes:

After successful completion of this course, the students will be able to:

CO 1: Prepare resumes, and face GDs & Interviews.

CO 2: Crack Questions on Quantitative Ability.

CO 3: Crack Problems and Puzzles on Analytical and Logical Reasoning.

CO 4: Crack Questions on Verbal Ability.

CO 5: Develop a holistic approach to face Campus Placements and Competitive Examinations.

Pre-requisites : NIL

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						Μ			W			S		
CO2						S		S				М		
CO3									Μ	S		W		
CO4								W	Μ			М		
CO5						Μ		Μ				S		
CO6														

COURSE ASSESSMENT METHODS

DIRECT

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

INDIRECT

1. Course-end survey

Resume Preparation, Group Discussion & Interview

Importance of resume, essentials of a good resume, do's and don'ts of resume, sample resume, importance of group discussion, practice GD, interviews, types of interviews, how to prepare for interview, interview etiquettes, Mock GD & Interview

Quantitative Ability 1

Number theory, Average, Mixture & Allegation, Ages, Ratio, Percentage, Partnership, Profit & Loss, SI, CI, Clocks, Calendar

Quantitative Ability 2

Speed Distance Time, Boats & Stream, Train, Time and Work, Pipes and Cistern, Probability, Permutation & Combinations, Linear and Quadratics Equations

hult	
Signature of BOS Chairman, IT	

9 hours

9 hours

9 hours

Logical reasoning

Based Problems on Cubes and Dices, Blood relations, Analytical reasoning, Syllogism, Series completion

Verbal reasoning

Basic Grammar / Types of Sentence/ Selecting Words / Spotting Errors/ Sentence Formation / Sentence Improvement/ Sentence Completion / Sentence Correction / Idioms & Phrases

Theory: 45Tutorial: 0Practical:0Project: 0Total: 45 Hours

REFERENCES:

- 1) Campus Placements A Comprehensive Guide by Mr. ANKUR MALHOTRA TATA McGRAW HILL'S PUBLICATIONS.
- 2) Resumes and interviews The art of winning by Mr. ASHRAF RIZVI TATA McGRAW HILL'S PUBLICATIONS.
- 3) How to Prepare for group Discussion & Interviews by Mr. HARI MOHAN PRASAD and Mr. RAJNISH MOHAN TATA McGRAW HILL'S WINNING EDGE SERIES.
- 4) Quantitative Ability Quantitative Aptitude for Competitive Examinations (Revised Edition 2017) by Dr. R.S AGGARWAL S. CHAND PUBLICATIONS.
- 5) Quantitative Ability Quantitative Aptitude Quantum CAT by Mr. SARVESH K VARMA ARIHANT PUBLICATIONS.
- 6) Logical Reasoning A Modern Approach to Verbal and Non Verbal Reasoning (Revised Edition) by Dr. R.S AGGARWAL S. CHAND PUBLICATIONS.
- 7) Logical Reasoning A New Approach to Reasoning by Mr. BS SIJAWALI and Ms. INDU SIJWALI ARIHANT PUBLICATIONS.
- 8) Verbal Reasoning General English for Competitions by Mr. A.N. KAPOOR S. CHAND PUBLICATIONS.
- 9) Verbal Reasoning Objective English for Competitive Examinations by Mr. HARI MOHAN PRASAD and Ms. UMA RANI SINHA – TATA McGRAW HILL'S WINNING EDGE SERIES.

Signature of BOS Chairman, IT

hitte

9 hours

9 hours

LIST OF MANDATORY COURSES

U17VEP7507

GLOBAL VALUES (Mandatory)

L	Т	Р	J	С
0	0	2	0	0

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

CO 1:Aware of the concept of Universal Brotherhood and support the organizations which areworking for it

CO 2: Follow the path of Ahimsa in every aspect of their life

CO 3: Uphold the Universal declaration of Human Rights

CO 4: Understand the unequal distribution of wealth in the World and bestow their Efforttowards inclusive growth

CO 5:Sensitize the environmental degradation and work for the sustainable development

CO 6: Amalgamate harmony through Non-violence and edify the nation headed for Upholdingdevelopment

PRE-REQUISITES :

1. U17VEP1501 / PERSONAL VALUES 2. U17VEP2502 / INTERPERSONAL VALUES 3.U17VEP3503 / FAMILY VALUES 4.U17VEP4504 / PROFESSIONAL VALUES 5.U17VEP5505 / SOCIAL VALUES 6.U17VEP6506 / NATIONAL VALUES

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1							Μ							
CO2								S						
CO3									М					
CO4						S								
CO5											М			
CO6												S		

COURSE ASSESSMENT METHODS

Direct

1.Group Activity / Individual performance and assignment 2.Assessment on Value work sheet / Test

Indirect

1. Mini project on values / Goodwill Recognition

huter Signature of BOS Chairman, IT

VALUES THROUGH PRACTICAL ACTIVITIES:

Universal Brotherhood : Meaning of Universal Brotherhood- Functioning of Various organization for Universal human beings -Red Cross, UN Office for Humanitarian Affairs

 Case study on humanitarian problems and intervention - Active role of Students/Individual on Universal Brotherhood.

2. Global Peace, Harmony and Unity : Functions of UNO - Principal Organizations - Special organization – Case study relating to disturbance of world peace and role of UNO – Participatory role of Students/Individual in attaining the Global peace and Unity.

3. Non-Violence : Philosophy of nonviolence- Nonviolence practiced by Mahatma Gandhi – Global recognition for nonviolence - Forms of nonviolence - Case study on the success story of nonviolence– Practicing nonviolence in everyday life.

4. Humanity and Justice: Universal declaration of Human Rights - Broad classification - Relevant Constitutional Provisions– Judicial activism on human rights violation - Case study on Human rights violation– Adherence to human rights by Students/Individuals.

5. Inclusive growth and sustainable development : Goals to transform our World: No Poverty - Good Health - Education – Equality - Economic Growth - Reduced Inequality – Protection of environment – Case study on inequality and environmental degradation and remedial measures.

REFERENCES

WORKSHOP MODE

- 1. TEACHING ASIA-PACIFIC CORE VALUES OF PEACE AND HARMONY UNICEF www.unicef.org/.../pdf/Teaching%20Asia-Pacific%20core%20values.pdf
- 2. THREE-DIMENSIONAL ACTION FOR WORLD PROSPERITY AND PEACE- IIM Indore - www.iimidr.ac.in/.../Three-Dimensional-Action-for-World-Prosperity-and-Peace-Glo...

3. MY NON-VIOLENCE - MAHATMA GANDHI www.mkgandhi.org/ebks/my_nonviolence.pdf

4. HUMAN RIGHTS AND THE CONSTITUTION OF INDIA 8th ... - India Juris www.indiajuris.com/uploads/.../pdf/l1410776927qHuman%20Rights%20080914.pdf

5. THE ETHICS OF SUSTAINABILITY – Research Gate www.researchgate.net/file.PostFileLoader.html?id...assetKey..

huch	
Signature of BOS Chairman, IT	

ELECTIVE COURSES

Signature of BOS Chairman, IT

U17ITE0001 ARTIFICIAL INTELLIGENCE

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To introduce artificial intelligence (AI) principles and approaches.
- Develop a basic understanding of the building blocks of AI

COURSE OUTCOMES:

After Successful completion of this course, the students will be able to:

- **CO1** Demonstrate the awareness of intelligent agents and problem solving using different search algorithms
- **CO2** Interpret the use of different knowledge representation methods.
- **CO3** Make use of uncertain knowledge for planning and reasoning in AI applications
- CO4 Explain the basics of decision making.
- CO5 Apply the knowledge of machine learning methods in AI applications

Pre-requisite: U17MAT3104 - DISCRETE MATHEMATICS

	CO/PO Mapping													PSO	
(5	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	Μ	Μ										Μ		
CO2	Μ	Μ											Μ		
CO3	S	Μ	Μ							М			Μ		
CO4	Μ												Μ		
CO5	Μ	Μ										М	Μ		

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS INTRODUCTION AND PROBLEM SOLVING

10 Hours

Intelligent Agents. forward and backward, state-space, blind, heuristic, problem-reduction, A, A*, AO*, minimax, constraint propagation, neural, stochastic, and evolutionary search algorithms

huch	
Signature of BOS Chairman, IT	

KNOWLEDGE REPRESENTATION AND REASONING

Ontologies, foundations of knowledge representation and reasoning, representing and reasoning about objects, relations, events, actions, time, and space; predicate logic, situation calculus, description logics, reasoning with defaults, reasoning about knowledge

PLANNINGAND REASONING WITH UNCERTAIN KNOWLEDGE **10 Hours**

Planning as search, partial order planning, construction and use of planning graphs, probability, connection to logic, independence, Bayes rule, Bayesian networks, probabilistic inference

DECISION-MAKING

Basics of utility theory, decision theory, sequential decision problems, elementary game theory

MACHINE LEARNING AND KNOWLEDGE ACQUISITION

Learning from memorization, examples, explanation, and exploration. learning nearest neighbour, naive Bayes, and decision tree classifiers, Q-learning for learning action policies, applications.

Theory: 45 Tutorial: 0 **Practical:0 Project: 0 Total: 45 Hours**

REFERENCES:

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 3rd Edition, Pearson Education / Prentice Hall of India, 2015.
- 2. Judith Hurwitz, Marcia Kaufman, "Cognitive Computing and Big Data Analytics", Wiley Publication, April 2015
- 3. Elaine Rich, Kevin Knight, ShivashankarB.Nair, "Artificial Intelligence", Tata McGraw Hill Publishing Company Limited. Third Edition, 2009
- 4. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.
- 5. George F. Luger, "Artificial Intelligence-Structures and Strategies For Complex Problem Solving", Pearson Education / PHI, 2002
- 6. David L. Poole, Alan K. Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010.

hitte Signature of BOS Chairman, IT

8 Hours

U17ITE0002

DEEP LEARNING

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To acquire knowledge on the basics of neural networks.
- To implement neural networks using computational tools for variety of problems.
- To explore various deep learning algorithms

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- **CO1:** Explain the fundamental principles, theory and approaches for learning with deep neural networks
- **CO2:** Explain the main variants of deep learning and their typical applications
- **CO3:** Analyze the key concepts, issues and practices when training and modeling with deep architectures
- **CO4:** Analyze the learning tasks
- **CO5:** Apply deep learning in the context of other ML approaches

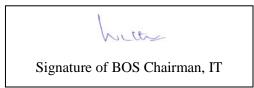
Pre-requisite: U17ITI7203 - MACHINE LEARNING

(S.	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											ł	PSO		
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	Μ	Μ										М		
CO2	Μ	Μ											Μ		
CO3	S	Μ	Μ							М			Μ		
CO4	М												Μ		
CO5	М	М										М	Μ		

COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination


Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS

Introduction to Deep learning

Linear Regression - Nonlinear Regression - Logistic Regression Activation

10000	
Signature of BOS Chairman.	IT

Au sta

Convolutional Neural Networks (CNN)

CNN History- Understanding CNNs- CNN Application

Recurrent Neural Networks (RNN)

Intro to RNN Model Long Short-Term memory (LSTM) Recursive Neural Tensor Network Theory Recurrent Neural Network Model

Unsupervised Learning

Applications of Unsupervised Learning-Restricted Boltzmann Machine-Collaborative Filtering with RBM

Autoencoders

Introduction to Autoencoders and Applications- Autoencoders- Deep Belief Network

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours
------------	-------------	--------------	------------	-----------------

REFERENCE BOOKS:

- 1. Ian Goodfellow, YoshuaBengio and Aaron Courville, "Deep Learning", The MIT Press
- 2. Rajiv Chopra, Deep Learning: A Practical Approach, Khanna Publication
- 3. Adam Gibson, Deep Learning: A Practitioner's Approach, O'Reilly Media, August 2017
- 4. MOOC, Deep Learning By Google, https://in.udacity.com/course/deep-learning--ud730
- 5. MOOC, Deep Learning https://www.coursera.org/specializations/deep-learning

9 Hours

9 Hours

9 Hours

U17ITE003 DATA VISUALISATION

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To introduce visual perception and core skills for visual analysis.
- To understand visualization for time-series analysis. Ranking analysis, deviation analysis
- To understand visualization for distribution, correlation and multivariate analysis
- To understand issues and best practices in information dashboard design.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Explain principles of visual perception
- CO2 Apply core skills for visual analysis
- CO3 Explain visualization for time-series analysis and ranking analysis.
- **CO4** Outline visualization for deviation ,distribution , correlation and multivariate analysis
- CO5 Demonstrate the skills in information dashboard design

Pre-requisite: Nil

	CO/PO Mapping]	PSO		
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak																
	Programme Outcomes(POs)															
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3	
	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	S	М	Μ										Μ			
CO2	М	М											Μ			
CO3	S	М	Μ							Μ			Μ			
CO4	Μ												Μ			
CO5	Μ				Μ					М		М	Μ		Μ	

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

hit

THEORY COMPONENT CONTENTS

CORE SKILLS FOR VISUAL ANALYSIS

Information visualization – effective data analysis – traits of meaningful data – visual perception -making abstract data visible - building blocks of information visualization - analytical interaction – analytical navigation – optimal quantitative scales – reference lines and regions – trellises and crosstabs - multiple concurrent views - focus and context - details on demand over-plotting reduction – analytical patterns – pattern examples.

TIME-SERIES, RANKING, AND DEVIATION ANALYSIS

Time-series analysis - time-series patterns - time-series displays - time-series best practices part-to-whole and ranking patterns - part-to-whole and ranking displays - best practices deviation analysis – deviation analysis displays – deviation analysis best practices.

DISTRIBUTION, CORRELATION ANALYSIS

Distribution analysis - describing distributions - distribution patterns - distribution displays distribution analysis best practices - correlation analysis - describing correlations - correlation patterns – correlation displays – correlation analysis techniques and best practices

MULTIVARIATE ANALYSIS

Multivariate analysis - multivariate patterns - multivariate displays - multivariate analysis techniques and best practices.

INFORMATION DASHBOARD DESIGN

Information dashboard - Introduction- dashboard design issues and assessment of needs -Considerations for designing dashboard-visual perception – Achieving eloquence. **REFERENCES:**

- 1. Ben Fry, "Visualizing data: Exploring and explaining data with the processing environment", O'Reilly, 2008.
- 2. Edward R. Tufte, "The visual display of quantitative information", Second Edition, Graphics Press, 2001.
- 3. Evan Stubbs, "The value of business analytics: Identifying the path to profitability", Wiley, 2011.
- 4. Gert H. N. Laursen and JesperThorlund, "Business Analytics for Managers: Taking business intelligence beyond reporting", Wiley, 2010.
- 5. Nathan Yau, "Data Points: Visualization that means something", Wiley, 2013.
- 6. Stephen Few, "Information dashboard design: Displaying data for at-a-glance monitoring", second edition, Analytics Press, 2013.
- 7. Stephen Few, "Now you see it: Simple Visualization techniques for quantitative analysis", Analytics Press, 2009.
- 8. Tamara Munzner, Visualization Analysis and Design, AK Peters Visualization Series, CRC Press, Nov. 2014

Theory: 45 Tutorial: 0 Practical: 0 **Project: 0**

Total: 45 Hours

hitte Signature of BOS Chairman, IT

9 Hours

9 Hours

9 Hours

9 Hours

U17ITE0004 INFORMATION CODING TECHNIQUES

L	Τ	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To understand Information properties and source coding techniques
- To acquire knowledge about error coding techniques for efficient transmission
- To understand various compression algorithms for data, Image and video

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- **CO1** Apply the suitable coding schemes for information.
- CO2 Make use of coding schemes for text compression .
- CO3 Illustrate the compression schemes for video and image.
- CO4 Utilize the various types of error control codes.
- CO5 Construct the code tree and state diagram for error control codes

Pre-requisite: Nil

	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak										PSO)		
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	М	М										М	Μ		
CO2	М	М										М	Μ		
CO3	М	М										М	Μ		1
CO4	М	М										М	Μ		
CO5	М	М										М	Μ		

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS

INFORMATION THEORY

9 Hours

Information-Entropy-Information rate-classification of codes - Kraft Mc Millanine quality-Source coding theorem-Shannon - Fano coding - Huffman coding-Extended

hult	
Signature of BOS Chairman, IT	

Huffman coding – Joint and conditional entropies-Mutual information-Discrete memory less channels–BSC- BEC – Channel capacity-Shannon limit.

SOURCE CODING:TEXT,AUDIO ANDS PEECH

Text: Adaptive Huffman Coding – Arithmetic Coding – LZW algorithm–Audio: Perceptual coding-Masking techniques – Psychoacousticmodel-MEGAudiolayersI,II,III,DolbyAC3-Speech: Channel Vocoder-Linear Predictive Coding.

SOURCE CODING: IMAGE AND VIDEO

Image and Video Formats–GIF–TIFF– SIF–CIF – QCIF–Image compression: READ- JPEG – Video Compression: Principles-I, B, P frames - Motion estimation - Motion compensation - H.261 -MPEG standard.

ERROR CONTROL CODING: BLOCK CODES

Definitions and Principles: Hamming weight-Hamming distance-Minimum distance decoding –Single parity codes – Hamming codes – Repetition codes – Linear block codes – Cyclic codes –Syndrome calculation-Encoder and decoder– Cyclic Redundancy check codes.

ERROR CONTROL CODING: CONVOLUTIONAL CODES

Convolutional codes-code tree-trellis-state diagram-Encoding-Decoding: Sequential search and Viterbi algorithm- Principle of Turbo coding.

REFERENCE BOOKS:

- 1. SimonHaykin,-CommunicationSystems,fourthedition,JohnWiley&Sons,2014.
- 2. Bose.R,-Information Theory, Coding And Cryptography, TMH 2011
- 3. Fred Halsall, -Multimedia Communications: Applications, Networks, Protocols And Standards, Pearson Education Asia, 2011
- 4. Sayood.K, -Introduction To Data Compression, Fourth edition, Elsevier, 2014.
- 5. Gravano. S, -Introduction To Error Control Codes, Oxford University Press, 2010.

Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours

Signature	of BOS	Chairman,	IT

NICh

9 Hours

9 Hours

9 Hours

U17ITE0005

WEB APPLICATION SECURITY

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- Understand foundations of Web application paradigm
- Introduce the idea of penetration testing strategies
- Understand in detail about the vulnerabilities and defence mechanism

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Explain the architecture web application architecture
- CO2 Demonstrate Core Defence Mechanisms
- **CO3** Explain the authenticated attacking mechanism
- CO4 Explain various process of attacking user
- CO5 Design attacking mechanism for Native Software Vulnerabilities

Pre-requisite: U17ITT5001 - CRYPTOGRAPHY AND NETWORK SECURITY, U17ITI6203 - WEB TECHNOLOGY

CO/PO Mapping]	PSO)	
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak															
Programme Outcomes(POs)															
COs	PO	1	2	3											
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	Μ	Μ										Μ	Μ		
CO2	Μ	Μ										Μ	Μ		Μ
CO3	Μ	Μ						S				Μ	Μ		Μ
CO4	М	М						S				Μ	Μ		Μ
CO5	М	М										Μ	Μ		Μ

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS

WEB APPLICATION ARCHITECTURE

9 Hours

Web Application Insecurity, Core Defense Mechanisms, Web Application Technologies, Mapping and Analyzing the Application

hut	
Signature of BOS Chairman, IT	

DEFENSEMECHANISMS

Bypassing Client Side Controls, Attacking Authentication, Attacking Session Management, Attacking Access Controls

ATTACKING MECHANISMS

Attacking Data Stores, Attacking Back-End Components, Attacking Application Logic

ATTACKING USERS

Attacking Users: Cross Site Scripting, Other Techniques, Automating Customized Attacks, Exploiting Information Disclosures

NATIVE SOFTWARE VULNERABILITIES

Attacking Native Compiled Applications, Attacking Application Architecture, Attacking the Application Server, Finding Vulnerabilities in the Source Code-Approaches and Signatures of Common Vulnerabilities

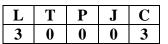
Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours
------------	-------------	--------------	------------	------------------------

REFERENCES

- 1. DafyddStuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws", 2nd edition, Wiley, 2011
- 2. Michael Cross, "Developer's Guide to Web Application Security" 1st Editiosyngress,2007
- 3. OWASP Top 10 Vulnerabilities at https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
- 4. https://www.udemy.com/topic/web-security

Signature of BOS Chairman, IT

hitte


9 Hours

9 Hours

9 Hours

U17ITE0006

BIOMETRIC SYSTEMS

COURSE OBJECTIVES:

- To understand the basics of Biometrics and its functionalities
- To expose the concept of IRIS and sensors
- To expose the context of Biometric Applications
- To learn to develop applications with biometric security

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Identify the various Biometric technologies.
- CO2 Explain the role of biometric in the organization
- CO3 Design of an IRIS recognition system
- **CO4** Develop simple applications based on behavioral biometrics
- CO5 Summarize the need for biometric system in the society

Pre-requisites:Nil

CO/PO Mapping]	PSO		
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak															
Programme Outcomes(POs)															
COs	PO	РО	PO	1	2	3									
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	М	Μ										Μ	Μ		
CO2	S	Μ										М	Μ		
CO3	М	Μ	М									Μ	Μ		
CO4	S	М						М				Μ			Μ
CO5	М	М						S				Μ			Μ

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course Exit Survey

THEORY COMPONENT CONTENTS INTRODUCTION

9 Hours

Person Recognition – Biometric systems –Biometric functionalities: verification, identification –Biometric systems errors - The design cycle of biometric systems – Applications of Biometric systems– Security and privacy issues

hut	
Signature of BOS Chairman, IT	

FINGER PRINT AND FACIAL RECOGNITION

FINGERPRINT : Introduction - Friction ridge pattern- finger print acquisition :sensing techniques, image quality –Feature Extraction -matching -indexing. FACE RECOGNITION: Introduction -Image acquisition: 2D sensors, 3D sensors- Face detection-Feature extraction -matching.

IRIS AND OTHER TRAITS

Design of an IRIS recognition system-IRIS segmentation- normalization - encoding and matching IRIS quality -performance evaluation -other traits- ear detection -ear recognition gait feature extraction and matching -challenges- hand geometry -soft biometrics.

BEHAVIORAL BIOMETRICS

Introduction -Features- classification of behavioral biometrics -properties of behavioral biometrics -signature -keystroke dynamics -voice- merits -demerits -applications- error sources-types -open issues -future trends.

APPLICATIONS AND TRENDS

Application areas: surveillance applications- personal applications -design and deployment user system interaction-operational processes - architecture -application development design validation disaster recovery plan-maintenance-privacy concerns.

Theory: 45 **Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours**

REFERENCES:

- 1. James wayman, Anilk. Jain, ArunA. Ross, Karthik Nandakumar, Introduction to BiometricsSpringer, 2011
- 2. John Vacca "Biometrics Technologies and Verification Systems" Elsevier 2007
- 3. James Wayman, AnilJain, David MAltoni, Dasio Maio (Eds) "Biometrics SystemsTechnology", Design and Performance Evalution.Springer 2005
- 4. Khalid saeed with MarcinAdamski, TapalinaBhattasali, Mohammed K. Nammous, Piotrpanasiuk, mariusz Rybnik and soharabH.Sgaikh, -New Directions in Behavioral **Biometrics.CRC Press 2017**
- 5. Paul Reid "Biometrics For Network Security "Person Education 2004
- 6. Shimon K.Modi, Biometrics in Identity Management :concepts to applications, Artech House 2011

Signature of BOS Chairman, IT

hitte

9 Hours

9 Hours

9 Hours

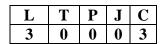
U17ITE0007 BLOCKCHAIN TECHNOLOGY

COURSE OBJECTIVES

- To acquire the basic knowledge and understandings of Bitcoin
- To understand the mechanisms of Bitcoin, Ethereum, Hyperledger To understand the current trends of Blockchain

COURSE OUTCOMES:

After successful completion of this course, the students should be able to


- **CO1** Discover the secure and efficient transactions with Bitcoin.
- **CO2** Identify and analyze the applications of Bitcoin script
- CO3 Experiment with Bitcoin mining
- CO4 Develop private Blockchain environment and develop a smart contract on Ethereum
- **CO5** Build the Hyperledger architecture and the consensus mechanism applied in the Hyperledger

Pre-requisite: U17ITT5001 - CRYPTOGRAPHY AND NETWORK SECURITY

	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak]	PSO		
	Programme Outcomes(POs)														
Cos	РО	РО	РО	PO	PO	РО	PO	PO	PO	PO 10	PO 11	PO 12	1	2	3
	1	2	3	4	5	6	7	8	9						
CO1	S	М	М	М								М	Μ		
CO2	S	М	М										Μ		
CO3	S	М	М												М
CO4	S	S	М	М								М			М
CO5	S	М	М									М			М

COURSE ASSESSMENT METHODS:

Direct	
1. Continuous Assessment Test I, II	
2. Assignment, Group presentation	
3. End Semester Exam	
Indirect	
1.Course Exit Survey	

Signature of BOS Chairman, IT

hite

THEORY COMPONENT CONTENTS

CRYPTOCURRENCY AND BLOCKCHAIN- INTRODUCTION

Cryptography and Cryptocurrency- Anonymity and Pseudonymity in Cryptocurrencies Digital Signatures-Cryptocurrency Hash Codes. Distributed networks-Block chain- An Introduction Distinction between databases and Block chain- Distributed ledger Block chain ecosystem-Block chain structure- Block chain technology- Working - Permissioned and permission-less Block chain

BITCOIN AND BLOCKCHAIN

Bitcoin - history- Bitcoin- usage, storage, selling, transactions, working- Invalid Transactions- Parameters that invalidate the transactions- Scripting language in Bitcoin Applications of Bitcoin script- Nodes and network of Bitcoin- Bitcoin ecosystem

BITCOIN MINING

Purpose of mining- Algorithm used in mining- Mining hardware- Bitcoin mining pools cloud mining of Bitcoin -Mining Incentives-Security and centralizations

ETHEREUM

The Ethereum ecosystem, DApps and DAOs - Ethereum working- Solidity- Contract classes, functions, and conditionals- Inheritance & abstract contracts- Libraries- Types & optimization of Ether- Global variables- Debugging- Future of Ethereum- Smart Contracts on Ethereumdifferent stages of a contract deployment- Viewing Information about blocks in Block chain-Developing smart contract on private Block chain- Deploying contract from web and console

HYPERLEDGER

Hyperledger Architecture- Consensus- Consensus & its interaction with architectural layers-Application programming interface- Application model -Hyperledger frameworks-Hyperledger Fabric -Various ways to create Hyperledger Fabric Block chain network-Creating and Deploying a business network on Hyperledger Composer Playground- Testing the business network definition- Transferring the commodity between the participants

Theory: 45 **Tutorial : 0 Practical : 0 Project : 0** Total hours:45

REFERENCES:

- 1. Mastering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas M Antonopoulos 2018
- 2. Ethereum: Block chains, Digital Assets, Smart Contracts, Decentralized Autonomous Organizations-2016.

OTHER ONLINE COURSES:

- 1. https://www.coursera.org/learn/ibm-blockchain-essentials-for-developers
- 2. https://www.coursera.org/learn/blockchain-basics

9 hours

9 hours

9 hours

9 hours

Nith

Signature of BOS Chairman, IT

U17ITE0008 ADHOC AND SENSOR NETWORKS

COURSE OBJECTIVES

L	Т	Р	J	С
3	0	0	0	3

- Understand the design issues and challenges in ad hoc and sensor networks.
- Learn the differenttypes of MAC and routing protocols of ad hoc networks.
- Learn the architecture and protocols of wireless sensor networks
- •

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- **CO1** Explain the concept of ad hoc and sensor networks, their applications and typical node and network architectures.
- CO2 Explain the working of different types of adhoc routing protocols.
- **CO3** Compare wireless routing protocol's function and their implications on network performance
- **CO4** Explain the sensor network characteristics, sensor databases and query processing.

Explain various security threats to ad hoc networks and describe proposed

CO5 solutions

Pre-requisite: U17ITI4204- COMPUTER NETWORKS

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak										I	PSO				
Programme Outcomes(POs)															
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	1	2	3
CO1	М												М		
CO2	М			W									М		
CO3	М		М										М		
CO4	М										W	М	М		
CO5	М	W		М		W	Μ						Μ		

COURSE ASSESSMENT METHODS:

Direct
1. Continuous Assessment Test I, II
2. Assignment, Group presentation
3. End Semester Exam
Indirect
1.Course Exit Survey

hite

Signature of BOS Chairman, IT

THEORY COMPONENT CONTENTS

INTRODUCTION

Characteristics of wireless channel - Wireless local loop - IEEE 802.16 standard – HIPERACCESS -Ad hoc wireless networks: Introduction and issues - MAC protocols: Design issues - Goals and classification - MACAW: A media access protocol for wireless LANs-Distributed packet reservation multiple access protocol-Distributed priority scheduling and Medium access in Ad hoc networks- MAC protocol using directional antennas.

ROUTING PROTOCOLS

Design issues – Classification – Wireless routing protocol - Location aided routing- Zone routing protocol - Hierarchical state routing protocol - Power aware routing protocol – Operation of multicast routing protocols - Classification of multicast routing protocols – Application-Dependent multicast routing

SECURITY IN AD HOC NETWORKS

Security in ad hoc wireless networks – Network security requirements - Issues and challenges in security provisioning – Network security attacks – key management – secure routing in Ad hoc networks

WIRELESS SENSOR NETWORKS

Architecture - Data dissemination - Date gathering - MAC protocols - Location discovery - Quality of sensor networks - Case study

SENSOR NETWORK DATABASE

Sensor database challenges – Querying the physical environment – Query interfaces - High level database organization – In-Network aggregation – Temporal data – Emerging Applications.

Theory: 45Tutorial : 0Practical : 0Project : 0Total hours:45

REFERENCES:

- 1. Siva Ram Murthy. C and Manoj B.S, "Ad hoc Wireless Networks: Architectures And Protocols ", Prentice Hall PTR, 2004
- 2. Toh C.K., "Ad hoc Mobile Wireless Networks: Protocols And Systems", Prentice Hall PTR, First edition 2002
- 3. Mohammad Ilyas, "The Handbook Of Ad hoc Wireless Networks", CRC press, 2002
- 4. Charles E. Perkins, "Ad hoc Networking", Addison Wesley, 2000
- 5. Stefano Basagni, et al "Mobile Ad hoc Networking", Wiley -IEEE press, 2004
- 6. Zhao, Guibas "Wireless Sensor Networks", Morgan Kaufmann Publications, 2004

hitte

9 Hours

9 Hours

9 Hours

9 Hours

U17ITE0009 NEXT GENERATION NETWORKS

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES

- To learn the technical, economic and service advantages of next generation networks.
- To learn the evolution of technologies of 4G and beyond.
- To learn Software defined Mobile Network issues and integrating challenges with LTE.
- To explore the NGN framework catering the services of end user with QoS provisioning.
- To learn about the NGM management and standards.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Describe the issues and challenges of wireless domain in future generation network design
- **CO2** Explain the evolution of technologies of 4G and beyond
- **CO3** Explore the LTE concepts and technologies
- CO4 Outline the process of integrating SDN with LTE
- CO5 Explain the NGN architectures, management and standardizations

Pre-requisite: U17ITI4204 - COMPUTER NETWORKS

	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											PSO			
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6		8	9	10	11	12			
CO1	Μ												Μ		
CO2	Μ												Μ		
CO3	Μ			М									Μ		
CO4	Μ	Μ		Μ								W	М		Μ
CO5	Μ					W		W				М	М	Μ	

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group presentation
- 3. End Semester Exam

Indirect

1. Course Exit Survey

hith Signature of BOS Chairman, IT

THEORY COMPONENT CONTENTS

INTRODUCTION

Evolution of public mobile services -motivations for IP based services, Wireless IP network architecture –3GPP packet data network architecture. Introduction to next generation networks - Changes, Opportunities and Challenges, Technologies, Networks, and Services, Next Generation Society, future Trends.

4G AND BEYOND

Introduction to LTE-A -Requirements and Challenges, network architectures -EPC, E-UTRAN architecture-mobility management, resource management, services, channel -logical and transport channel mapping, downlink/uplink data transfer, MAC control element, PDU packet formats, scheduling services, random access procedure.

SDMN-LTE INTEGRATION

SDN paradigm and applications, SDN for wireless-challenges, Leveraging SDN for 5G network subiquitous connectivity-mobile cloud-cooperative cellular network-restructuring mobile networks to SDN-SDN/LTE integration benefits.

NGN ARCHITECTURE

Evolution towards NGN-Technology requirements, NGN functional architecture- Transport stratum, service stratum, service/ content layer and customer terminal equipment function. NGN entities, Network and Service evolution -fixed, mobile, cable and internet evolution towards NGN.

NGN MANAGEMENT AND STANDARDIZATION

NGN requirements on Management-Customer, third party, Configuration, Accounting, performance, device and information management. Service and control management- End-to-End QoS and security. ITU and GSI-NGN releases, ETSI-NGN concept and releases, NGMN alliance and NGMN.

Tutorial : 0 Practical : 0 Project : 0 Theory: 45

REFERENCES:

- 1. Jingming Li Salina, Pascal Salina "Next Generation Networks-perspectives and potentials" Wiley, January 2008.
- 2. MadhusangaLiyanage, Andrei Gurtov, Mika Ylianttila, "Software Defined Mobile Networks beyond LTE Network Architecture", Wiley, June 2015.
- 3. Martin Sauter,"3G,4G and Beyond bringing networks, devices and web together", Wiley, 2nd edition-2013.
- 4. Savo G Glisic," Advanced Wireless Networks- Technology and Business models", Wiley, 3rd edition- 2016.
- 5. Thomas Plavyk, -Next generation Telecommunication Networks, Services and Management^I, Wiley & IEEE Press Publications, 2010.

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

Total hours:45

U17ITE0010 SOFTWARE DEFINED NETWORKS

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To learn the fundamentals of software defined networks.
- To understand the separation of the data plane and the control plane.
- To study about the SDN Programming and applications.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Describe the integration of SDN with LTE
- **CO2** Explain the evolution and components of software defined networks
- **CO3** Explain the use of SDN in the current networking scenario
- **CO4** Design and develop various applications of SDN
- **CO5** Make use of Tools and Languages for programming SDN.

Pre-requisite: U17ITI4204 - COMPUTER NETWORKS

	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											PSO			
	Programme Outcomes(POs)														
Cos	РО	РО	РО	РО	РО	РО	PO	PO	РО	PO 10	PO 11	PO 12	1	2	3
	1	2	3	4	5	6	7	8	9						
CO1	Μ									Μ			Μ		
CO2	М									М			Μ		
CO3	М			W						М			Μ		
CO4	М	М	М							М			Μ	Μ	
CO5	М	М	М		М					М		М	Μ	Μ	Μ

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group presentation
- 3. End Semester Exam

Indirect

1. Course Exit Survey

THEORY COMPONENT CONTENTS

INTRODUCTION

History of Software Defined Networking (SDN) – Modern Data Center – Traditional Switch Architecture – Why SDN – Evolution of SDN – How SDN Works – Centralized and Distributed Control and Date Planes.

huch	
Signature of BOS Chairman, IT	

OPEN FLOW & SDN CONTROLLERS

Open Flow Specification - Drawbacks of Open SDN, SDN via APIs, SDN via Hypervisor-Based Overlays - SDN via Opening up the Device - SDN Controllers - General Concepts

DATA CENTERS

Multitenant and Virtualized Multitenant Data Center - SDN Solutions for the Data Center Network - VLANs - EVPN - VxLAN - NVGRE

SDN PROGRAMMING

Programming SDNs: Northbound Application Programming Interface, Current Languages and Tools, Composition of SDNs - Network Functions Virtualization (NFV) and Software Defined Networks: Concepts, Implementation and Applications

SDN

9 Hours

Juniper SDN Framework - IETF SDN Framework - Open Daylight Controller - Floodlight Controller – Bandwidth Calendaring – Data Center Orchestration

Theory: 45	Tutorial : 0	Practical : 0	Project : 0	Total hours:45
------------	--------------	---------------	-------------	-----------------------

REFERENCES

- 1. Paul Goransson and Chuck Black, -Software Defined Networks: A Comprehensive Approach, First Edition, Morgan Kaufmann, 2014.
- 2. Thomas D. Nadeau, Ken Gray, -SDN: Software Defined Networks, O'Reilly Media, 2013.
- 3. SiamakAzodolmolky, -Software Defined Networking with Open Flow, Packet Publishing, 2013.
- 4. Vivek Tiwari, -SDN and Open Flow for Beginnersl, Amazon Digital Services, Inc., 2013.
- 5. Fei Hu, Editor, —Network Innovation through Open Flow and SDN: Principles and Design, CRC Press, 2014.

Signature of BOS Chairman, IT

hitte

9 Hours

9 Hours

OTHER ELECTIVES

Signature of BOS Chairman, IT

U17ITE0011

DISTRIBUTED SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- Understand the foundations of Distributed Systems.
- Introduce the idea of peer to peer services and file system.
- Understand in detail the system level and support required for distributed system.
- Understand the issues involved in process and resource management.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- **CO1** Explain the architecture of distributed systems
- CO2 Demonstrate remote method invocation and objects.
- CO3 Explain the distributed file system tools
- **CO4** Explain various process synchronization methods & ways to achieve its consistency
- CO5 Design process and resource management systems

Pre-requisite: U17ITT4001 - OPERATING SYSTEM

					CO/P	O Map	ping						PSO)
(5	S/M/W	/ indica	ates stre	ngth of	f correla	ation)	S-St	ong, M	I-Medi	um, W	/-Weak				
Programme Outcomes(POs)															
COs	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	Μ	Μ										Μ	Μ		1
CO2	Μ	Μ										Μ	Μ		
CO3	Μ	Μ										Μ	Μ		
CO4	Μ	Μ										Μ	Μ		
CO5	Μ	Μ							М			Μ	Μ		

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course Exit Survey

THEORY COMPONENT CONTENTS

INTRODUCTION

9 Hours

Examples of Distributed Systems–Trends in Distributed Systems – Focus on resource sharing – Challenges. Case study: World Wide Web.

huch	
Signature of BOS Chairman, IT	

COMMUNICATION IN DISTRIBUTED SYSTEM

System Model – Inter process Communication - the API for internet protocols – External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI Remote Method Invocation and Objects: Remote Invocation - Introduction -Request-reply protocols - Remote procedure call - Remote method invocation. Case study: Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches -Distributed objects - Case study: Enterprise Java Beans from objects to components.

PEER TO PEER SERVICES AND FILE SYSTEM

Peer-to-peer Systems - Introduction - Napster and its legacy - Peer-to-peer - Middleware -Routing overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems - Introduction - File service architecture - Andrew File system. File System: Features-File model -File accessing models - File sharing semantics Naming: Identifiers, Addresses, Name Resolution -Name Space Implementation – Name Caches – LDAP.

SYNCHRONIZATION AND REPLICATION

Introduction - Clocks, events and process states - Synchronizing physical clocks- Logical time and logical clocks - Global states - Coordination and Agreement - Introduction - Distributed mutual exclusion - Elections - Transactions and Concurrency Control- Transactions -Nested transactions – Locks – Optimistic concurrency control - Timestamp ordering – Atomic Commit protocols -Distributed deadlocks - Replication - Case study - Coda.

PROCESS & RESOURCE MANAGEMENT

Process Management: Process Migration: Features, Mechanism - Threads: Models, Issues, Implementation. Resource Management: Introduction- Features of Scheduling Algorithms – Task Assignment Approach – Load Balancing Approach – Load Sharing Approach.

Theory: 45 Tutorial: 0 Practical: 0 **Project: 0 Total: 45 Hours**

REFERENCES:

- 1. George Coulouris, Jean Dollimore, Tim Kindberg, , "Distributed Systems: Concepts and Design", 5th Edition, Pearson Education, 2011.
- 2. A.tS. Tanenbaum and M. V. Steen, "Distributed Systems: Principles and Paradigms", Second Edition, Prentice Hall, 2006.
- 3. MukeshSinghal and N. G. Shivaratri, —Advanced Concepts in Operating Systems, 1st Edition, McGraw-Hill, 2011.
- 4. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 5. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003.

9 Hours

9 Hours

9 Hours

U17ITE0012 PRINCIPLES OF COMPILER DESIGN

L	Т	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To introduce the major concept areas of language translation and compiler design.
- To enrich the knowledge in various phases of compiler ant its use, code optimization techniques, machine code generation, and use of symbol table.
- To extend the knowledge of parser by parsing LL parser and LR parsers.

COURSE OUTCOMES:

After successful completion of this course, the students should be able to

- CO1 Explain the various phases of a compiler
- CO2 Construct DFA from a given regular expression
- CO3 Outline the top-down and bottom-up parsing techniques
- **CO4** Develop the intermediate codes
- **CO5** Identify various types of optimizations on intermediate code and generate assembly code

Pre-requisite: Nil

					CO/F	O Maj	pping						PSO)
((S/M/V)	W indic	ates str	ength c	of correl	lation)	S-S	trong, N	M-Med	ium, W	-Weak				
	Programme Outcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	М	W											Μ		
CO2	S	Μ											Μ		
CO3	М	Μ										W	Μ		
CO4	М	Μ											Μ		
CO5	М	Μ								Μ			Μ		

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment, Group Presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS

INTRODUCTION AND LEXICAL ANALYSIS

9 Hours

Language Processors – The Structure of Compiler – Applications of Compiler Technology – Programming Language Basics. Lexical Analysis – The Role of the Lexical Analyzer – Input Buffering – Specification of Tokens – Recognition of Tokens – The Lexical-Analyzer Generator - LEX– Finite Automata – From Regular Expression to Automata – Design of a Lexical-Analyzer Generator – Optimization of DFA-based Pattern Matchers.

huter	
Signature of BOS Chairman, IT	

SYNTAX ANALYSIS

Introduction – Context-Free Grammars – Writing a Grammar – Top-Down Parsing – Recursive-Descent Parsing and Predictive Parsers - Bottom-up Parsing - Shift-Reduce Parsing and Operator Precedence Parsing - Introduction to LR Parsing: Simple LR - More Powerful LR Parsers - Canonical LR and LALR Parsers.

INTERMEDIATE CODE GENERATION

Variants of Syntax Trees - Three-Address Code - Types and Declarations - Translation of Expressions - Type Checking - Control Flow - Back patching - Switch-Statements -Intermediate Code for Procedures.

CODE GENERATION

Issues in the Design of a Code Generator – The Target Language – Addresses in the Target Code - Basic Blocks and Flow Graphs - Optimization of Basic Blocks - A Simple Code Generator - Peephole Optimization.

CODE OPTIMIZATION AND RUN-TIME ENVIRONMENT

The Principal Sources of Optimization – Introduction of Data-Flow Analysis – Loops in Flow Graphs Run-Time Environments - Storage Organization - Stack Allocation of Space - Heap Management.

Theory: 45 Tutorial: 0 **Practical:0 Project: 0 Total: 45 Hours**

REFERENCES:

- 1. Alfred V. Aho et al "Compilers Principles, Techniques and Tools", Second edition, Pearson Education.2011.
- 2. Allen I. Holub, "Compiler Design in C", Prentice Hall of India, 2003.
- 3. Fischer C.N. and LeBlanc R.J. "Crafting a Compiler with C", Benjamin Cummings, 2003.
- 4. Bennet J.P. "Introduction to Compiler Techniques", Second edition, Tata McGraw-Hill, 2003.
- 5. Kenneth C. Louden, "Compiler Construction: Principles and Practice", Thompson Learning, 2003.

hutte	
Signature of BOS Chairman, IT	

9 Hours

9 Hours

9 Hours

U17ITE0013 GRAPHICS AND MULTIMEDIA

L	Τ	Р	J	С
3	0	0	0	3

COURSE OBJECTIVES:

- To know the basics of computer graphics output primitives.
- To appreciate illumination and color models
- To gain knowledge about graphics hardware devices and software used
- To understand the 2D and 3D concepts with modeling.
- To know the basics of multimedia, compression, file handling and hypermedia.

COURSE OUTCOMES

After successful completion of this course, the students should be able to

CO1: Explain graphics output primitives and color models.

CO2: Apply 2D and 3D geometric transformations on objects.

CO3: Summarize the graphics modeling process.

CO4: Describe the basics of multimedia, compression, file handling and hypermedia.

CO5: Model a simple application with animation.

Pre-requisites: NIL

	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs		Programme Outcomes(POs)												PSOs	
	PO								PO	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	М													
CO2	S	М			М								М		
CO3	М	М													
CO4	М	М													
CO5	S	S			S	S			S	S	S	S	М		М

COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I, II
- 2. Assignment
- 3. Mini Project
- 4. End Semester Examination

Indirect

1. Course-end survey

THEORY COMPONENT CONTENTS

ILLUMINATION AND COLOR MODELS

11 Hours

Light sources - basic illumination models - halftone patterns and dithering techniques; Properties of light - Standard primaries and chromaticity diagram; Intuitive color concepts -

hilts	
Signature of BOS Chairman, IT	

RGB color model - YIQ color model - CMY color model - HSV color model - HLS color model; Color selection. Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.

TWO-DIMENSIONAL GRAPHICS

Two dimensional geometric transformations - Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; window-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.

THREE-DIMENSIONAL GRAPHICS

Three dimensional concepts; Three dimensional object representations - Polygon surfaces-Polygon tables- Plane equations - Polygon meshes; Curved Lines and surfaces, Quadratic surfaces; Blobby objects; Spline representations – Bezier curves and surfaces -B-Spline curves and surfaces.

TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations – Translation, Rotation, Scaling, composite transformations; Three dimensional viewing - viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods. CASE STUDY: OPENGL Programming

MULTIMEDIA SYSTEM DESIGN & MULTIMEDIA FILE 9 Hours HANDLING

Multimedia basics - Multimedia applications - Multimedia system architecture - Evolving technologies for multimedia - Defining objects for multimedia systems - Multimedia data interface standards - Multimedia databases. Compression and decompression - Data and file format standards - Multimedia I/O technologies - Digital voice and audio - Video image and animation - Full motion video - Storage and retrieval technologies.

HYPERMEDIA

Multimedia authoring and user interface - Hypermedia messaging - Mobile messaging -Hypermedia message component - Creating hypermedia message - Integrated multimedia message standards - Integrated document management - Distributed multimedia systems. CASE STUDY: BLENDER GRAPHICS - Blender Fundamentals-Drawing Basic Shapes-Modelling-Shading & Textures-Wrapping

Total: 45 Hours Theory: 45 Tutorial: 0 Practical: 0 **Project: 0**

REFERENCES

- 1. Donald Hearn, M. Pauline Baker, "Computer Graphics", Second edition, Prentice Hall, 2014.
- 2. Prabhat K.Andleigh, Kiran Thakrar, "Multimedia Systems Design", Prentice Hall India, 2013.
- 3. Foley, Vandam, Feiner and Hughes, "Computer Graphics: Principles and Practice", 3rdEdition, Addison Wesley Professional, 2013.
- 4. Jeffrey McConnell, "Computer Graphics: Theory into Practice", Jones and

Signature of BOS Chairman, IT

7 Hours

9 Hours

9 Hours

hutte

BartlettPublishers,2006.

- Hill F S Jr., "Computer Graphics using OpenGL", 2nd edition, Maxwell Macmillan, 2001.
 Ze-Nian Li and Mark S. Drew, "Fundamentals of Multimedia", First Edition, Pearson Education, 2004.
- 7. https://blender.org/support/tutorials/

hitte

Signature of BOS Chairman, IT

U17MAE0101 PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS (IT)

L	Т	Р	PJ	С
3	1	0	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to:

- **CO1:** Form partial differential equations and solve certain types of partial differential equations.
- CO2: Know how to find the Fourier Series and half range Fourier Series of a function
- **CO3:** To know how to solve one dimensional wave equation, one dimensional heat equation in steady state using Fourier series.

CO4: Apply Fourier series to solve the steady state equation of two dimensional heat equation in Cartesian coordinates.

CO5: Apply the Fourier transform, Fourier sine and cosine transform to certain functions and use Parseval's identity to evaluate integrals..

CO6:Evaluate Z – transform for certain functions. Estimate Inverse Z – transform of certain functions and to solve difference equations using them.

Pre-requisite: NIL

					CO	PO M	apping						
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs	Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	S	Μ			Μ				Μ	Μ		S	
CO2	S	Μ		Μ									
CO3	S	S	S		S				Μ	Μ		S	
CO4	S	Μ	Μ									М	
CO5	S	Μ	Μ		S								
CO6	S	S			S				Μ	М		S	

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment Test I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable)
- 3. End Semester Examination

Indirect

1. Course-end survey

PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Solution of PDE by variable separable method – Solution of standard types of first order partial differential equations (excluding reducible to standard types) – Lagrange's linear equation – Linear Homogeneous partial differential equations of second and higher order with constant coefficients.

hitte Signature of BOS Chairman, IT

9+3 Hours

FOURIER SERIES

Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Parseval's identity - Harmonic Analysis.

BOUNDARY VALUE PROBLEMS – ONE DIMENSIONAL EQUATIONS 5+2 Hours

Classification of second order quasi linear partial differential equations - Formulation of wave and heat equations using physical laws - Solutions of one dimensional wave equation - One dimensional heat equation (excluding insulated ends)

BOUNDARY VALUE PROBLEMS – TWO DIMENSIONAL EQUATIONS 4+1 Hours

Steady state solution of two-dimensional heat equation (Insulated edges excluded) - Fourier series solutions in Cartesian coordinates.

FOURIER TRANSFORM

Fourier Integral Theorem - Representation of Functions - Infinite Fourier transforms - Sine and Cosine Transforms - Properties - Transforms of simple functions - convolution theorem -Parseval's identity.

Z-TRANSFORM

Z-transform - Elementary properties – Convolution theorem- Inverse Z – transform (by using partial fractions, residue methods and convolution theorem) – Solution of difference equations using Z - transform.

Practical: 0 Total: 60 Hours Theory: 45 Tutorial: 15 **Project: 0**

References:

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition. 2014.
- 2. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, Second reprint, 2012.
- 3. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics Volume III", S.Chand & Company ltd., New Delhi, 2006.
- 4. Ian Sneddon., "Elements of partial differential equations", McGraw Hill, New Delhi, 2003.
- 5. Arunachalam T., "Engineering Mathematics III", Sri Vignesh Publications, Coimbatore 2009.

9+3 Hours

9+3 Hours

9+3 Hours