KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE – 641 049

(An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS – 2015

(CBCS)

CURRICULUM AND SYLLABI FOR I & II SEMESTERS

From Academic year 2015-2016

B.E - AERONAUTICAL ENGINEERING

Hrs/Week **Course Title** Course Code Category Contact & Credits Hours L Т С Р Theory Technical English HS 3 1. U15ENT101 3 0 0 3 BS Engineering Mathematics – I 5 3 2 2. U15MAT101 0 4 **Engineering Physics** BS 3 U15PHT101 3 3 3. 0 0 U15CH7101 Engineering Chemistry BS 3 3 3 4. 0 0 Engineering Graphics ES 6 5. U15MET101 2 4 0 4 Structured Programming using ES 4 6. U15CST101 2 2 0 3 **'**C' Practical 7. U15PHP101 Physics Laboratory BS 2 0 2 0 1 ES 8. **Engineering Practices** 4 0 4 U15MEP101 0 2 Laboratory Structured Programming 9 ES 4 U15CSP101 0 2 0 4 Laboratory using 'C' Personal Values 10. U15GHP101 HS 2 0 0 2 1 TOTAL 26 38

SEMESTER – I

	Course	Course Title	Category	Contact	Hrs	/Week	& & C1	redits
	Code		- •	Hours	L	Т	Р	С
The	ory							
1.	U15ENT201	Business Communication and	HS	4	2	0	2	3
	015EN1201	Presentation Skills		4	2	0	2	5
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT202	Materials Science	BS	3	3	0	0	3
4.	U15CHT202	Applied Chemistry	BS	3	3	0	0	3
5.	U15MET202	Engineering Mechanics	ES	4	2	2	0	3
6.	U15AET201	Elements of Aeronautics	PC	5	3	2	0	4
Pract	tical							
7.	U15CHP201	Chemistry Laboratory	BS	2	0	0	2	1
8.	U15CSP211	Computing Laboratory	ES	4	0	0	4	2
9	U15AEP201	CAD Laboratory - I	PC	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
	TOTAL							26

B.E – AUTOMOBILE ENGINEERING

SEMESTER – I

	Course Code	Course Title	Category	Contact Hours			Week edits				
					L	Т	Р	C			
The	Theory										
1.	U15ENT101	Technical English	HS	3	3	0	0	3			
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4			
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3			
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3			
5.	U15MET101	Engineering Graphics	ES	6	2	4	0	4			
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3			
Pract	tical										
7.	U15PHP201	Physics Laboratory	BS	2	0	0	2	1			
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2			
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2			
10.	U15GHP101	Personal Values	HS	2	0	0	2	1			
		TOTAL		36				26			

	Course	Course Title	Category	Contact	Hrs	/Week	x & Cı	redits
	Code			Hours	L	Т	Р	С
The	ory							
1.	U15EN7201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT202	Materials Science	BS	3	3	0	0	3
4.	U15CHT202	Applied Chemistry	BS	3	3	0	0	3
5.	U15MET202	Engineering Mechanics	ES	4	2	2	0	3
6.	U15EET 211	Basics of Electrical and Electronics Engineering	ES	4	4	0	0	4
Pract	tical							
7.	U15CHP101	Chemistry laboratory	BS	2	0	0	2	1
8.	U15AUP201	CAD Laboratory	PC	4	0	0	4	2
9		Basics of Electrical and	ES	2	0	0	2	1
	U15EEP211	Electronics Engineering Lab		2	0	0	Ζ	1
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
		TOTAL		33				25

B.Tech – BIOTECHNOLOGY

SEMESTER – I

	Course Code	Course Title	Category	Contact Hours	Hrs/Week & Credits			
					L	Т	Р	С
The	ory		•					
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15MET101	Engineering Graphics	ES	6	2	4	0	4
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	tical		•					
7.	U15CHP101	Chemistry laboratory	BS	2	0	0	2	1
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10	U15GHP101	Personal Values	HS	2	0	0	2	1
	TOTAL 36 26							26

	Course	Course Title	Category	Contact	Hrs	/Weeł	& C1	redits
	Code			Hours	L	Т	Р	С
The	eory							
1.	U15ENT201	Business Communication and	HS	4	2	0	2	3
	0132101201	Presentation Skills		т	2	0	2	5
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT206	Applied Physics	BS	3	3	0	0	3
4.	U15CHT205	Chemistry for Biotechnology	BS	3	3	0	0	3
5.	U15EET211	Basics of Electrical and	ES	4	4	0	0	4
		Electronics Engineering		4	4	0	0	4
6.	U15BTT201	Biomolecules and Genetics	PC	3	3	0	0	3
Prace	tical	-			-			
7.	U15PHP201	Physics Laboratory	BS	2	0	0	2	1
8.	U15CSP211	Computing Laboratory	ES	4	0	0	4	2
9	U15BTP201	Biomolecules and Genetics	PC	4	0	0	4	2
	015017201	Laboratory		4	0	0	4	2
10.	U15GHP201	Family & Professional values	HS	2	0	0	2	1
		TOTAL		34				26

B.E CIVIL ENGINEERING

SEMESTER – I

	Course Code	Course Title	Category	Contact Hours			Week edits	
					L	Т	Р	С
The	ory							
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15MET101	Engineering Graphics	ES	6	2	4	0	4
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Prace	tical		·					
7.	U15PHP101	Physics Laboratory	BS	2	0	0	2	1
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10.	U15GHP101	Personal Values	HS	2	0	0	2	1
			36				26	

	Course	Course Title	Category	Contact	Hrs	/Week	x & Cı	redits
	Code			Hours	L	Т	Р	С
The	ory							
1.	U15ENT201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics II	BS	5	3	2	0	4
3.	U15PHT201	Materials Science	BS	3	3	0	0	3
4.	U15CHT201	Chemistry for Civil Engineering	BS	3	3	0	0	3
5.	U15MET202	Engineering Mechanics	ES	4	2	2	0	3
6.	U15CET201	Construction Materials	PC	3	3	0	0	3
Pract	tical							
7.	U15CHP201	Chemistry Laboratory	BS	2	0	0	2	1
8.	U15CSP211	Computing Laboratory	ES	4	0	0	4	2
9	U15CEP201	Construction Materials Laboratory	PC	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
		TOTAL		34				25

B.E - COMPUTER SCIENCE AND ENGINEERING

	Course	Course Title	Category	Contact		Hrs/	Week	
	Code			Hours		& Cı	edits	
					L	Т	Р	С
The	ory		•					
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15ITT101	Foundations of Information	PC	3	3	0	0	3
	013117101	Technology			3	0	0	3
6.	U15CST101	Structured Programming using	ES	4	2	2	0	3
	015051101	'C'			2	2	0	5
Pract	tical							
7.	U15PHP101	Physics Laboratory	BS	2	0	0	2	1
8.	U15CSP102	Computer Hardware Lab	ES	4	0	0	4	2
9	U15CSP101	Structured Programming	ES	4	0	0	4	2
	UISCSPIUI	Laboratory using 'C'			0	0	4	2
10.	U15GHP101	Personal Values	HS	2	0	0	2	1
			33				25	

SEMESTER – I

	Course	Course Title	Category	Contact	Hrs	/Weel	& C1	redits
	Code			Hours	L	Т	Р	С
The	ory							
1.	U15ENT201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT203	Materials Science	BS	3	3	0	0	3
4.	U15EET212	Electrical and Electronic Circuits	ES	3	3	0	0	3
5.	U15MET201	Engineering Graphics	ES	6	2	4	0	4
6.	U15CST202	Digital Systems and Design	PC	4	4	0	0	4
Pract	tical							
7.	U15EEP212	Electrical and Electronic Circuits Laboratory	BS	4	0	0	4	2
8.	U15MEP201	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP201	Digital Systems and Design Laboratory	PC	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
			39				28	

B.E - ELECTRONICS AND COMMUNICATION ENGINEERING

	Course Code	Course Title	Category	Contact Hours			Week edits	
					L	Т	Р	С
The	ory							
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15ECT101	Circuit Theory	PC	4	4	0	0	4
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	tical							
7.	U15CHP101	Chemistry laboratory	BS	2	0	0	2	1
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10.	U15GHP101	Personal Values	HS	2	0	0	2	1
			34				26	

SEMESTER – I

	Course	Course Title	Category	Contact	Hrs	/Weeł	x & Ci	redits
	Code			Hours	L	Т	Р	С
The	ory				-			
1.	U15ENT201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT203	Materials Science	BS	3	3	0	0	3
4.	U15CHT203	Chemistry for Circuit Engineering	BS	3	3	0	0	3
5.	U15MET201	Engineering Graphics	ES	6	2	4	0	4
6.	U15ECT202	Electron Devices	PC	3	3	0	0	3
Pract	tical							
7.	U15PHP201	Physics Laboratory	BS	2	0	0	2	1
8.	U15ECP201	Electric Circuits and Simulation Laboratory	PC	4	0	0	4	2
9	U15ECP202	Electronic Devices Laboratory	PC	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
			36				26	

B.E - ELECTRICAL AND ELECTRONICS ENGINEERING

	Course Code	Course Title	Category	Contact Hours			Week edits	
					L	Т	Р	С
Theo	ry							
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15EET101	Circuit Theory	PC	4	4	0	0	4
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	tical		•					
7.	U15CHP101	Chemistry laboratory	BS	2	0	0	2	1
8.	U15EEP101	Basics of Electric Circuits lab	PC	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10.	U15GHP101	Personal Values	HS	2	0	0	2	1
		TOTAL		34				26

SEMESTER – I

SEMESTER – II

.

	Course	Course Title	Category	Contact	Hrs	/Week	& & C1	redits
	Code			Hours	L	Т	Р	С
The	ory							
1.	U15EN7201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT205	Applied Physics	BS	3	3	0	0	3
4.	U15CHT203	Chemistry for Circuit Engineering	BS	3	3	0	0	3
5.	U15MET201	Engineering Graphics	ES	6	2	4	0	4
6.	U15MET204	Thermal Engineering and Fluid Mechanics	ES	4	4	0	0	4
Pract	tical							
7.	U15PHP201	Physics Laboratory	BS	2	0	0	2	1
8.	U15MEP201	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15MEP202	Thermal Engineering and Fluid Mechanics Lab	ES	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
		TOTAL		37				27

B.E - ELECTRONICS AND INSTRUMENTATION ENGINEERING

	Course Code	Course Title	Category	Contact Hours	Hrs/Week & Credits			
					L	Т	Р	С
Theo	ry							
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15EIT101	Electronic Devices	PC	3	3	0	0	3
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	ical		•					
7.	U15CHP101	Chemistry laboratory	BS	2	0	0	2	1
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10	U15GHP101	Personal Values	HS	2	0	0	2	1
	TOTAL 33 25							

SEMESTER – I

	Course	Course Title	Category	Contact	Hrs	/Week	& & Ci	redits
	Code			Hours	L	Т	Р	С
Theo	ry							
1.	U15ENT201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT203	Materials Science	BS	3	3	0	0	3
4.	U15CHT203	Chemistry for Circuit Engineering	BS	3	3	0	0	3
5.	U15ECT201	Circuit Theory	ES	4	4	0	0	4
6.	U15MET201	Engineering Graphics	ES	6	2	4	0	4
Pract	tical							
7.	U15PHP201	Physics Laboratory	BS	2	0	0	2	1
8.	U15CSP211	Computing Laboratory	ES	4	0	0	4	2
9	U15EIP201	Circuits and Devices Laboratory	PC	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
		TOTAL		37				27

	Course Code	Course Title	Category	Contact Hours			Week redits	
					L	Т	Р	С
Theo	ry							
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15FTT101	Fiber Science	PC	3	3	0	0	3
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	tical		•					
7.	U15CHP101	Chemistry laboratory	BS	2	0	0	2	1
8.	<u>U15FTP101</u>	Textile Production Process Laboratory	PC	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10.	U15GHP101	Personal Values	HS	2	0	0	2	1
		TOTAL		33				25

B.Tech - FASHION TECHNOLOGY SEMESTER – I

	Course	Course Title	Category	Contact	Hrs	/Week	& C1	redits
	Code			Hours	L	Т	Р	С
Theo	ry							
1.	U15ENT201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	<u>U15PH7204</u>	Applied Physics	BS	3	3	0	0	3
4.	<u>U15CH7204</u>	Chemistry for Textiles	BS	3	3	0	0	3
5.	U15MET201	Engineering Graphics	ES	6	2	4	0	4
6.	U15FTT202	Yarn Technology	PC	3	3	0	0	3
Pract	tical	-						
7.	U15PHP201	Physics Laboratory	BS	2	0	0	2	1
8.	U15MEP201	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP211	Computing Laboratory	PC	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
			36				26	

B.Tech - INFORMATION TECHNOLOGY

	Course Code	Course Title	Category	Contact Hours			Week edits		
					L	Т	Р	С	
Theo	ry								
1.	U15ENT101	Technical English	HS	3	3	0	0	3	
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4	
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3	
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3	
5.	U15MET101	Engineering Graphics	ES	6	2	4	0	4	
6.	U15ITT101	Foundations of Information Technology	PC	3	3	0	0	3	
Pract	tical		<u> </u>						
7.	U15PHP101	Physics Laboratory	BS	2	0	0	2	1	
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2	
9	U15ITP101	Computer Hardware and Peripherals Laboratory	PC	4	0	0	4	2	
10.	U15GHP101	Personal Values	HS	2	0	0	2	1	
		TOTAL		35				26	
	SEMESTER – II								

	Course	Course Title	Category	Contact	Hrs	/Week	& C 1	redits
	Code			Hours	L	Т	Р	С
Theo	ry							
1.	U15ENT201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT203	Materials Science	BS	3	3	0	0	3
4.	U15EET212	Electrical and Electronic Circuits	ES	4	3	0	0	3
5.	U15CHT203	Chemistry for Circuit Engineering	BS	3	3	0	0	3
6.	U15CST201	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	tical							
7.	U15CHP201	Chemistry Laboratory	BS	2	0	0	2	1
8.	U15EEP212	Electrical and Electronic Circuits Laboratory	ES	4	0	0	4	2
9	U15CSP201	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
		TOTAL		35				26

B.E - MECHANICAL ENGINEERING

SEMESTER – I

	Course Code	Course Title	Category	Contact Hours	Hrs/Week & Credits						
					L	Т	Р	С			
Theo	ry										
1.											
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4			
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3			
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3			
5.	U15MET101	Engineering Graphics	ES	6	2	4	0	4			
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3			
Prace	tical										
7.	U15PHP101	Physics Laboratory	BS	2	0	0	2	1			
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2			
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2			
10.	U15GHP101	Personal Values-I	HS	2	0	0	2	1			
		TOTAL		36				26			

	Course	Course Title	Category	Contact	Hrs	/Weel	k & C	redits
	Code			Hours	L	Т	Р	С
Theo	ry							
1.	U15ENT201	Business Communication and Presentation Skills	HS	4	0	0	4	2
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT202	Materials Science	BS	3	3	0	0	3
4.	U15CHT202	Applied Chemistry	BS	3	3	0	0	3
5.	U15MET202	Engineering Mechanics	ES	4	2	2	0	3
6.	U15EET211	Basics of Electrical & Electronics Engineering	ES	4	4	0	0	4
Pract	tical							
7.	U15CHP201	Chemistry Laboratory	BS	2	0	0	2	1
8.	U15CSP211	Computing Laboratory	ES	4	0	0	4	2
9		Basics of Electrical &	ES					
	U15EEP211	Electronics Engineering		4	0	0	4	2
		Laboratory						
10.	U15SIP201	Social Immersion Project	HS	2	0	0	2	1
		TOTAL		35				26

B.E - MECHATRONICS ENGINEERING

	Course Code	Course Title	Category	Contact Hours			Week redits	
					L	Т	Р	С
Theo	ry							
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15MET101	Engineering Graphics	ES	6	2	4	0	4
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	tical							
7.	U15PHP101	Physics Laboratory	BS	2	0	0	2	1
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10.	U15GHP101	Personal Values	HS	2	0	0	2	1
		TOTAL		36				26

SEMESTER – I

	Course	Course Title	Category	Contact	Hrs	/Weel	& & C	redits
	Code			Hours	L	Т	Р	С
Theo	ry							
1.	U15ENT201	Business Communication and	HS	4	2	0	2	3
	013EN1201	Presentation Skills		4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT202	Materials Science	BS	3	3	0	0	3
4.	U15CHT202	Applied Chemistry	BS	3	3	0	0	3
5.	U15MET202	Engineering Mechanics	ES	4	2	2	0	3
6.	U15MC7201	Electronic Devices and Circuits	PC	3	3	0	0	3
Pract	tical							
7.	U15CHP201	Chemistry Laboratory	BS	2	0	0	2	1
8.	U15CSP211	Computing Laboratory	ES	4	0	0	4	2
9	U15ECP207	Electronic Devices and Circuits	ES	4	0	0	4	2
	015101207	Laboratory		4	U	0	4	۷
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
		TOTAL		34				26

B.Tech - TEXTILE TECHNOLOGY

	Course Code	Course Title	Category	Contact Hours	Hrs/Week & Credits			
					L	Т	Р	С
Theo	ry							
1.	U15ENT101	Technical English	HS	3	3	0	0	3
2.	U15MAT101	Engineering Mathematics – I	BS	5	3	2	0	4
3.	U15PHT101	Engineering Physics	BS	3	3	0	0	3
4.	U15CHT101	Engineering Chemistry	BS	3	3	0	0	3
5.	U15MET101	Engineering Graphics	ES	6	2	4	0	4
6.	U15CST101	Structured Programming using 'C'	ES	4	2	2	0	3
Pract	tical		·					
7.	U15CHP101	Chemistry laboratory	BS	2	0	0	2	1
8.	U15MEP101	Engineering Practices Laboratory	ES	4	0	0	4	2
9	U15CSP101	Structured Programming Laboratory using 'C'	ES	4	0	0	4	2
10.	U15GHP101	Personal Values	HS	2	0	0	2	1
		TOTAL		36				26

SEMESTER – I

	Course	Course Title	Category	Contact	Hrs	/Weeł	x & Ci	redits
	Code			Hours	L	Т	Р	С
Theory								
1.	U15EN7201	Business Communication and Presentation Skills	HS	4	2	0	2	3
2.	U15MAT201	Engineering Mathematics – II	BS	5	3	2	0	4
3.	U15PHT204	Applied Physics	BS	3	3	0	0	3
4.	U15CHT204	Chemistry for Textiles	BS	3	3	0	0	3
5.	U15MET202	Engineering Mechanics	ES	4	2	2	0	3
6.	U15TXT201	Textile Fibers	PC	3	3	0	0	3
Pract	tical							
7.	U15PHP201	Physics Laboratory	BS	2	0	0	2	1
8.	U15CSP211	Computing Laboratory	ES	4	0	0	4	2
9	U15TXP201	Fiber Analytical Laboratory	PC	4	0	0	4	2
10.	U15GHP201	Family & Professional Values	HS	2	0	0	2	1
		TOTAL		34				25

U15ENT101 - TECHNICAL ENGLISH	L	Т	P	С
(Common to all branches of Engineering and Technology)	3	0	0	3

- To assist learners to enhance their technical jargon and to impart knowledge on the application of technical English.
- To familiarize learners with different rhetorical functions of technical syntax.
- To inculcate written proficiency in commercial and business context.
- To improve the competency of professional writing with special reference to career related situations
- To provide pragmatic exposure to technical correspondence.

FOUNDATIONS OF TECHNICAL JARGON

Parts of Speech – Word Formation – Morphemes – Affixing, Synonyms and Antonyms, Homonyms - Homophones and Homographs, One Word Substitutes, Derivational jargon, Inflectional Morphemes, Nominal Compounds, Acronyms and abbreviations, Clipping, Back formation, Portmanteau, Analogies, Spelling, Definitions

TECHNICAL SYNTAX

Tense, Voice, Kinds of Syntax, Modal Verbs, Gerund and Infinitives, Cause and effect expressions, Purpose and functional expressions, Concord – Subject-Verb Agreement, Conditional syntax, Reported speech

APPLICATIONS OF TECHNICAL SYNTAX

Editing (Grammar - Articles, Parts of Speech, Modifiers – Dangling, Misplaced, Squinting and Punctuation), Instructions and Recommendations, Discourse markers – Process description, Writing a Paragraph – Descriptive, Narrative, Compare and Contrast, Argumentative, Evaluative, Persuasive, Sequencing of jumbled sentences

DRAFTING TECHNICAL DETAILS

Note making – Linear and Non-linear; Report writing – Techniques of writing a report, Incident report, Accident report, Feasibility report; Project Proposals; Transcoding Graphics – Encoding and Decoding – Bar chart / Pie chart / Flow chart / Line graph / Tabulated data / Tree diagram or Organizational chart; Letter of Application and Resume; Statement of Purpose

TECHNICAL CORRESPONDENCE

9 Hours

9 Hours

9 Hours

9 Hours

Modules of a letter – Official & Demi-Official Letters – Applying for Bank Loans, Bona-fide Certificate / Mark List, Industrial Visit, Inplant Training, Letter to the Editor, Letter for Organizing functions, Notices and Circulars, Agenda, Minutes of Meeting

TOTAL: 45 HOURS

REFERENCES

- 1. Rizvi Ashraf. M., Effective Technical Communciation, Tata McGraw Hill Publishing Co., Ltd., New Delhi, 2008.
- 2. Dhanavel.S.P., English and Communication Skills for Students of Science and Engineering, Chennai, Orient Blackswan, 2009.
- 3. Bhatnagar R.P. & Rahul Bhargava, "English for Competitive Examinations", Macmillian Publishers, India, 1989, ISBN: 9780333925591
- 4. Devadoss K. & Malathy P., "Career Skills for Engineers", National Book Publishers, Chennai, 2013.
- 5. Aggarwal R.S., "A Modern Approach to Verbal & Non–Verbal Reasoning", S.Chand Publishers, India, 2012, ISBN : 8121905516

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Use technical vocabulary and systematic sentence construction to express technical perceptions.
- CO2: Develop proficiency in technical writing skills needed for the industry.
- CO3: Handle technical and general correspondence with respect to the corporate sector.
- CO4: Comprehend and interpret Engineering applications.
- CO5: Apply and analyze technical and general communication.

U15ENT201 – BUSINESS COMMUNICATION AND	L	Т	Р	С
PRESENTATION SKILLS	0	0	4	2
(Common to all branches of Engineering and Technology)	v	v	-	-
(Common to an stancing of Engineering and Teemotogy)				

- Develop a milestone for leadership and group participation through communication skills
- Discover an understanding of the process of adept listening skills
- Formulate a significant training ground for the development of student's abilities in public speaking
- Create multiple opportunities for students to practice and share their reading skill development
- Improve critical thinking and analytical skills to facilitate effective writing skills

FUNDAMENTALS OF BUSINESS COMMUNICATION

Introduction to Business Communication - Greetings, Formal and Informal Introduction of Self and Others, Giving encouragement: Phrases for Positive Feedback, Agreeing and disagreeing – Expressions indicating frequency, Reading to Understand – Facts, Inference, Main Idea, Author's Opinion/ tone, Fundamentals of Letter Writing, Short prepared compositions on current affairs.

LISTENING AND COMPREHENDING BUSINESS COMMUNICATION 9 Hours

Listening to monologues, Listening for general content- Listening to dialogues- Listening to a telephonic conversation- Listening for specific information, numbers, time, duration- Listening to conversations between three or more people- Listening to a group discussion and providing factual information, Intensive listening

ORAL BUSINESS COMMUNICATION

Establishing Business relationships and negotiating, Describe an object or event- Describing a working mechanism- Argumentative speech about a Business / Public issue (Debate) - Responding to situations and providing solutions (Case Studies), Seeking Permission, Introduction to Presentation Skills - Presenting information, Giving and Getting Product and Service Information, Perceiving Visual Information, Talking about People and Places

READING AND COMPREHENDING BUSINESS COMMUNICATION 9 Hours

Reading techniques, News Paper Reading, Reading brochures, leaflets, instruction manual-Cloze test- Reading Comprehension, Book review, Article review, Literature Survey (Business Journals), Reading a Technical Report, Critical Reading (Editorial): Creative and Critical thinking

9 Hours

WRITTEN BUSINESS COMMUNICATION

9 Hours

Product Review, Writing a proposal for conducting science exhibition, E-mail etiquette and correspondence, Business Itinerary, Business Letters – Calling for a quotation – Placing Order – Letter of Complaint – Letter seeking Clarification – Acknowledging prompt / quality service, Letter Writing – requesting information, explaining a situation, letter of acceptance, declining letter, Encoding and decoding advertisements

TOTAL : 45 HOURS

REFERENCES

- 1. Cambridge English for Engineering by Mark Ibbotson . Cambridge University Press. 2008.
- 2. English in Action by Barbara H. Foley, Elizabeth R. Neblett. Adult&Academic ESL.2003.
- 3. Speaking Effectively- Jeremy Comfort, Pamela Rogerson, Trish Stott and Derek Utley, Published by Cambridge University Press.1994
- 4. Everyday English: A Course on Communicative English, Dorothy Adams. Cengage learning. 2009.
- 5. BEC Vantage- Business Benchmark Upper Intermediate by Guy Brook- Hart. 2006
- 6. English for the College Boards, Henry I Christ. Amsco. 1987

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Gain cognizance of Business Environment leading to effective communication.
- CO2: Enhance business communication through practicing effective reading strategy.
- CO3: Develop effective written skills and set goals for future growth.
- CO4: Practice and perceive the full repertoire of listening strategies by using authentic listening tasks.
- CO5: Inculcate Spoken Communication Skills required for presentations and discussions.

U15MAT101/ ENGINEERING MATHEMATICS -I	L	Т	Р	С
(Common to all branches of Engineering and Technology)	3	2	0	4

On completion of the course, the students are expected

- To know eigen values and eigen vectors and diagonalization of a matrix.
- To know about the geometrical aspects of curvature, evolute and envelope.
- To solve ordinary differential equations of certain types and its application.
- To understand the concepts of partial differentiation, maxima and minima.

MATRICES

Rank of a matrix – Linearly dependent and independent vectors – Eigen values and eigenvectors of a real matrix - Properties of eigen values and eigenvectors - Cayley Hamilton theorem (excluding proof) – Orthogonal matrices – Orthogonal transformation of a symmetric matrix to diagonal form - Reduction of quadratic form to canonical form by orthogonal transformation.

GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS 9 Hours

Curvature – Radius, Centre and Circle of curvature in Cartesian, Parametric and Polar form – Evolute – Envelope of family of curves with one and two parameters – Evolute as the envelope of normals - properties of evolute and envelope.

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

Leibnitz's equation - Bernoulli's equation - Equations of first order and higher degree -Clairauts form – Applications: Orthogonal trajectories and simple Electric circuit problems.

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS 9 Hours

Linear equations of second and higher order with constant coefficients - Euler's and Legendre's linear equations – Method of variation of parameters – First order Simultaneous linear equations with constant coefficients - Application - Electrical circuit. (Differential equations and associated conditions need to be given).

FUNCTIONS OF SEVERAL VARIABLES

Total derivative - Taylor's series expansion - Maxima and minima of functions of two variables - Constrained maxima and minima: Lagrange's multiplier method with single constraints -Jacobians.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

9 Hours

9 Hours

REFERENCES

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 40th Edition.
- 2. Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill Pub. Co. Ltd., New Delhi, Revised Edition, 2007.
- 3. Kandasamy P., Thilagavathy K., and Gunavathy K., "Engineering Mathematics", S. Chand & Co., New Delhi, (Reprint) 2008.
- 4. Kreyzig E., "Advanced Engineering Mathematics", Eighth Edition, John Wiley and sons, 2010.
- 5. Arunachalam, T., Engineering Mathematics I, Sri Vignesh Publications, Coimbatore. (Revised) 2009.
- 6. Venkataraman M.K., "Engineering Mathematics", The National Pub. Co., Chennai, 2003.
- 7. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2007).

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Know eigen values and eigen vectors and its role in the system of equations.
- CO2: Discover the radius, centre and circle of curvature of any curves.
- CO3: Solve the ordinary differential equations of certain types and its applications.
- CO4: Identify the maximum and minimum values of surfaces

U15MAT201/ ENGINEERING MATHEMATICS - II	L	Τ	Р	С	
(Common to all branches of Engineering and Technology)	3	2	0	4	

On completion of the course, the students are expected

- To understand double and triple integrations and enable them to find area and volume using multiple integrals.
- To know the basics of vector calculus comprising gradient, divergence and curl and line, surface and volume integrals.
- To understand analytic functions of complex variables and conformal mappings.
- To know the basics of residues, complex integration and contour integration.
- To understand Laplace transform and use it to represent system dynamic models and evaluate their time responses.

MULTIPLE INTEGRALS

Double integration – Cartesian and polar coordinates – Change of order of integration – Change of variables between cartesian and polar coordinates - Triple integration in cartesian coordinates – Application : Area as double integral – Volume as triple integral .

VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields - Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

ANALYTIC FUNCTION

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy- Riemann equations in Cartesian coordinates and sufficient conditions (excluding proofs) – Properties of analytic function – Construction of analytic function by Milne Thomson method – Conformal mapping : w = z + c, cz, 1/z and bilinear transformation.

COMPLEX INTEGRATION

Statement and applications of Cauchy's integral theorem and Cauchy's integral formula (excluding proofs) – Taylor's and Laurent's series expansions – Singularities – Residues – Cauchy's residue theorem (excluding proof) – Application of residue theorem to evaluate real integrals - Unit circle and semi-circular contours (excluding poles on real axis).

9 Hours

9 Hours

9 Hours

LAPLACE TRANSFORM

Definition - Properties – Superposition - Shift in t - Shift in s - Time Derivatives - Time Integral – Initial and Final Value Theorems – Periodic functions: sine wave, saw-tooth, square and triangular waves - Inverse Laplace Transform – Simple system dynamic models – Transfer Functions – Poles and Zeroes - Response of First-Order Systems - Solution of RC Free, Step and Sinusoidal Responses; Response of Second-Order Systems - Free Response, step Response - Convolution theorem.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

REFERENCES

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, Delhi, 42nd Edition, 2012.
- 2. Philip D. Cha, James J. Rosenberg, Clive L. Dym, Fundamentals of Modelling and Analyzing Engineering Systems, Cambridge University Press, United Kingdom, 2000.
- 3 Kreyzig E., Advanced Engineering Mathematics, John Wiley & Sons (Asia), Pvt, Ltd., Singapore, 10th Edition, 2010.
- 4 Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill, Pub. Co. Ltd., New Delhi, Revised Edition, 2007.
- 5 Venkataraman M.K., Engineering Mathematics, Volume II, The National Pub. Co., Chennai, 2003.
- 6 Kandasamy P., Thilagavathy K. and Gunavathy K., Engineering Mathematics, S. Chand & Co., New Delhi, 2008.
- 7 Arunachalam T. and Sumathi K., Engineering Mathematics II, Sri Vignesh Publications, Coimbatore, Third Edition, 2011.

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Evaluate double integral and triple integral to compute area, volume for two dimensional and three dimensional solid structure.
- CO2: Know the gradient, divergence and curl, related theorems useful for engineering applications.
- CO3: Test the analyticity and to construct the analytic function and transform complex functions from one plane to another plane graphically.
- CO4: Evaluate real and complex integrals over suitable closed paths or contours.
- CO5: Know the Applications of Laplace transform and its properties & to solve certain linear differential equations using Laplace transform technique.

.U15PH7101/ ENGINEERING PHYSICS	L	Т	P	C
(Common to all branches of Engineering and Technology)	3	0	0	3

At the end of the course the students would be exposed to fundamental knowledge in

- Various engineering subjects and applications.
- Structure identification of engineering materials.
- Non-destructive techniques.
- Interferometric techniques in metrology and electrical phenomena.
- Application of lasers in engineering and technology.
- Atomic and Nuclear related theories.

CRYSTAL PHYSICS

Space lattice – unit cell – lattice planes – Bravais space lattices – Miller indices – calculation of interplanar distances – Atomic radius – co- ordination number – Packing factor for SC, BCC, FCC and HCP structures – crystal imperfections – point defects – line defects – surface defects – volume defects – effect of crystal imperfections.

APPLIED OPTICS

Interference – airwedge and its applications - Lasers – spontaneous and stimulated emissions – Einsteins coefficients – Nd: YAG, Co_2 and semiconductor laser – Homojunction and Hetrojunction (only qualitative description) – applications – CD-ROM and holography (qualitative only) – optical fibre – principle and propagation of light in optcal fibers – Numerical aperture and acceptance angle – types of optical fibres – applications – fibre optic communication system – medical endoscopy.

QUANTUM PHYSICS

Plancks quantum theory of black body radiation (derivation) – Photo electric effect – Compton effect (derivation) and experimental verification of Compton effect – De-broglies concept - Schrodinger wave equation – time independent and time dependent equations (derivations) – physical significance of wave function – particle in a box (one dimensional case) – Electron microscope – Scanning electron microscope – Transmission electron microscope.

ULTRASONICS AND NDT

Introduction – production – magnetostriction effect – magnetostriction generator – piezoelectric effect – piezo electric generator –properties –detection – cavitation –acoustic grating – velocity measurement – applications –Sonar –velosity of blood flow – NDT –Liquid Penetrant method – Ultrasonic flaw detector – A scan, B scan, C scan – X- ray radiography and fluoroscopy – Thermography.

9 Hours

9 Hours

9 Hours

ATOMIC AND NUCLEAR PHYSICS

9 Hours

Introduction - Atomic spectra - Molecular spectra - Applications - Raman effect - Stokes lines and anti stokes lines - Applications - Nuclear models - Liquid drop model - Nuclear fission -Theory – Energy released per fission – Chain reaction – Controlled chain reaction – Nuclear reactors - Condition for sustained chain reaction - Types of Nuclear reactors - Nuclear fusion -Thermo nuclear reactions – Differences between fission and fusion

TOTAL: 45 HOURS

REFERENCES

- 1. Rajendran V, Applied Physics, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 2. Gopal S., Engineering Physics, Inder Publications, Coimbatore, 2006.
- 3. Palinisamy P.K., Engineering Physics I, Scitech Publications, Chennai, 2011.
- 4. Avadhanulu M.N. andKshirsagar P.G., A textbook of Engineering Physics, S.Chand & Company Ltd, New Delhi, 2005.
- 8th 5. Gaur R.K. and Gupta S.L., Engineering Physics, edition. DhanpatRai Publications (P) Ltd., New Delhi, 2003.

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Analyze and identify the crystal structure in materials
- CO2: Categorize and illustrate the optical materials and its application to engineering
- CO3: Examine and compare samples at nano level
- CO4: Apply the NDT techniques and modern engineering tools necessary for engineering practice.
- CO5: Discuss the role of nulear physics in energy production

U15PH7201 / MATERIALS SCIENCE	L	Т	P	С
(For Civil Engineering)	3	0	0	3

At the end of the course the students would be exposed to fundamental knowledge in

- Design of acoustically good buildings
- Properties and applications of conducting materials, Superconducting materials, magnetic and dielectric materials.
- Preparation, properties and applications of Metallic glasses, Shape memory alloys and Nano materials.

ACOUSTICS

Classification of sound – characteristics of musical sound –loudness –Weber-Fechner law – decibel, phon - Reverberation - reverberation time - derivation of Sabines formula for reverberation time (rate of growth and rate of decay) -Absorption coefficient and its determination - factors affecting acoustics of buildings -optimum reverberation time, loudness, focusing, echo, echelon effect, resonance and noise and their remedies -sound absorbing materials -noise pollution - noise control in machines.

CONDUCTING AND SUPERCONDUCTING MATERIALS

Conducting Materials : Classical free electron theory of metals-Electrical conductivity -Thermal conductivity - expression - Wiedemann Franz law(derivation) - Lorentz number drawbacks of classical theory - Fermi distribution function - density of energy states - effect of temperature on Fermi energy.

Superconducting Materials : Superconducting phenomena - properties of superconductors -Meissner effect, Isotope effect, Type I & Type II superconductors - High Tc superconductors -Applications – cryotron, magnetic levitation and squids.

SEMICONDUCTING MATERIALS

Origin of band gap in solids (Qualitative treatment only) - carrier concentration in an intrinsic semi conductor (derivation) - Fermi level - variation of Fermi level with temperature - Electrical conductivity - band gap of a semiconductor - carrier concentration in n-type and p-type semi conductors (derivation) - Variation of Fermi level with temperature and impurity concentration -Hall effect – Determination of Hall coefficient – experimental set up – Applications.

MAGNETIC & DIELECTRIC MATERIALS

Magnetic Materials : Properties of dia, para, ferro, anti ferro and ferri magnetic materials -Langevin's theory of paramagnetism - Weiss theory of Ferromagnetism - Domain theory of ferromagnetism - hysteresis - soft and hard magnetic materials - Ferrites - Applications -

9 Hours

9 Hours

9 Hours

magnetic recording and readout - Storage of magnetic data, Tapes, floppy, magnetic disc drives – Bubble memory.

Dielectric Materials : Electronics, ionic, orientation and space charge polarization - Frequency and temperature dependence of polarization – Dielectric loss – Dielectric breakdown – different types of break down mechanism - Ferro electric materials - properties and applications.

NEW ENGINEERING MATERIALS AND NANOTECHNOLOGY 9 Hours

New Engineering Materials : Metallic glasses – preparation, properties and applications – shape memory alloys (SMA) – characteristics, properties of NiTi alloy applications advantages and disadvantages of SMA.

Nano Materials : Synthesis - plasma arcing – Chemical vapour deposition – sol-gel - Electro deposition – ball milling – properties of nanoparicles and applications. – Carbon nano tubes – fabrication - arc method – pulsed laser deposition - Chemical vapour deposition - structure, properties & applications.

TOTAL: 45 HOURS

REFERENCES

- 1. Gaur R.K. and Gupta S.L., Engineering Physics, 8th edition, Dhanpat Rai Publications (P) Ltd., New Delhi, 2003.
- 2. Palanisamy P.K., Materials Science, 2nd Edition, Scitech Pub. India, Pvt. Ltd., Chennai, 2003.
- 3. Gopal S., Materials Science, Inder Publications, Coimbatore, 2007.
- 4. Pillai S.O., Solid State Physics, 5th edition, New Age International Publication, New Delhi, 2003.
- 5. Avadhanalu M.N. and Kshirsagar P.G., A textbook of Engineering Physics, S. Chand & Company Ltd., New Delhi, 2005
- 6. Rajendran V. and Marikani A., Materials science, 5th edition, Tata Mc-Graw-Hill publishing company Ltd., 2004

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Apply core concepts in Materials Science to solve engineering problems
- CO2: Describe the impact of acoustic engineering solutions in a constructional environmental, and societal context
- CO3: Determine the position of the acceptor or donor levels and the brand gap of an extrinsic semiconductor,
- CO4: Classify & differentiate the structure and physical properties of conducting materials
- CO5: Apply the techniques to manufacturing of modern materials for engineering practice.

U15PHT202/ MATERIALS SCIENCE	L	Т	P	С
(Common to Mechanical, Mechatronics, Aeronautical and	3	0	0	3
Automobile Engineering)	5	U	U	5

At the end of the course students would be exposed to

- Types of defects in engineering materials and mechanisms of strengthening
- Properties of conducting, super conducting, magnetic and dielectric materials.
- Properties of Semi conducting, optical and new engineering materials.

CONDUCTING AND SUPERCONDUCTING MATERIALS

Conducting Materials : Classical free electron theory of metals-Electrical conductivity – Thermal conductivity – expression – Wiedemann Franz law(derivation) – Lorentz number – drawbacks of classical theory – Fermi distribution function – density of energy states – effect of temperature on Fermi energy.

Superconducting Materials : Superconducting phenomena – properties of superconductors – Meissner effect, Isotope effect, Type I & Type II superconductors – High Tc superconductors – Applications – cryotron, magnetic levitation and squids.

SEMICONDUCTING MATERIALS

Origin of band gap in solids (Qualitative treatment only) - carrier concentration in an intrinsic semi conductor (derivation) – Fermi level – variation of Fermi level with temperature - Electrical conductivity – band gap semiconductor – carrier concentration in n-type and p-type semi conductors (derivation) – Variation of Fermi level with temperature and impurity concentration – Hall effect – Determination of Hall coefficient – experimental set up – Applications.

MAGNETIC & DIELECTRIC MATERIALS

Magnetic Materials : Properties of dia, para, ferro, anti ferro and ferri magnetic materials -Langevin's theory of paramagnetism – Weiss theory of Ferromagnetism – Domain theory of ferromagnetism - hysteresis – soft and hard magnetic materials – Ferrites – Applications magnetic recording and readout - Storage of magnetic data, Tapes, floppy, magnetic disc drives – Bubble memory.

Dielectric Materials : Electronic, ionic, orientation and space charge polarization - Frequency and temperature dependence of polarization – Dielectric loss – Dielectric breakdown – different types of break down mechanism - Ferro electric materials - properties and applications.

9 Hours

9 Hours

NANOTECHNOLOGY AND NEW ENGINEERING MATERIALS 9 Hours

New Engineering Materials : Metallic glasses – preparation, properties and applications – shape memory alloys (SMA) – characteristics, properties of NiTi alloy applications advantages and disadvantages of SMA.

Nano Materials : synthesis - plasma arcing – Chemical vapour deposition – sol-gel - Electro deposition – ball milling – properties of nanoparicles and applications. – Carbon nano tubes – fabrication - arc method – pulsed laser deposition - Chemical vapour deposition - structure, properties & applications.

STRENGTHENING OF MATERIALS

Strengthening mechanisms for the improvement of mechanical properties - cold working precipitation hardening, solute hardening and diffusion hardening - Fracture-Mechanism of brittle fracture (Griffith's theory) and Ductile fracture - difference between brittle and ductile fracture - fatigue failure and its prevention - creep different stages in creep curve-Factors affecting mechanical properties Grain size and heat treatment.

TOTAL: 45 HOURS

REFERENCES

- 1. Pillai S.O., Solid State Physics, 5th edition, New Age International Publication, New Delhi, 2003.
- 2. Avadhanalu M.N. and Kshirsagar P.G., A textbook of Engineering Physics, S. Chand & Company Ltd, New Delhi, 2005
- 3. Gopal S., Materials Science, Inder Publications, Coimbatore, 2007
- 4. Rajendran V. and Marikani A., Materials science, 5th edition, Tata Mc-Graw-Hill publishing company Ltd, 2004
- 5. Arumugam M., Physics-II, Materials science for mechanical engineering, Anuradha agencies publishers, Kumbakonam, 2005

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Apply core concepts in Materials Science to solve engineering problems
- CO2: Determine the position of the acceptor or donor levels and the brand gap of an extrinsic semiconductor
- CO3: Classify & differentiate the structure and physical properties of conducting materials
- CO4: Apply the techniques to manufacturing of modern materials and nano materials for engineering applications
- CO5: Recognize the basic concepts of strengthening of materials in technological applications

U15PHT203 / MATERIALS SCIENCE	L	Т	Р	С
(Common to ECE, EIE, CSE & IT)	3	0	0	3

At end of the course students would be exposed to

- Conducting, super conducting, magnetic and dielectric materials in electrical devices.
- Semi conducting, optical and new engineering materials in switching and display devices, data storage.

CONDUCTING AND SUPERCONDUCTING MATERIALS

Conducting Materials : Classical free electron theory of metals-Electrical conductivity – Thermal conductivity - expression – Wiedemann Franz law(derivation) – Lorentz number – drawbacks of classical theory – Fermi distribution function – density of energy states – effect of temperature on Fermi energy.

Superconducting Materials : Superconducting phenomena – properties of superconductors – Meissner effect, Isotope effect, Type I & Type II superconductors – High Tc superconductors – Applications – cryotron, magnetic levitation and squids.

SEMICONDUCTING MATERIALS

Origin of band gap in solids (Qualitative treatment only) - carrier concentration in an intrinsic semi conductor (derivation) – Fermi level – variation of Fermi level with temperature - Electrical conductivity – band gap semiconductor – carrier concentration in n-type and p-type semi conductors (derivation) – Variation of Fermi level with temperature and impurity concentration – Hall effect – Determination of Hall coefficient – experimental set up – Applications.

MAGNETIC & DIELECTRIC MATERIALS

Magnetic Materials : Properties of dia, para, ferro, anti ferro and ferri magnetic materials - Langevin's theory of paramagnetism – Weiss theory of Ferromagnetism – Domain theory of ferromagnetism – hysteresis – soft and hard magnetic materials – Ferrites – Applications - magnetic recording and readout - Storage of magnetic data, Tapes, floppy, magnetic disc drives – Bubble memory .

Dielectric Materials: Electronic, ionic, orientation and space charge polarization - Frequency and temperature dependence of polarization – Dielectric loss – Dielectric breakdown – different types of break down mechanism - Ferro electric materials - properties and applications.

9 Hours

9 Hours

NEW ENGINEERING MATERIALS AND NANOTECHNOLOGY 9 Hours

New Engineering Materials : Metallic glasses – preparation, properties and applications – Shape memory alloys (SMA) – characteristics, properties of NiTi alloy applications - advantages and disadvantages of SMA.

Nano Materials : synthesis - plasma arcing – Chemical vapour deposition – sol-gel - Electro deposition – ball milling – properties of nanoparicles and applications. – Carbon nano tubes – fabrication - arc method – pulsed laser deposition - Chemical vapour deposition - structure, properties & applications.

OPTICAL MATERIALS

Optical properties of semiconductors – Excitons- Traps – colour centre – Types of colour centres – luminescence – fluorescence and phosphorescence - liquid crystal display – Dynamics scattering display – Twisted nematic crystal display – Non- linear materials – second harmonic generation – optical mixing – optical phase conjugation.

TOTAL: 45 HOURS

REFERENCES

- 1. Pillai S.O., Solid State Physics, 5th edition, New Age International Publication, New Delhi, 2003
- 2. Gopal S., Materials Science, Inder Publications, Coimbatore, 2007.
- 3. Palanisamy P.K., Materials Science, 2nd edition, Scitech Pub. India, (P) Ltd., Chennai, 2003.
- 4. Gaur R.K. and Gupta S.L., Engineering Physics, 8th edition, Dhanpat Rai Publications (P) Ltd., New Delhi, 2003 (Units: 1,2).
- 5. Rajendran V., Marikaniv A., Materials science, 5th edition, Tata Mc-Graw-Hill publishing company Ltd., 2004 (Units: 3,4,5).

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Apply core concepts in Materials Science to solve engineering problems
- CO2: Determine the position of the acceptor or donor levels and the brand gap of an extrinsic semiconductor,
- CO3: Classify & differentiate the structure and physical properties of conducting materials
- CO4: Apply the techniques to manufacturing of modern materials for engineering practice.
- CO5: Recognize the various nanomaterials for engineering and technological applications

U15PHT204 / APPLIED PHYSICS	L	Т	Р	C
(Common to Textile Technology and Fashion Technology)	3	0	0	3

At the end of the course the students would be exposed to

- Properties of conducting, super conducting, magnetic and dielectric materials.
- Properties of Semi conducting, optical and new engineering materials.
- Application of ultrasonic and nuclear physics in medicine.

CONDUCTING AND SUPERCONDUCTING MATERIALS 9 Hours

Conducting Materials : Classical free electron theory of metals-Electrical conductivity -Thermal conductivity - expression - Wiedemann Franz law(derivation) - Lorentz number drawbacks of classical theory - Fermi distribution function - density of energy states - effect of temperature on Fermi energy.

Superconducting Materials : Superconducting phenomena – properties of superconductors – Meissner effect, Isotope effect, Type I & Type II superconductors – High Tc superconductors -Applications – cryotron, magnetic levitation and squids.

SEMICONDUCTING MATERIALS

Origin of band gap in solids (Qualitative treatment only) - carrier concentration in an intrinsic semi conductor (derivation) - Fermi level - variation of Fermi level with temperature - Electrical conductivity - band gap semiconductor - carrier concentration in n-type and p-type semi conductors (derivation) - Variation of Fermi level with temperature and impurity concentration -Hall effect – Determination of Hall coefficient – experimental set up – Applications.

MAGNETIC & DIELECTRIC MATERIALS

Magnetic Materials : Properties of dia, para, ferro, anti ferro and ferri magnetic materials -Langevin's theory of paramagnetism - Weiss theory of Ferromagnetism - Domain theory of ferromagnetism - hysteresis - soft and hard magnetic materials - Ferrites - Applications magnetic recording and readout - Storage of magnetic data, Tapes, floppy, magnetic disc drives – Bubble memory.

Dielectric Materials : Electronic, ionic, orientation and space charge polarization - Frequency and temperature dependence of polarization - Dielectric loss - Dielectric breakdown - different types of break down mechanism - Ferro electric materials - properties and applications.

9 Hours

NEW ENGINEERING MATERIALS

Metallic glasses - preparation, properties and applications - shape memory alloys (SMA) characteristics, properties of NiTi alloy applications advantages and disadvantages of SMA.

Ceramics: Classification of ceramics- Fabrication, Properties and application.

Biomaterials: Biomechanisim - Classification of Biomaterials - Processing, Properties and applications.

NANO SCIENCE AND PLASMA TECHNOLOGY

Nano Materials : synthesis - plasma arcing - Chemical vapour deposition - sol-gel - Electro deposition - ball milling - properties of nanoparicles and applications. - Carbon nano tubes fabrication - arc method - pulsed laser deposition - Chemical vapour deposition - structure, properties & applications.

Plasma Technology: properties of plasma- types of plasma- thermal and non thermal plasma-Production of glow discharge plasma-Cold plasma- applications in textile and biomedical field.

TOTAL: 45 HOURS

REFERENCES

- 1. Gopal S., Materials Science, Inder Pub., Coimbatore, 2007.
- 2. Pillai S.O., Solid State Physics, 5th edition, New Age International Pub., New Delhi, 2003.
- 3. Avadhanalu M.N. and Kshirsagar P.G., A textbook of Engineering Physics, S. Chand & Company Ltd., New Delhi, 2005
- 4. Rajendran V. and Marikani A., Materials Science, Tata McGraw Hill Pub. Company Ltd., New Delhi, 2004
- 5. Goldston R.J. and Rutherford P.H., Introduction of Plasma Physics-I, CRC Pub., New York, America, 2000

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Apply core concepts in Materials Science to solve engineering problems
- CO2: Illustrate the electrical / thermal conductivity of semiconductors and determine the position of the acceptor or donor levels and the brand gap of an extrinsic semiconductor,
- CO3: Classify & differentiate the structure and physical properties of conducting materials
- CO4: Apply the concepts of nanomaterials and modern materials for explaining surface properties like adhesion etc. in engineering practice.
- CO5: Identify methods for etching of fabrics

9 Hours

U15PHT205 / APPLIED PHYSICS	L	Т	Р	С
(For Electrical and Electronics Engineering)	3	0	0	3

At the end of the course the students would be exposed to fundamental knowledge in

- Design of acoustically good buildings
- Properties and applications of conducting materials, Superconducting materials, magnetic and dielectric materials.
- Preparation, properties and applications of Metallic glasses, Shape memory alloys and Nano materials.
- Plasma, types and its applications

ACOUSTICS

Classification of sound – characteristics of musical sound –loudness –Weber-Fechner law – decibel, phon - Reverberation - reverberation time - derivation of Sabines formula for reverberation time (rate of growth and rate of decay) -Absorption coefficient and its determination - factors affecting acoustics of buildings -optimum reverberation time, loudness, focusing, echo, echelon effect, resonance and noise and their remedies.

CONDUCTING AND SUPERCONDUCTING MATERIALS

Conducting Materials : Classical free electron theory of metals-Electrical conductivity -Thermal conductivity - expression - Wiedemann Franz law(derivation) - Lorentz number drawbacks of classical theory - Fermi distribution function - density of energy states - effect of temperature on Fermi energy.

Superconducting Materials : Superconducting phenomena – properties of superconductors – Meissner effect, Isotope effect, Type I & Type II superconductors - High Tc superconductors -Applications – cryotron, magnetic levitation and squids.

SEMICONDUCTING & OPTICAL MATERIALS

Origin of band gap in solids (Qualitative treatment only) - carrier concentration in an intrinsic semi conductor (derivation) - Fermi level - variation of Fermi level with temperature - Electrical conductivity - band gap semiconductor - carrier concentration in n-type and p-type semi conductors (derivation) - Variation of Fermi level with temperature and impurity concentration -

Optical Materials : Optical properties of semiconductors - Excitons- Traps - colour centre -Types of colour centres – luminescence – fluorescence and phosphorescence.

MAGNETIC & DIELECTRIC MATERIALS

9 Hours

9 Hours

9 Hours

Magnetic Materials : Properties of dia, para, ferro, anti ferro and ferri magnetic materials -Langevin's theory of paramagnetism – Weiss theory of Ferromagnetism – Domain theory of ferromagnetism - hysteresis – soft and hard magnetic materials – Ferrites – Applications magnetic recording and readout - Storage of magnetic data, Tapes, floppy,magnetic disc drives – Bubble memory.

Dielectric Materials : Electronic, ionic, orientation and space charge polarization - Frequency and temperature dependence of polarization – Dielectric loss – Dielectric breakdown – different types of break down mechanism - Ferro electric materials - properties and applications.

PLASMA AND NANOTECHNOLOGY

9 Hours

Plasma Technology : properties of plasma- types of plasma- thermal and non thermal plasma-Production of glow discharge plasma-Cold plasma- applications in textile and biomedical field.

Nano Materials - synthesis - plasma arcing – Chemical vapour deposition – sol-gel - Electro deposition – ball milling – properties of nanoparicles and applications. – Carbon nano tubes – fabrication - arc method – pulsed laser deposition - Chemical vapour deposition - structure, properties & applications.

TOTAL: 45 HOURS

REFERENCES

- 1. Gopal S., Materials Science, Inder Publications, Coimbatore, 2007.
- 2. Palanisamy P.K., Materials Science, 2nd edition, Scitech Pub. India (P) Ltd.
- 3. Pillai S.O., Solid State Physics, 5th edition, New Age Int. Publication, New Delhi, 2003.
- 4. Avadhanalu M.N. and Kshirsagar P.G., A textbook of Engineering Physics, S. Chand & Company Ltd., New Delhi, 2004
- 5. Goldston R.J., Rutherford P.H., Introduction of Plasma Physics-I, CRC publication, New York, America, 2000
- 6. Rajendran V. and Marikani A., Materials Science, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2004

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Apply core concepts in Materials Science to solve engineering problems
- CO2: Describe the impact of acoustic engineering solutions in a constructional environmental and societal context.
- CO3: Determine the position of the acceptor or donor levels and the brand gap of an extrinsic semiconductor,
- CO4: Classify & differentiate the structure and physical properties of conducting materials
- CO5: Apply the concepts of nanomaterials and modern materials for explaining surface properties like adhesion etc. in engineering practice.

U15PHT206/ APPLIED PHYSICS	L	Τ	P	C
(For Biotechnology)	3	0	0	3

At the end of the course the students would be exposed to fundamental knowledge in

- Properties of conducting, super conducting, magnetic and dielectric materials.
- Properties of Semi conducting, optical and new engineering materials.
- Application of ultrasonic and nuclear physics in medicine.

CONDUCTING AND SUPERCONDUCTING MATERIALS 9 Hours

Conducting Materials: Classical free electron theory of metals-Electrical conductivity -Thermal conductivity - expression - Wiedemann Franz law(derivation) - Lorentz number drawbacks of classical theory - Fermi distribution function - density of energy states - effect of temperature on Fermi energy.

Superconducting Materials : Superconducting phenomena – properties of superconductors – Meissner effect, Isotope effect, Type I & Type II superconductors – High Tc superconductors -Applications – cryotron, magnetic levitation and squids.

SEMICONDUCTING MATERIALS

Origin of band gap in solids (Qualitative treatment only) - carrier concentration in an intrinsic semi conductor (derivation) - Fermi level - variation of Fermi level with temperature - Electrical conductivity – band gap semiconductor – carrier concentration in n-type and p-type semi conductors (derivation) - Variation of Fermi level with temperature and impurity concentration -Hall effect – Determination of Hall coefficient – experimental set up – Applications.

MAGNETIC & DIELECTRIC MATERIALS

Magnetic Materials: Properties of dia, para, ferro, anti ferro and ferri magnetic materials -Langevin's theory of paramagnetism - Weiss theory of Ferromagnetism - Domain theory of ferromagnetism - hysteresis - soft and hard magnetic materials - Ferrites - Applications magnetic recording and readout - Storage of magnetic data, Tapes, floppy, magnetic disc drives -Bubble memory.

Dielectric materials: Electronic, ionic, orientation and space charge polarization - Frequency and temperature dependence of polarization - Dielectric loss - Dielectric breakdown - different types of break down mechanism - Ferro electric materials - properties and applications.

9 Hours

NANOTECHNOLOGY AND NEW ENGINEERING MATERIALS 9 Hours

New Engineering Materials : Metallic glasses – preparation, properties and applications – shape memory alloys (SMA) – characteristics, properties of NiTi alloy applications advantages and disadvantages of SMA.

Nano Materials : synthesis - plasma arcing – Chemical vapour deposition – sol-gel - Electro deposition – ball milling – properties of nanoparicles and applications. – Carbon nano tubes – fabrication - arc method – pulsed laser deposition - Chemical vapour deposition - structure, properties & applications.

MEDICAL PHYSICS

Ultrasound picture of human body – Block diagram of basic pulse Echo system – A Scan – B scan & M Scan Phsychological effect - ultrasound therapy – Phonocardiograph (PCG) source of radioactivity for nuclear medicine - statistical aspects – Basic instrumentation (Geiger Muller counter, Photo multiplier Tube & Scintillation detector (Renogram) and its clinical applications (Thyroid and Kidney function) – Nuclear medicine imaging devices - Gamma Camera - Positron camera.

TOTAL: 45 HOURS

REFERENCES

- 1. Rajendran V., Engineering Physics, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2011.
- 2. Gopal S., Materials Science, Inder Publications, Coimbatore, 2007.
- 3. Ali Omar M., Elementary Solid State Physics, Pearson Education (Singapore), Indian Branch, New Delhi, 2002.
- 4. Palanisamy P.K., Materials Science, 2nd Edition, Scitech Pub. India, Pvt., Ltd., Pillai S.O., Solid State Physics, 5th edition, New Age International Publication, New Delhi, 2003.
- 5. Avadhanalu M.N. and Kshirsagar P.G., A textbook of Engineering Physics, S. Chand & Company Ltd, New Delhi, 2005 (Units: 1,2,3,4).
- 6. Arumugam M., Physics-II (For Civil, Chemical, Textile, Biotechnology, Polymer and Fashion technology), Anuradha agencies, Kumbakonam, 2005 (Units: 5).

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Apply core concepts in Materials Science to solve engineering problems
- CO2: Determine the position of the acceptor or donor levels and the brand gap of an extrinsic semiconductor
- CO3: Classify & differentiate the structure and physical properties of conducting materials
- CO4: Apply the techniques to manufacturing of modern materials and nano materials for engineering applications
- CO5: Sketch the skills and techniques for biotechnological and medical applications

U15PHP101/U15PHP201 PHYSICS LABORATORY	L	Т	Р	C	
					_

(Common to all branches of Engineering and Technology)	0	0	2	1	
--	---	---	---	---	--

- The experiments are designed to illustrate phenomena in different areas of Physics and to expose you to measuring instruments.
- The laboratory provides a unique opportunity to validate physical theories in a quantitative manner.
- Laboratory experience demonstrates the limitations in the application of physical theories to real physical situations.
- In general, the purpose of these laboratory exercises is both to demonstrate some physical principle and to teach techniques of careful measurement

LIST OF EXPERIMENTS

Any Ten Experiments

- 1. Lee's disc determination of thermal conductivity of a bad conductor
- 2. Air wedge determination of thickness of agiven specimen.
- 3. Spectrometer determination of wavelength of mercury source using grating
- 4. Compound pendulum determination of accelaration due to gravity.
- 5. Carey foster bridge determination of specific resistance of given coil of wire.
- 6. Viscosity determination of co-efficient of viscosity of a liquid by poiseuille's flow method.
- 7. Non-uniform bending determination of Young's modulus
- 8. Ultrasonic interferometer –determination of velocity of sound and compressibility of liquid.
- 9. Band gap determination of a semiconductor using post office box
- 10. Semiconductor laser:
 - a. Determination of wavelength of laser using grating
 - b. Particle size determination
 - c. Acceptance angle of optical fibre
- 11. Torsional pendulum determination of Rigidity modulus of the wire
- 12. Field along the axis of a coil Determination of magnetic moment.

TOTAL: 45 HOURS

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Determine different physical properties of a material like the thermal conductivity thickness of the material, etc.
- CO2: Perform experiments involving the physical phenomena like interference and diffraction.

CO3: Apply physical theories in real life situations by also taking into account its limitations

U15CHT101/ ENGINEERING CHEMISTRY	L	Т	Р	С	
(Common to all branches of Engineering and Technology)	3	0	0	3	

- To inculcate an understanding of the importance of chemistry by providing an overall perspective of theoretical and modern technological aspects of applied chemistry before beginning their more specialized courses.
- To embellish the usage of chemistry to exhibit engineering and technical concepts

ELECTROCHEMISTRY

Introduction - Electrode potential - Nernst equation and problems - Electrochemical series -Application of EMF measurements & problems - Kohlrausch law of independent migration of ions & its application - Conductometric titrations (acid - base & precipitation titration)

Electrodes : Standard and reference electrode (Hydrogen & Calomel) - Types of electrodes (Metal - Metal ion; Metal - Metal insoluble salt, Redox electrode) - Ion selective (glass electrode) - determination of pH using glass electrode **Cells :** Galvanic cell – Types of concentration cells

ENERGY STORING DEVICES

Batteries : Primary Battery (Lechlanche & Alkaline battery) - Secondary Battery (Lead acid storage battery, Nickel - Cadmium battery & Lithium - Polymer battery) - Flow battery (Hydrogen and Oxygen Fuel Cell)

Solar Cells: Hybrid Solar cells

Nuclear Reactors: Light water nuclear power plant (nuclear fission) - ICF (nuclear fusion)

THERMODYNAMICS

Introduction - Thermodynamic process (isothermic, isobaric, isochoric and adiabatic processes) -Internal energy – first law of thermodynamics (Mathematical derivation & limitation) - Enthalpy - Second law of thermodynamics - Entropy - Entropy change of an ideal gas & problems -Free energy - work function - Gibbs Helmholtz equation (derivation, applications & problems) -Van't Hoff isotherm (derivation & problems) - Van't Hoff isochore - (derivation & problems) -Third law and zeroeth law (Only statements)

SURFACE CHEMISTRY

Introduction of adsorption - Types of Adsorption - Adsorption isotherm (Freundlich isotherm, Langmuir adsorption isotherm, BET isotherm) - Applications of adsorption : Role of adsorption in catalytic reactions, Ion exchange adsorption, adsorption chromatography (Column chromatography) 9 Hours

SPECTROSCOPY

Introduction to spectroscopy - Beer Lambert's Law - Colorimetric analysis (principle, instrumentation (block diagram only) & application (Estimation of concentration of Ferrous and

9 Hours

9 Hours

9 Hours

copper ions a solution by colorimetry) - UV – visible spectroscopy (principles, instrumentation (block diagram only) & simple Applications) - IR spectroscopy (principles, instrumentation (block diagram only) & simple applications) - Flame photometry (Principle, instrumentation (block diagram only) & simple Applications)

TOTAL: 45 HOURS

REFERENCES

- 1. Bahl B.S., Tuli G.D. and ArunBahl., Essential of Physical Chemistry, S.Chand& Co. Ltd., New Delhi.
- 2. Somorjai G.A., Introduction to surface chemistry and Catalysis, John Wiley & Sons Inc., New York.
- 3. Shaw D.J., Introduction to colloidal and surface Chemistry, Butterworth Heinemann Publishers
- 4. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, Inder Publishers, Coimbatore.
- 5. Jain P.C. and Monika Jain, Engineering chemistry, Dhanpatrai Pub. Co. (P) Ltd., New Delhi.
- 6. Puri B.R., Sharma L.R. and Pathania M.S., Principles of Physical chemistry, ShobanLal Nagin Chand & Co., New Delhi

COURSE OUTCOMES

- CO1: Assemble a battery and illustrate the phenomenon of production of electric current
- CO2: Discuss the thermodynamic concepts and predict the feasibility of chemical reaction
- CO3: Apply the theory of adsorption in real life situations
- CO4: Outline the principles and instrumentation of spectroscopic techniques

U15CH7201/ CHEMISTRY FOR CIVIL ENGINEERING	L	Τ	Р	С
(For Civil Engineering)	3	0	0	3

• To impart a sound knowledge of theoretical and modern technological aspects of, water technology, corrosion studies and specialty engineering materials as required for civil engineers.

WATER TECHNOLOGY

Hard water : Water hardness - disadvantages in civil works – formation of deposits in steam boilers and heat exchangers - wastage of fuel - decrease in efficiency of boilers – priming – foaming - caustic embrittlement - boiler corrosion.

Prevention of scale formation : external treatment (ion exchange method) - internal treatment (phosphate, calgon, carbonate, colloidal), - desalination by reverse osmosis - Treatment of common effluents.

CORROSION SCIENCE

Corrosion : principles of electrochemical corrosion - difference between chemical and electrochemical corrosion - factors influencing corrosion.

Types of corrosion : galvanic corrosion, differential aeration corrosion (soil (microbial) corrosion, pitting corrosion, water line corrosion), stress corrosion **Corrosion control :** cathodic protection (sacrificial anode) - electroplating (Copper plating).

ENGINEERING MATERIALS

Abrasives: Moh's scale of hardness - natural abrasives (diamond, corundum, emery, garnets and quartz) - artificial abrasives (silicon carbide, boron carbide).

Refractories: characteristics - classification (acid, basic and natural refractories) - properties (refractoriness, refractoriness under load, dimensional stability, porosity thermal spalling) - general manufacturing methods of refractories - preparation, properties and uses of high alumina bricks, magnesite and zirconia bricks only.

Lubricants: functions - classification with examples - properties (viscosity index, flash and fire point, oiliness, carbon residue, aniline point, cloud and pour point) – greases (calcium based, sodium based, lithium based only) - solid lubricants (graphite, molybdenum sulphide).

9 Hours

9 Hours

CHEMISTRY OF CONSTRUCTION MATERIALS

Cement : Chemical composition – setting and hardening — special cements (high alumina cement, sorel cement, white Portland cement, water proof cement).

Paint : constituents – functions – special paints (fire retardant, water repellant, temperature indicating and luminous paints) - Varnishes and lacquers

COMPOSITE MATERIALS

Composites: definition – characteristics – constituents – types: properties and applications of fibre reinforced plastic (FRP), metal matrix composites (MMC), ceramic matrix composites (CMC), Engineered cementitious composites (ECC), Natural fiber reinforced composite

Engineering Plastics : Preparation (mechanism not required) and applications of polyamide, polycarbonates, polyurethanes and thermocole - polymer blends and alloys

TOTAL: 45 HOURS

REFERENCES

- 1. Rangwala, Engineering Materials, Charator Publishing House, India.
- 2. Jain P.C. and Monica Jain, Engineering Chemistry, Dhanpat Rai Publishing company (P) Ltd, New Delhi, National Building Code 2002.
- 3. Rajput R.K., Engineeing Materials, S. Chand & Company Ltd., New Delhi.
- 4. Syed Shabudeen P.S., Engineering Chemistry II, Inder publications, Coimbatore .
- 5. Dara S.S., A Textbook of Engineering Chemistry, S. Chand & Company Ltd., New Delhi
- 6. Kenneth G. Butinski, Engineering Material, Prentice Hall of India, New Delhi

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Design a water purifier.
- CO2: Defend the Corrosion problems
- CO3: Identify the different construction materials and their constituents
- CO4: Describe the impact of composite materials and engineering plastics in construction
- CO5: Categorize the engineering materials and their uses .

9 Hours

U15CH7202/ APPLIED CHEMISTRY	L	Τ	Р	С
(Common to Mechanical, Mechatronics, Aeronautical and	3	0	0	3
Automobile Engineering)	5	v	U	5

• To inculcate essential knowledge on theoretical and modern technological aspects of fuels and combustion, specialty materials, water technology, corrosion studies and powder metallurgy.

FUELS AND COMBUSTION

Fuels : Classification of fuels - coal varieties - analysis of coal (proximate and ultimate analysis) - coke manufacture (Otto-Hoffman byproduct coke oven method) - characteristics of metallurgical coke - cracking (thermal and catalytic cracking definition only) – manufacturing of synthetic petrol (Fischer Tropsch method, Bergius process) – knocking (octane number, cetane number) - gaseous fuels (production, composition and uses of producer gas, water gas and natural gas).

Combustion : gross and net calorific value - determination of calorific value by bomb calorimeter - explosive range - spontaneous ignition temperature - flue gas analysis (Orsat apparatus).

MECHANICAL ENGINEERING MATERIALS

Abrasives : Moh's scale of hardness - natural abrasives (diamond, corundum, emery, garnets and quartz) - artificial abrasives (silicon carbide, boron carbide).

Refractories : Characteristics - classification (acid, basic and natural refractories) - properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling) - General manufacturing methods of refractories - preparation, properties and uses of high alumina bricks, magnesite and zirconia bricks.

Lubricants : Classification - Functions - properties (viscosity index, flash and fire point, oiliness, carbon residue, aniline point, cloud and pour point) - greases (calcium based, sodium based, lithium based) - solid lubricants (graphite, molybdenum disulphide).

CORROSION SCIENCE

Corrosion : Principles of electrochemical corrosion - difference between chemical and electrochemical corrosion - factors influencing corrosion.

Types of corrosion : Galvanic corrosion - differential aeration corrosion (soil (microbial) corrosion, pitting corrosion, water line corrosion) - stress corrosion.

Corrosion control : Cathodic protection (sacrificial anode) - Protective Coatings (Paint, Electroplating of Copper).

WATER TECHNOLOGY

9 Hours

9 Hours

9 Hours

Boiler feed water: Requirements – disadvantages of hard water – formation of deposits in steam boilers and heat exchangers (sale and sludge) - wastage of fuel - decrease in efficiency – priming – foaming - caustic embrittlement - boiler corrosion.

Prevention of scale formation: external treatment (ion exchange method) - internal treatment (phosphate, calgon, carbonate, colloidal) - desalination by reverse osmosis - Treatment of Domestic water

PHASE RULE AND POWDER METALLURGY

9 Hours

Phase rule - condensed phase rule - construction of phase diagram (thermal analysis) – Applications of phase rule: Simple eutectic system (Ag - Pb, Fe - C system).

Powder Metallurgy : Preparation of metal powders (mechanical pulverization, atomization, chemical reduction, electrolytic process, decomposition) - mixing and blending - compacting - sintering - advantages and limitations of powder metallurgy.

TOTAL: 45 HOURS

REFERENCES

- 1. Samir Sarkar, Fuels and Combustion, Orient Longman, India.
- 2. Syed Shabudeen P.S., Engineering Chemistry II, Inder publications, Coimbatore.
- 3. Derek Pletcher and Frank C Walsh, Industrial Electrochemistry, Blackie Academic and Professional, London.
- 4. Dara S.S., A Text book of Engineering Chemistry, S. Chand Co. (P) Ltd., New Delhi
- 5. Jain P.C. and Monika Jain, Engineering Chemistry, Dhanpat Rai Pub. Co. (P) Ltd., New Delhi.

COURSE OUTCOMES

- CO1: Classify the different types of fuels and their properties
- CO2: Categorize the engineering materials and their uses
- CO3: Defend the Corrosion problems
- CO4: Design a water purifier
- CO5: Identify the techniques of preparing metal powder

U15CH7203/ CHEMISTRY FOR CIRCUIT ENGINEERING	L	Т	Р	C
(Common For ECE, EEE, EIE, IT)	3	0	0	3

To impart a sound knowledge on basics of

• Theoretical and modern technological aspects of modern polymeric materials technology for micro electrical, electronics, instrumentation and communication fields.

9 Hours INTRODUCTION TO CONDUCTING POLYMERIC MATERIALS

Formation of polymers - Types of polymers - chain growth and step growth polymerization -Mechanisms - copolymerization - Thermoplastics and thermosets - Micro structures in polymers - polymer length - molecular weight - amorphous and crystalline - thermal transitions in plastics.

APPLIED CONDUCTING POLYMERS

Synthesis, structure, morphology, conductivity, doping theory and uses of Poly(sulfur nitride), Polyacetylene, Polyphenylene, Poly(phenylene vinylenes), Poly(phenylene sulfide), Polypyrrole and Polythiophene, Polyaniline - Polymers with transition metals in the side-group structure and their uses (includes Stacked Phthalocyanine polymers).

MANUFACTURING METHODS OF ORGANO ELCTRONICS MATERIALS 9Hours

Organo-electronic materials - classification - Production of substrates for organic electronics -Reel-to-reel Vacuum metallization - Organic vapor phase deposition - production of TFTs, OLED, organic photovoltaics - Micro and nanofabrication techniques - Solution based printing.

ORGANIC ELECTRONIC MATERIALS

Organic thin-film transistor (OTFT) - architecture, operating mode - fabrication techniques structure-property relationship - methods of improving performance - structural perfection device architecture - electrical and environmental stability - chemical effects on stability - Gate dielectrics on electrical functionality.

ADVANCED MATERIALS FOR ORGANIC ELECTRONICS

Pentacene transistors - performance - Engineered pentacenes - reversible functionalization end - substituted derivatives - perifunctionalized pentacenes - Heteropentacenes -Semiconductors based on polythiophene and Indolo[3,2-b]carbazole - polydialkylterthiophenes - polydialkylquaterthiophenes - polythiophene nanoparticles - indocarbazole designs.

TOTAL: 45 HOURS

9 Hours

9 Hours

REFERENCES

- 1. Kiichi Takemoto, Raphael M. Ottenbrite, Mikiharu Kamachi, Functional Monomers and Polymers, CRC Press, New York.
- 2. Kaiser A.B., Electronic properties of conjugated polymers, Basics models and applications, Springer verlag, Berlin.
- 3. Chilton J.A. and Goosey M.T., Special polymers for electronics and optoelectronics, Kluwer Academic Pub., London.
- 4. Hagen Klauk, Organic Electronics: Materials, Manufacturing and Applications, Wiley VCH, Weinheim
- 5. Hand book of Conducting Polymers, e-book
- 6. Gowariker V.R., Viswanathan N.V. and Jayadev Sreedhar, Polymer Science, New Age Int. Pvt. Ltd., New Delhi

COURSE OUTCOMES

- CO1: Analyse and determine the required conducting polymers in fabrication of organic electronic devices
- CO2: Describe the mechanism of formation of conducting polymeric materials
- CO3: Design an Organic Thin film transistor
- CO4: Outline the performance of Pentacene transistors

U15CH7204 / CHEMISTRY FOR TEXTILES	L	Τ	P	С
(Common to Textile Technology and Fashion Technology)	3	0	0	3

- To correlate theoretical principles with application oriented studies
- To embark on the usage of theoretical and modern technological aspects in polymers and dyes to exhibit engineering and technical concepts as required for Textile and Fashion Technology students.

WATER TECHNOLOGY

Hard water : Disadvantages in textile industries - formation of deposits in steam boilers and heat exchangers - wastage of fuel - decrease in efficiency of boilers - priming - foaming caustic embrittlement - boiler corrosion.

Prevention of scale formation: external treatment (Ion exchange method), internal treatment (colloidal, phosphate, calgon & carbonate methods) – desalination (reverse osmosis and electrodialysis) - Common effluent treatment.

POLYMERS

Introduction - Degree of polymerization - functionality - tacticity - classification based on source, application, thermal properties (thermosetting and thermoplastics) - effect of polymer structure on properties - types of polymerization (addition, condensation, co-polymerization, Ring polymerisation) - mechanism of polymerization (free radical mechanism)

Preparation (mechanism not required) and applications of polythene, polypropylene, polystyrene, polyamides (nylon 6,6), polyesters (PET)

CHEMICAL BONDING

Ionic, covalent and co-ordinate covalent bonds (overview only) -- hydrogen bonding and its consequences - VanderWaal's forces (dipole - dipole, dipole - induced dipole, induced dipole induced dipole interactions) – Hybridsation (sp, sp², sp³ in simple molecules) - Interaction of enzymes with fibres (basic concepts only) - Interaction between fibers and dves (basic concepts only) - Dyes substrate affinity (dyes for cellulose fibres, silk)

DYES

Introduction - Classification system of dyes - Chromophore and auxochromes - Important chemical chromophores of dyes classes (azo, anthraquinone, phthalocyanin, Indigoid, polymethine, phthalocyanine, metal complex, Fluorescien) - synthesis of azo dye (Congo red), triaryl methane dye (Malachite green), Anthraquinone dye (Alizarin - 1,2 dihydroxy anthraquinone), Indigoid dye (Indigo), phthalein dyes (Eosin)

9 Hours

9 Hours

9 Hours

ANTHOLOGY OF SPECIALITY CHEMICALS IN TEXTILES

9 Hours

An introduction on chemistry of the following in textiles: Dispersing agents, Leveling agents, Retarding agents, Dye fixing agents.

Thermal analysis (DSC): Principle, Instrumentation and application in Textiles

TOTAL: 45 HOURS

REFERENCES

- 1. Finar I.L, Organic chemistry, Pub. House, UK.
- 2. Hungar K., Industrial Dyes Chemistry, properties and applications, Wiley VCH Verlag GmbH & Co., KGaA, Weinheim.
- 3. Sivaramakrishnan C.N., Anthology of speciality chemicals for textiles, Colour Pub. (P) Ltd., Mumbai, India.
- 4. Seymour R.B. and Carraher, Polymer chemistry, Plenum Pub. Corporation, New York.
- 5. Kuriacose J.C. and Rajaram J., Chemistry in Engineering and Technology, Vol. 1 & 2, Tata McGraw-Hill Pub. Co., Ltd., New Delhi.
- 6. Syed Shabudeen P.S. and Shoba U.S., Chemistry for textiles, Inder Pub., Coimbatore.
- 7. Amarika Singh, Vairam S. and Suba Ramesh., Chemistry for engineers., Wiley India Ltd., New Delhi
- 8. Bahl B.S. and Arun Bahl., A Textbook Of Organic Chemistry, S. Chand & Co., New Delhi
- 9. Hungar K., Industrial Dyes Chemistry, properties and applications, John Wiley & Sons

COURSE OUTCOMES

- CO1: Design a water purifier
- CO2: Discuss the mechanism of polymer formation
- CO3: Classify dyes and describe its interaction with fibers using bonding.
- CO4: Analyse the usage of specialty chemicals in dyes

U15CH7205 CHEMISTRY FOR BIOTECHNOLOGY	L	Τ	Р	C
(For Biotechnology)	3	0	0	3

- To correlate theoretical principles with application oriented studies
- To inculcate a basic foundation in stereochemistry of Biomolecules
- To embellish the usage of chemistry to exhibit engineering and technical concepts by presenting a overview on theoretical and modern technological aspects in polymers, water technology and biomolecular analysis as required for the Bio technology students.

CHEMICAL BONDING IN BIOMOLECULES

Ionic, covalent and co-ordinate covalent bonds (overview only) - hybridization (sp, sp², sp³, sp³d, $sp^{3}d^{2}$ in simple molecules) - hydrogen bonding and its consequences - Van der Waal's forces (dipole – dipole, dipole – induced dipole, induced dipole – induced dipole interactions) - dipole moment (applications).

INTRODUCTION TO STEREOCHEMISTRY

Isomerism : Introduction and classification of isomerism -

Structural isomerism : Definition – chain – position – functional – tautomerism

Conformational isomerism : Definition - in simple organic molecules

Notation : d and l; R and S ; E and Z notation of simple organic molecules

Geometrical isomerism: Definition – in alkenes and cyclopropanes

Optical isomerism : Definition and conditions of optical isomerism - optical activity - chirality - optical isomerism in tartaric and lactic acids - optical activity without asymmetric carbon (allelenes, Biphenyl derivatives) - definition of enantiomers, diastereomers, mesocompounds, racemic mixture, asymmetric synthesis - Walden inversion

WATER TECHNOLOGY

Disadvantages of raw water in industries - conditioning methods : external treatment methods (ion exchange method), internal treatment (colloidal, phosphate, calgon and carbonate methods) - desalination (reverse osmosis and electrophoresis) - Treatment of sewage water.

CHEMISTRY OF POLYMERS

Introduction - classification based on source, application, thermal properties (thermosetting and thermoplastics) - effect of polymer structure on properties - types of polymerization (addition, condensation, co-polymerization and Ring polymerisation) - mechanism of polymerization (free radical mechanism and coordination mechanism - monometallic)

Bio Polymers and its applications : Cellulose, Starch, Collagen, Lignins and Chitosins **QUANTITATIVE ANALYSIS**

9 Hours

9 Hours

9 Hours

9 Hours

Determination of the amount of calcium in milk powder by EDTA Complexometry - Estimation of iodine in iodized common salt by Iodometry - Estimation of phosphoric acid in soft drinks (coca cola) by molybdenum blue method - Synthesis of fluorescein, and its use in angiogram techniques - Super absorbent polymers : preparation, properties and uses

TOTAL: 45 HOURS

REFERENCES

- 1. Finar I.L., Organic chemistry, Publishing house, UK.
- 2. Fifield F.W. and Kealey D., Principles and Practice of Analytical Chemistry, Blackwell Publishing, London.
- 3. Jain P.C. and Monika Jain, Engineering Chemistry, Dhanpat Rai Pub. Co. (P) Ltd., New Delhi.
- 4. Seymour R.B. and Carraher, Polymer Chemistry, Plenum publishing corporation, New york,
- 5. Syed Shabudeen P.S. and Shoba U.S., Chemistry for Textiles, Inder publications, Coimbatore
- 6. Amarika Singh, Vairam S., and Suba Ramesh, Chemistry for Engineers, Wiley India ltd., New Delhi
- 7. Bahl B.S. and Arun Bahl, A Textbook Of Organic Chemistry, S. Chand & Co., New Delhi

COURSE OUTCOMES

- CO1: Outline basic concepts of stereochemistry
- CO2: Discuss the mechanism of polymer formation
- CO3: Paraphrase an experiment in required sequence
- CO4: Design a waste water purifier

U15CHP101/U15CHP201 CHEMISTRY LABORATORY	L	Т	Р	С
(Common to all branches of Engineering and Technology)	0	0	2	1

- To apply the theoretical principles and perform experiments
- Experience the importance of theory by using analytical equipments and quantitative and qualitative procedures.

LIST OF EXPERIMENTS

PREPARATION OF SOLUTIONS (STANDARD)

- 1. Preparation of normal solutions of the following substances oxalic acid, sodium carbonate, hydrochloric acid.
- 2. Preparation of phosphate buffer using Henderson equation.

WATER TESTING

- 3. Determination of total, temporary and permanent hardness by EDTA method.
- 4. Estimation of DO by Winkler's method.
- 5. Estimation of alkalinity by Indicator method.
- 6. Estimation of chloride by Argentometric method.

ELECTRO CHEMICAL ANALYSIS

- 7. Estimation of hydrochloric acid by pH metry.
- 8. Conductometric titration of mixture of acids and strong base
- 9. Conductometric precipitation titration using BaCl₂ and Na₂SO₄.
- 10. Estimation of Iron by Potentiometry

PHOTOMETRY

- 11. Estimation of the Ferrous ions (Thiocyanate method) by Spectrophotometry.
- 12. Estimation of sodium and potassium by Flame photometry.

TOTAL: 45 HOURS

REFERENCES

- 1. Jeffery G.H., Bassett J., Mendham J. and Denny R.C., Vogel's Text Book ofQuantitative Chemical Analysis, Oxford, ELBS, London, 2002.
- 2. Shoemaker D.P. and C.W. Garland., Experiments in Physical Chemistry, TataMcGraw-Hill Pub. Co., Ltd., London, 2003.
- 3. Shoba U.S., Sivahari R. and Mayildurai R., Practical Chemistry, Inder Publications, Coimbatore, 2009.

COURSE OUTCOMES

- CO1: Prepare normal solutions
- CO2: Analyse the properties of water by applying the chemical concepts
- CO3: Estimate the concentration of solutions by electrochemical methods and apply it in real life situations like blood testing etc

U15AET201/ ELEMENTS OF AERONAUTICS	L	Т	P	С
(For Aeronautical Engineering)	3	2	0	4

To promote an understanding of the aeronautical field and a higher level of motivation among students by providing an overall perspective before they begin their more specialized courses. A broad base is developed into which subsequent courses can be integrated in depth.

INTRODUCTION TO AIRPLANES

Introduction, historical background, Different types of flight vehicles, Components of an airplane and their functions. Conventional control, Basic instruments for flying.

Physical properties and structure of the atmosphere, (Temperature, Pressure and altitude relationships), Evolution of lift, Drag and moment. Aero foils, Avionics: Flight deck and cockpit.

AIRPLANE STRUCTURES AND MATERIALS

Introduction to structural design of Aircraft and spacecraft, flight loads, general types of construction, Monocoque, Semi-monocoque and composite structure construction, Typical wing and fuselage structure, Metallic and Non metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials in aerospace.

AIRCRAFT ENGINES

Selection of power plants: piston, turbo-propeller, turbofan, and jet engines with after burner / thrust augmentation thrust vector control, FADEC. Use of propeller and jets for thrust production, Comparative merits. Theory of Propellers.

SPACE SYSTEM DESIGN

Overview on space environment, introduction to space debris, Launch site selection, Brief introduction to rockets, ramjet, and SCRAMJET, Thrust vector control mechanisms, staging of rockets, space mission, re-entry vehicles, life support systems for manned space missions, Fuel cells, Introduction to space mechanics: Kepler's laws of planetary motion, introduction to satellites, Interplanetary missions, Space exploration.

ROTORCRAFT, UAVs, AND AIRCRAFT SYSTEMS

Introduction to Helicopters and Micro-lights. Introduction to UAVs and MAVs. Types and applications, Maintenance, safety and operations. Basic principles and lay out of various aircraft systems: Hydraulic system, Aircraft Fuel system, Engine fuel system, Air conditioning and Pressurization system Flight control system, Navigation and Weapon control system, Under carriage and Brake system, High lift devices.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

REFERENCES

- 1 Dava Newman, Interactive Aerospace Engineering and Design, McGraw-Hill.
- 2 John Cutler & Jeremy Liber, Understanding Aircraft Structures, 4th edition, Sheridan House Inc.
- 3 Austin R., Unmanned Aircraft Systems, AIAA Education Series, 2010.
- 4 FAA-H-8083-25A, Pilot's Handbook of Aeronautical Knowledge, FAA, DOT, USA.
- 5 Anderson J.D., Introduction to Flight, McGraw-Hill 7th edition, 2013.
- 6 George P. Sutton and Oscar Biblarz, Rocket Propulsion Elements, 7th edition, John Wiley & Sons, Inc., New York, 2001.
- 7 Jack D.Mattingly, "Elements of *Propulsion: Gas Turbines* and Rockets", 2nd Edition.

COURSE OUTCOMES

- CO1: To provide students with an introduction to the aerospace field.
- CO2: To teach students about the fundamentals of vehicle flight in the atmosphere
- CO3: To teach students about the fundamentals of vehicle flight in space
- CO4: To provide students with an understanding of performance
- CO5: To provide students with engineering background suitable for subsequent course work in aerospace engineering.

U15AEP201 - CAD LABORATORY – I	L	Т	Р	C
(For Aeronautical Engineering)	0	0	4	2

• To introduce the concept of 2-D drafting using CAD packages.

LIST OF EXERCISES

- 1. Study of drafting software.
- 2. Development of Part drawing for Simple components.
- 3. Development of Isometric drawing for Simple components.
- 4. Development of Assembled drawing for Screw Jack.
- 5. Development of Assembled drawing for Landing Gear.
- 6. Development of Part drawing for Wing Structure components.
- 7. Development of t Part drawing for Fuselage structure components.
- 8. Development of three view diagram of a typical Helicopter.
- 9. Development of three view diagram of a typical Aircraft.

TOTAL: 45 HOURS

List of Tools required

• Drafting & modeling software (Like AUTOCAD)

COURSE OUTCOMES

- CO1: Use the AutoCAD software program to create drawings from scratch and to modify, manipulate, copy, delete, save, and plot drawings.
- CO2: Use the full range of AutoCAD commands and options and employ shortcuts and timesaving strategies to operate the program at a level of efficiency acceptable for employment as a CAD Engineer.
- CO3: Create, render, and manipulate 3D AutoCAD drawings and convert 2D drawings to 3D drawings.
- CO4: Identify or roughly define the terms, concepts, and standards associated with the topics of the course.
- CO5: Report to a workplace regularly and punctually, engage effectively and congenially with peers and supervisors, work from written as well as oral instructions, use assigned time efficiently for productive work, and meet production deadlines.
- CO6: Demonstrate graphical and computational problem-solving skills appropriate to the level of the coursework.

U15 AUP 201/ CAD LABORATORY	L	Т	Р	C
(For Automobile Engineering)	0	0	4	2

LIST OF EXPERIMENTS

- 1. Introduction to CAD Commands
- 2. Creation of simple objects
- 3. Special curves
- 4. Projection & Section of simple solids
- 5. Orthographic views of solids
- 6. Isometric views of objects
- 7. Simple trusses
- 8. 3D modeling of simple solids
- 9. 2D multiple views from 3D model

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Draw 2D and 3D drawings using drafting software
- CO2: Convert orthographic view into isometric view
- CO3: Become familiar to draw Special curves

U15BT7201/ BIOMOLECULES AND GENETICS	L	Τ	Р	C
(For Biotechnology)	3	0	0	3

• To expose the students to the area of biochemistry/cell biology and basic genetics. This knowledge is required to understand Biochemistry, molecular biology and genetic engineering.

CARBOHYDRATES

Definition; Carbohydrates-; Classification- Monosaccharides - Structure, and function, Disaccharides- Structure and function- Sucrose, Lactose, Polysaccharides- Starch, cellulose, heparin, hyaluronic acid.

LIPIDS

Definition: Classification of lipids- Simple lipids -Physical and chemical properties of fats. Saponification number; Compound lipids-Structure and function of phospholipids and Glycolipids. Fatty acids (C16, C18) - Saturated and unsaturated fatty acids; Essential fatty acids. Steroids : Cholesterol Structure and functions.

AMINO ACIDS, PEPTIDES, VITAMINS AND MINERALS

Amino acid- Definition, Structure and classification; Essential amino acids; Peptides- Definition, Structure and properties. Vitamins- Definition, Structure; Physiological functions of fat and water soluble vitamins. Minerals - Essential macro and micro minerals, sources and functions.

CLASSICAL GENETICS

Mendelian genetics- Introduction, Principles; Monohybrid, Dihybrid and Trihybrid crosses; Backcross and testcross; Linkage, Crossing over, Genetic mapping, recombination; Multiple alleles- Blood group antigens.

CHROMOSOME STRUCTURE AND ORGANIZATION

Nucleic acids: structure of DNA, RNA; Chromosome organization of eukaryotes. Ploidypolyploidy and Aneuploidy; Human karyotypes; Human sex Chromosome-linked disorders -Hemophilia, Fragile X; Special chromosomes - Polytene chromosomes and Lamp Brush chromosome.

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

REFERENCES

- 1. Enger, Concepts in Biology, Tata McGraw-Hill Publ., 11th Edition, 2005.
- 2. Gardner E.J., Simmons M.J.and Slustad D.P., Principles of Genetics, 8th Edition, Wiley Publishers, 1999.
- 3. McKee E. and McKee T., Biochemistry an Introduction, Win. C. Brown Publ., 1996.
- 4. Soper R, Taylor DJ., Green NPO., Stout GW.(1998) "Biological Science" 3rd Edition. Cambridge Univ Press.

COURSE OUTCOMES

- CO1: Draw the structure and explain the classification and functions of carbohydrates
- CO2: Describe the structure and functions of lipids, and cholesterol
- CO3: Classify and discuss the properties and functions of amino acids, vitamins and minerals
- CO4: Recall the concepts of mendelian genetics and multiple allelism
- CO5: Understand and explain the structure of chromosomes and related disorders

U15BTP201/ BIOMOLECULES AND GENETICS	L	Τ	P	С
LABORATORY	0	0	Δ	2
(For Biotechnology)	U	U	-	4

- To teach basic skills required for analysis of biomolecules such as carbohydrates, proteins, lipids, etc.
- To enable the student to perform simple experiments in Genetics.

LIST OF EXPERIMENTS

- 1. Qualitative analysis of Carbohydrates (glucose, galactose, fructose, maltose, sucrose and starch)
- 2. Qualitative analysis of amino acids (tyrosine, tryptophan, methionine, alanine and proline)
- 3. Qualitative analysis of lipids (general lipids)
- 4. Qualitative analysis of Proteins (simple and glycoproteins)
- 5. Qualitative analysis of minerals.
- 6. Blood grouping
- 7. Isolation of starch from potato
- 8. Identification of mitotic stages in onion root tip
- 9. Identification of polytene chromosomes
- 10. Genetic Mapping (Problems to be worked out)

TOTAL 45 HOURS

REFERENCES

1. Shanmugam S and Sathishkumar T. Complete Laboratory Handbook on Engineering Biotechnology and Life Sciences, 1st Edition, India: Inder Publishers, 2009.

COURSE OUTCOMES

- CO1: Develop the skill for carrying out qualitative identification of important types of carbohydrates and amino acids
- CO2: Become competent in the general tests performed for lipid, protein and mineral identification
- CO3: Understand the practical aspects of key Cell Biology concepts such as mitotic cell division and blood grouping
- CO4: Acquire an ability to carry out certain experiments in Genetics such asidentifying polytene chromosomes
- CO5: Become capable of working out simple problems related to mapping locations of genes in chromosomes

U15CET201/ CONSTRUCTION MATERIALS	L	Τ	Р	C
(For Civil Engineering)	3	0	0	3

• At the end of this course the student should have learnt about the various materials, both conventional and modern, that are commonly used in Civil Engineering construction. Further he should be able to appreciate the criteria for choice of the appropriate material and the various tests for quality control in the use of these materials.

STONES-BRICKS-CONCRETE BLOCKS

Stone as building material-Criteria for selection-Tests on stones-Deterioration and preservation of stone work-Bricks-Classification- Manufacture of clay bricks-Tests on bricks- Compressive strength-Water absorption-Efflorescence –Bricks for special use-Refractory bricks-cement and concrete hollow blocks-Light weight concrete blocks-Code Practices.

LIME-CEMENT-AGGREGATES-MORTAR

Lime-preparation of lime mortar-Cement-Ingredients-Manufacturing process-Types and Grades-Properties of cement and cement mortar- Hydration-Compressive strength-Tensile strength-Soundness and consistency-Setting time- Aggregates-Natural stone aggregates-Industrial byproducts-Crushing strength-Impact strength-Flakiness-Abrasion resistance-Grading-sand-Bulking-Code practices.

CONCRETE

Concrete-ingredients-Manufacture-Batching plants-RMC-Propertie of fresh concrete- slumpflow and compaction-Properties of hardened concrete- Compressive, Tensile and shear strength-Modulus of rupture- Tests- Mix specification- Mix proportioning-IS method- High strength concrete and HPC- Other types of concrete-Code Practices.

TIMBER AND OTHER MATERIALS

Timber- Market forms-Industrial timber-Plywood-veneer-Thermocole-Panels of laminates-Steel-Aluminium and other metallic materials-Composition-uses-market forms-Thermomechanical treatment-Paints- Varnishes-Distempers-Coe Practices.

MODERN MATERIALS

Glass-Ceramics-Sealants for joints- Fibre glass and metal reinforced plastic-clay products-Refractories-Composite materials –Types-Applications of laminar composites- Fibre textiles-Geosynthetics for Civil Engineering Applications- Flyash.

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

REFERENCES

- 1. Varghese P.C., Building Materials, PHI Learning Pvt. Ltd., 2005.
- 2. Rangwala S.C., Engineering materials, Charotar Publishing House, 2008.
- 3. Premalatha J., Building materials, Inder Publications, 2010.
- 4. Shetty M.S., Concrete Technology (Theory and Practice), S. Chand & Co Ltd.
- 5. Rajput R.K., Engineering materials, S. Chand & Company Ltd., 2000.
- 6. Duggal S.K., Building Materials, New Age International (P) Ltd., 2009.

COURSE OUTCOMES

- CO1: Compare the properties of most common and advanced building materials.
- CO2: Understand the typical and potential applications of these materials
- CO3: Understand the quality test procedures for various materials
- CO4: Know about the structural forms of various materials
- CO5: Acquire knowledge on advanced materials used in civil engineering field.

	CONSTRUCTION MATERIALS	L	Τ	Р	C
L	LABORATORY	0	0	Δ	2
(For Civil Engin	neering)	U	U	-	-

LIST OF EXPERIMENTS

- 1. Tests on Aggregate
- 2. Moisture Content of Concrete Aggregate"
- 3. Specific Gravity and Absorption of Coarse Aggregate
- 4. Specific Gravity and Absorption of fine Aggregate"
- 5. Resistance to Degradation of Small-size coarse Aggregate by Abrasion in the Los Angeles Machine
- 6. Aggregate crushing strength test
- 7. Abrasion test
- 8. Shape Test (Flakiness Index)
- 9. Shape test (Elongation Index)
- 10. Shape Test (Angularitv Number)
- 11. Unit Weight and Voids in Aggregate in its compacted or loose condition"
- 12. Sieve analysis of fine and coarse aggregate

Tests on Cement

- 1. Blaine's Air Permeability test
- 2. Fineness of Hydraulic Cement by No.100 or No. 200 Sieve"
- 3. Normal Consistency of Hydraulic Cement"
- 4. Initial and Final Time of Setting of Cement"
- 5. Density and Specific Gravity of cement"
- 6. Compressive Strength of Hydraulic Cement Mortars"
- 7. Tensile Strength of Cement Mortar
- 8. Compressive strength of brick
- 9. Strength tests on Flooring tiles

TOTAL: 45 HOURS

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

CO1: Find the physical and mechanical properties of construction materials like cement, sand and aggregates by conducting various laboratory tests.

U15CST101/ U15CST201 STRUCTURED PROGRAMMING	L	Τ	Р	С
USING C	2	2	0	3
(Common to all branches of Engineering and Technology)			v	U

- To enable students to learn about the basics of computers and problem solving methods
- To learn the various features of C
- To learn how to program using C language

INTRODUCTION

Programs and Programming- Programming languages and Their Classification - Compiler, Linker, Loader and Interpreter - Structured Programming Concept - Algorithm - Pseudo Code -Flow Chart.Number System – Binary – Decimal – Conversion Problems.

C LANGUAGE BASICS

Introduction to C Programming – Fundamentals – Structure of a C Program – Compilation And Linking Processes – Constants, Variables – Data Types – Expressions Using Operators In C – Managing Input And Output Operations - Decision Making And Branching - Looping Statements - Solving Simple Scientific And Statistical Problems.

ARRAYS AND STRINGS

Arrays - Initialization - Declaration - One Dimensional And Two Dimensional Arrays. String-String Operations – String Arrays. Simple Programs - Sorting- Searching – Matrix Operations.

FUNCTIONS, STORAGE CLASSES AND POINTERS

Functions: Definition of function – Declaration of function – Pass by value – Pass by reference – Recursion.

Storage classes – auto, static, extern, register- scope rules.

Pointers: Definition - Initialization - Pointers arithmetic - Pointers and arrays - Dynamic memory allocation - Example Problems

STRUCTURES, UNIONS AND FILES

Structures and Unions: Introduction - need for structure data type - structure definition -Structure declaration - Structure within a structure - Union - Programs using structures and Unions.

Files: Introduction – Using files in C - Working with text files.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

REFERENCES

- 1. Pradip Dey and Manas Ghosh, "Programming in C", Second Edition, Oxford University Press, 2011.
- **2.** Rajasekaran S, "Numerical methods in Science and Engineering-A practical approach", S.Chand and Company, New Delhi-55, 2012.
- **3.** Kernighan,B.W and Ritchie,D.M, "The C Programming language", Second Edition, Pearson Education, 2006
- **4.** Byron S Gottfried and Jitendar Kumar Chhabra, "Programming with C", Tata McGraw Hill Publishing Company, Third Edition, New Delhi, 2011.
- 5. Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.

COURSE OUTCOMES

.

- CO1: Explain the basics of programs and programming
- CO2: Select appropriate data types and control structures for solving a given problem.
- CO3: Illustrate the representation of arrays, strings and usage of string operations.
- CO4: Illustrate the importance of pointers and dynamic memory allocation.
- CO5: Explain the basics of file handling mechanism.

U15CSP101/U15CSP201 STRUCTURED PROGRAMMING	L	Τ	Р	С
LABORATORY USING C	0	0	4	2
(Common to all branches of Engineering and Technology)	U	U	-	4

- To enable students to solve problems using C
- To apply the various features of C

LIST OF EXPERIMENTS

- 1. Simple programs
 - To find whether the given number is prime or not
 - Factorial of the given number
- 2. Programs involving Control and Looping Structures
 - Arithmetic Progression
 - Trigonometric series evaluation
- 3. Programs using Arrays
 - Sorting
 - Matrix addition and Multiplication
 - Calculation of median of a frequency distribution.
- 5. Evaluation of integrals
 - Trapezoidal Rule
- 6. String Processing

4.

- 7. Program using Recursive function
- 8. Using pointers in C
- 9. Program using Functions, Structures and Files
 - Students Mark Analysis
- 10. Iterative method for finding Roots of the polynomials
 - Lagrange interpolation method

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Demonstrate code reusability using recursive and non-recursive functions.
- CO2: Implement pointers, memory allocation techniques and files in 'C' language.
- CO3: Apply and practice logical ability to solve simple problems.
- CO4: Demonstrate 'C' programs for statistical and scientific problem solving.

U15CSP102 / COMPUTER HARDWARE LABORATORY	L	Т	P	С
(For Computer Science)	0	0	4	2

- Acquire in-depth practical knowledge of computer hardware.
- Understanding the connection of networks.
- Develop skills related to the troubleshooting PC.

LIST OF EXERCISES

- 1. Study the components through assembling and disassembling of PC.
- 2. Study of different types of network topologies and cables along with crimping.
- 3. Study of network devices.
- 4. Installation and configuration of Windows and Linux operating systems.
- 5. Troubleshooting frequently occurring problems
- 6. Application software installation.
- 7. IP configuration and connecting a small LAN including file sharing.
- 8. Process Handling through task manager
- 9. Device driver installation.
- 10. Hands on learning of the Unix /Linux commands

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Explain the various computer hardware components and their functionality.
- CO2: Illustrate the assembling process of a computer system.
- CO3: Explain the local area network and file sharing methods.
- CO4: Perform the installation of Windows and Linux operating system.
- CO5: Summarize the basic Unix /Linux commands.

U15CST202/ DIGITAL SYSTEMS AND DESIGN	L	Т	Р	С	
(For Computer Science)	4	0	0	4	

- To provide students in-depth theoretical base of the Digital Electronics.
- To provide the fundamental designing concepts of different types of Logic Gates, Minimization techniques etc.
- To familiarize the students regarding designing of different types of the Digital circuits.
- To provide the computational details for Digital Circuits. To introduce the basic concept of Hardware Components.

NUMBER SYSTEM AND BASIC LOGIC

Number systems - Binary, Octal, Hexadecimal, Number base conversions, Binary codes: Weighted codes - BCD - 8421-2421, Non Weighted codes - Gray code - Excess 3 code Binary arithmetic, 1's complements, 2's complements, and Code conversions. Study of logic gates-Boolean algebra, Boolean postulates and laws –De-Morgan's Theorem- Principle of Duality – Minterm- Maxterm - Canonical forms - Conversion between canonical forms, Karnaugh map Minimization – Don't care conditions, Tabulation method.

COMBINATIONAL CIRCUITS

Problem formulation and design of combinational circuits, adder, subtractor, Serial adder/ Subtractor - Parallel adder/ Subtractor - Carry look ahead adder - BCD adder - Magnitude Comparator, parity checker, Encoder, decoder, Multiplexer/ Demultiplexer, code converters, Function realization using gates and multiplexers.

SEQUENTIAL CIRCUIT

Flip flops SR, JK, T, D and Master slave – Characteristic table and equation – Application table – Edge triggering – Level Triggering – Realization of one flip flop using other flip flops – Register – shift registers - Universal shift register. Classification of sequential circuits - Moore and Mealy.

DESIGN OF SEQUENTIAL CIRCUITS

Design of synchronous sequential circuits: state diagram- State table –State minimization – State assignment. Counters: Synchronous Binary counters – Modulo-n counter- Decade - BCD counters, Asynchronous counter, Ring counters. Hazards: Static – Dynamic.

9 Hours

8 Hours

10 Hours

DIGITAL LOGIC FAMILIES AND PLD

8 Hours

Memories – ROM, PROM, EEPROM, RAM – Programmable Logic Devices: Programmable Logic Array (PLA)- Programmable Array Logic (PAL) - Implementation of combinational logic using PROM, PLA and PAL. Introduction to FPGA. Digital logic families: TTL, ECL, CMOS.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

REFERENCES

- 1. Morris Mano M. and Michael D. Ciletti, Digital Design, 4th edition, Pearson Education (P) Ltd., New Delhi, 2008.
- 2. John .M Yarbrough, Digital Logic Applications and Design, Thomson- Vikas Publishing House, New Delhi, 2002.
- 3. Salivahanan S. and Arivazhagan A., Digital Circuits and Design, 3rd edition, Vikas Publishing House (P) Ltd., New Delhi, 2009.
- 4. Charles H. Roth., Fundamentals of Logic Design, 6th edition, Thomson Publication Company, 2009.
- 5. Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 6th edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2007.
- 6. Jain, R.P. "Modern Digital Electronics", Third Edition., Tata McGraw-Hill publishing company limited, New Delhi, 2003.
- 7. Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2003
- 8. Donald D. Givone, Digital Principles and Design, Tata Mc-Graw Hill Publishing company Ltd., New Delhi, 2010.

COURSE OUTCOMES

- CO1: Translate numerical values in various number systems and perform number conversions between number systems.
- CO2: Demonstrate the knowledge of logic gates, Boolean algebra and apply optimal minimization techniques to simplify the Boolean function.
- CO3: Analyze and design combinational and sequential circuits.
- CO4: Apply the knowledge to solve the real time problems related to digital circuits. Compare various programmable devices and digital logic families

U15CSP201 / DIGITAL SYSTEMS AND DESIGN	L	Τ	P	С
LABORATORY	0	0	Δ	2
(For Computer Science)	U	U	-	4

- To provide students in-depth practical base of the Digital Electronics.
- To familiarize the students regarding designing of different types of the Digital circuits.
- To provide the computational details for Digital Circuits.

LIST OF EXPERIMENTS

- 1. Verification of Boolean theorems using digital logic gates
- 2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters, etc.
- 3. Design and implementation of 4-bit binary adder / subtractor using basic gates and MSI devices
- 4. Design and implementation of parity generator / checker using basic gates and MSI devices
- 5. Design and implementation of magnitude comparator
- 6. Design and implementation of application using multiplexers
- 7. Design and implementation of shift registers
- 8. Design and implementation of synchronous and asynchronous counters
- 9. Simulation study of any combinational and sequential circuit using VHDL.

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Construct truth table for specific digital logic functionality.
- CO2: Illustrate digital logic function using optimal minimization techniques.
- CO3: Construct and troubleshoot the digital circuits.
- CO4: Solve the problems related to digital circuits.
- CO5: Experiment with digital circuits using VHDL.

U15CSP211 COMPUTING LABORATORYLTPCCommon to AE,BIO,CE,EIE,FT,ME,MCE,TXT0042

COURSE OBJECTIVES

- To analyze webpage and identify its elements and attributes
- Learn the basic language of the web: HTML.
- Be able to embed social media content into web pages.
- Implement and understand how to get used with MATLAB

List of Experiments

- 1. Study of HTML tags
- 2. Design a web page using basic html tags
- 3. Design a webpage using table tags
- 4. Design a webpage using forms and frames
- 5. Design a webpage using list tags
- 6. Develop a website of your interest(include a minimum of 3 web pages)
- 7. Study of MATLAB functions
- 8. Working with matrix operations
- 9. Working with image arithmetic
 - a. Addition of two images
 - b. Subtraction of two images
- 10. Write a Matlab program for the following
 - a. Read an image and crop
 - b. Read an image and resize
- 11. Working with Integration and Differentiation
- 12. Working with graphs

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Develop static web pages using HTML. [S]
- CO2: Perform basic MATLAB operations. [S]
- CO3: Make use of MATLAB to work with images and graphs. [S]
- CO4: Perform integration and differentiation using MATLAB. [S]
- CO5: Develop team spirit and professional attitude towards the development of simple web applications [A]

U15ECT101 / U15ECT201 CIRCUIT THEORY	L	Т	P	C
(Common For ECE, EIE)	4	0	0	4

- Recognize and apply basic electrical units and terminology
- Identify the circuit elements and their corresponding schematic symbols voltage and current sources (ac and dc), resistors, transformers, capacitors, inductors
- State and apply the laws, rules and theorems to analyze electrical circuit
- Analyze steady state and transient response of source free / driven RL and RC circuits.
- Design and analyze series and parallel Resonance circuits.

DC CIRCUITS ANALYSIS

Basic Definitions: Charge, Current, Voltage and Power, Circuit elements: Resistors, Inductors, capacitors, Voltage and Current Sources - Ohm's Law, Kirchhoff's Current Law, Kirchhoff's Voltage Law, Circuit elements (R, L, C, Voltage and Current Sources) in Series and Parallel, Voltage and Current Division, Source Transformation, Delta-Star and Star- Delta transformation, Mesh Analysis, super mesh, Nodal analysis, Super node.

NETWORK THEOREMS

Superposition Theorem, Theorem and Norton's Theorem, Maximum Power Transfer Theorem, Reciprocity Theorem, Verification of Theorems, Introduction to PSPICE.

SINUSOIDAL STEADY STATE ANALYSIS

Sinusoids, Phasors, Phasor representation of R, L and C, Phasor Diagrams, Impedance, Admittance, Susceptance, Conductance and Reactance.

AC Circuit Power Analysis-Instantaneous Power, Average Power, RMS Power, Apparent Power and Power Factor, Complex Power, Mesh Analysis & Nodal Analysis, Verification of Maximum Power Transfer theorem

FIRST ORDER AND SECOND ORDER CIRCUITS

Basic RL and RC Circuits: The Source-Free RL Circuit, the Source-Free RC Circuit, The Unit-Step Function, Driven RL Circuits, Driven RC Circuits- Source free series and parallel RLC circuits

9 Hours

9 Hours

9 Hours

RESONANCE AND COUPLED CIRCUITS

Frequency Response of Parallel and Series Resonance circuits-determination of Resonant Frequency, Q-Factor and Bandwidth.

Magnetically Coupled Circuits - Self Inductance, Mutual Inductance, Coefficient of Coupling, Energy in a coupled circuit, Linear Transformer, Ideal Transformer, Duality.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

REFERENCES

- 1. Charles K. Alexander and Mathew N.O. Sadiku, Fundamentals of Electric Circuits, 3rd edition, McGraw-Hill, 2008.
- 2. David E. Johnson, Johny R. Johnson and John L. Hilburn, Electric Circuit Analysis, 2nd edition, Prentice-Hall Int.
- 3. Murthy K.V.V., Kamath M.S., Basic Circuit Analysis, Jaico Publishing House, 1999.
- 4. Norman Balaba nian, Electric Circuits, Int. Edition, McGraw-Hill, 1994.
- 5. Decarlo R.A. and Lin P.M., Linear circuit analysis The time domain, Phasor and Laplace transform approach, Oxford press, 2nd edition, 2003.
- 6. William H. Hayt, Jr Jack E. Kemmerly and Steven M. Durbin, Engineering Circuit Analysis, 7th edition, Tata MC GrawHill, 2010.
- 7. Joseph Edministor and Nahvi (Mohmood), Theory & Problems of Electric Circuits, 5th edition, MC Graw Hill, 2011.

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Able to model passive elements & sources
- CO2: Apply circuit theory concepts to compute voltage, current & resistance in DC&AC circuits.
- CO3: Use SPICE as a simulation tool to analyze electric circuits.
- CO4: Estimate the transient response of simple RL, RC & RLC circuits.
- CO5: Predict the frequency response of resonance circuits.

U15ECT202 / ELECTRON DEVICES	L	Т	P	C	
(For Electronics and Communication Engineering)	3	0	0	3	

- Describe the basic concepts of Electron Ballistics
- Illustrate the formation of a p-n junction diode (built-in potential, electric field, charge transport).
- Explain the construction, operation and characteristics of BJT, JFET and MOSFET
- Appraise the functioning of special semiconductor devices: Tunnel diode, SCR, DIAC, TRIAC, UJT, optoelectronic devices.
- Discuss the manufacturing methods for the production of Integrated Circuits.

ELECTRON BALLISTICS

Force on charge particles in electric field – Motion of charge in uniform and time varying electric fields – Force in a magnetic field – Current Density – Motion in a Magnetic Field – Electrostatic deflection in a cathode ray tube – Magnetic deflection in a cathode ray tube – Deflection sensitivity- Magnetic Focusing –Parallel Electric and Magnetic Fields – Perpendicular Electric and Magnetic Fields – Cyclotron

SEMICONDUCTOR DIODES

Law of electrical neutrality – Mobility, drift current – Diffusion current – Continuity equation. Band structure of PN Junction – Current Components in a PN Diode –Diode current equation – Temperature dependence of diode characteristics - Calculation of transition and diffusion capacitance – Switching characteristics of diode- Applications - Zener diode – Break down Mechanisms – Zener diode as voltage regulator- Varactor diode –Schottky diode

BIPOLAR JUNCTION TRANSISTORS AND FIELD EFFECT TRANSISTORS9 Hours

Transistor types – Current components – Ebers – Moll model – Transistor Configurations – Characteristics - Transistor switching times – Transistor as an amplifier. Operation and characteristics of JFET- Generalized FET Amplifier – FET as a voltage variable resistor - MOSFET - Principle of operation - Depletion and Enhancement MOSFET - Output and Transfer Characteristics

SPECIAL SEMICONDUCTOR DEVICES

Tunnel diode, Operation and Characteristics - SCR ,TRIAC, DIAC - Applications. UJT - Operation - Characteristics – Equivalent Circuit and Applications – Opto electronic devices-LED - Photo diode –Photo transistor

9 Hours

9 Hours

FABRICATION OF SEMICONDUCTOR DEVICES

9 Hours

Basic monolithic integrated Circuits - Epitaxial growth - masking and etching - Diffusion of impurities- Transistors for monolithic circuits - Monolithic Diodes – Integrated Resistors - Integrated Capacitors & Inductors – Integrated Field Effect Transistors. Definition of LSI, MSI, VLSI circuits

TOTAL: 45 HOURS

REFERENCES

- 1. David A. Bell, Electronic Devices and Circuits, 4th edition Prentice Hall of India, 2006.
- 2. Robert L. Boylested and Louis Nashelsky, Electronic Devices and Circuits Theory, 10th edition, Prentice Hall India, 2009.
- 3. Theodore F. Bogart Jr, Jeffrey S. Beasley and Guillermo Rico, Electronic Devices and Circuits, 6th edition, Pearson Education, 2004.
- 4. Jacob Millman, Christos C. Halkias and Chetan D. Parikh, Integrated Electronics, 2nd edition, Tata McGraw–Hill, 2009.
- 5. Jacob Millman, Christos C. Halkias and Sathyabrata Jit, Electronic Devices and Circuits, 3rd edition, Tata McGraw–Hill, 2011.

COURSE OUTCOMES

- CO1: Recognize the concepts of Electron ballistics
- CO2: Understand the principles of Semiconductor Physics
- CO3: Illustrate the characteristics of diodes, BJT, FET, MOSFET and their applications.
- CO4: Develop skills to implement simple projects using the basic devices

U15ECP201/ ELECTRIC CIRCUITS & SIMULATION	L	Τ	P	C
LABORATORY	0	0	Δ	2
(For Electronics and Communication Engineering)	v	v	-	4

- Assemble simple electric circuits with passive elements and sources.
- Verify laws and theorems in electric circuits
- Design and analyze series and parallel resonant circuits
- Use simulation tools to analyze electric circuits.

LIST OF EXPERIMENTS

- 1. Measurement of current and voltage in series and parallel circuits.
- 2. Verification of Kirchhoff's Laws.
- 3. Verification of Thevenin's Theorem
- 4. Verification of Reciprocity Theorem
- 5. Verification of Super position Theorem
- 6. Verification of Maximum Power Transfer Theorem
- 7. Frequency Response of Series and Parallel resonance circuits

PSPICE SIMULATION

- 8. Verification of Theorems
- 9. Analysis of Transient Response of RL & RC circuits
- 10. Analysis of Series and parallel resonance circuits

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Practice proper use of measuring instruments.
- CO2: Relate physical observations and measurements involving electrical circuits to theoretical principles.
- CO3: Experiment series and parallel resonance circuits.
- CO4: Able to use simulation tools to analyze electric circuits.

U15ECP202/ ELECTRONIC DEVICES LABORATORY	L	Т	P	С
(For Electronics and Communication Engineering)	0	0	4	2

- Sketch the characteristics of the semiconductor devices: Diode, Zener diode, Transistor, FET, MOSFET, UJT, SCR, Photo diode & Photo transistor.
- Demonstrate the application circuits: rectifier, voltage regulator and BJT amplifier.

LIST OF EXPERIMENTS

- 1. PN Diode VI–Characteristics
- 2. Half Wave and Full wave rectifier
- 3. Zener Diode characteristics and Voltage regulator
- 4. Transistor (CE) characteristics and h parameter determination
- 5. JFET characteristics
- 6. MOSFET characteristics
- 7. UJT characteristics
- 8. SCR characteristics
- 9. TRIAC and DIAC characteristics
- 10. Photo Diode and Photo Transistor characteristics
- 11. BJT as an amplifier and switch

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Analyze the characteristics and behavior of devices like diode, zener diode, BJT, FET, MOSFET, UJT, SCR and optoelectronic devices
- CO2: Verify the working of diodes, transistors and their applications
- CO3: Build a common emitter/base/collector amplifier and measure h-parameters.

U15ECP207/ ELECTRONIC DEVICES AND CIRCUITS	L	Τ	P	C
LABORATORY	0	0	Δ	2
(For Mechatronics Engineering)	U	U	-	4

- To obtain the characteristics of electronic devices
- To obtain the characteristics of amplifier circuits
- To simulate electronic circuits using standard software packages

LIST OF EXPERIMENTS

- 1. Characteristics of Semiconductor diode and Zener diode
- 2. Input and Output characteristics of BJT
- 3. Characteristics of JFET
- 4. Frequency response of CE amplifier
- 5. Clipper and Clamper
- 6. Phase shift and Wein Bridge oscillators using OP-AMP
- 7. Astable multivibrator using OP-AMP
- 8. Monostable and Bistable multivibrator using OP-AMP
- 9. Voltage Regulator (Zener diode, Transistor series and shunt)
- 10. Half-wave and Full-wave Rectifier with and without filter.
- 11. Circuit design using software (Multisim, Pspice)
- 12. Printed Circuit Board (PCB) design and fabrication using (software) for simple circuits.

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Construct input output characteristics of electronic devices.
- CO2: Measure current voltage resistance capacitance of a given circuit.
- CO3: Design and construct regulators, rectifiers, amplifiers and oscillators using electronic devices and operational amplifiers.
- CO4: Simulate electronic circuits using software.

U15EET101/ CIRCUIT THEORY	L	Т	P	С
(For Electrical and Electronics Engineering)	4	0	0	4

- To understand the concept of electrical circuits, characteristics of circuit elements and power sources.
- To analyse A.C. circuits, the concept of active, reactive and apparent powers, power factor and resonance in series and parallel circuits.
- To solve electrical network problems using mesh and nodal analysis and by applying network theorems.
- To know the basic concepts of magnetic coupled circuits
- To know the fundamental relationships involved with three phase circuits and power measurement.

BASIC CIRCUIT CONCEPTS

Introduction to Electrical Circuits: voltage, current, power and energy. Circuit elements : R,L,C parameters – Energy sources – Kirchhoff's laws –Series and parallel DC circuits-voltage division and current division-power in dc series and parallel circuits-network reduction techniques – Source transformation- star-to-delta and delta-to-star transformation.

AC CIRCUIT CONCEPTS

The sine wave- Angular relation of a sine wave-The sine wave equation-Voltage and current Values of sine wave- Phase relation in Pure R, L and C. Complex impedance :impedance diagram– Phasor diagram– Analysis of series, parallel and Compound circuits. Power and power factor: Instantaneous Power - Average Power- Apparent Power and Power Factor- Reactive Power- Power Triangle. Series resonance and Parallel resonance – bandwidth and Q factor.

CIRCUIT ANALYSIS & NETWORK THEOREMS

Nodal analysis and Mesh analysis for D.C and A.C circuits, Superposition theorem, Thevenin's theorem, Norton's theorem, Reciprocity theorem, maximum power transfer theorem, Duality in networks-problems.

MAGNETIC COUPLED CIRCUITS

Self and mutual inductance-coefficient of coupling-dot convention-analysis of simple coupled circuits-ideal transformer-analysis of series and parallel connection of coupled coils- tuned circuits-analysis of magnetic circuits-comparisons of magnetic and electric circuits-magnetic leakage and fringing-parallel magnetic circuit.

9 Hours

9 Hours

9 Hours

THREE PHASE CIRCUITS

9 Hours

Phase sequence-line and phase quantities-Three phase star and delta connections -analysis of three phase circuits with star and delta connected balanced and unbalanced loads- power measurement in three phase circuits using two wattmeter method-power factor of an unbalanced system.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

REFERENCES

- 1. William H. Hayt Jr, Jack E. Kemmberly, and Steven M. Durbin, Engineering circuit analysis, Tata McGraw-Hill, New Delhi, 2002.
- 2. Joseph A. Edminister and Mahmood Nahvi, Electric Circuits, Schaum's Series, Tata, McGraw-Hill, New Delhi, 2004.
- 3. Arumugam M. and Premkumar N., Electric Circuit Theory, Kanna Publishers, New Delhi, 1991.
- 4. Gupta B.R, Fundamentals of ElectruCircuits, S. Chand & Company (P) Ltd., New Delhi. 2002.
- 5. Paranjothi S.R., Electric Circuit Analysis, New Age International (P) Ltd., New Delhi, 2000.
- 6. Sudhakar A. and Shyammohan S.P., Circuits and Networks: Analysis and Synthesis, Tata McGraw-Hill, New Delhi, 2004.

COURSE OUTCOMES

- CO1: Determine the current and voltage magnitudes by applying laws. Students can also reduce the complex circuits to simple forms using reduction techniques and source transformations. Students will be able to draw the phase diagrams and can find the design parameters (Q factor and bandwidth) for series and parallel resonance circuits.
- CO2: Reduce the complex circuits to simple circuits and apply mesh and nodal analysis to compute the current and voltage magnitudes in different branches of the given circuit.
- CO3: Understand the concepts of magnetic circuits and can compute the effective inductance with respect to different parameters like number of turns, flux, area, direction of winding current and flux density. Students understand the 3 phase concepts and its types applicable for both balanced and unbalanced load.

U15EE7211/ BASICS OF ELECTRICAL AND	L	Т	P	С
ELECTRONICS ENGINEERING	4	0	0	4
(For Mechanical, Automobile Biotechnology)	-	U	U	-

- To study the characteristics of circuit elements
- To understand relationships among current, voltage and power in DC and AC circuits
- To study the construction, characteristics and applications of amplifiers and oscillators circuitry

ELECTRIC CIRCUITS FUNDEMENTALS

Electric current and Ohm's law – Resistance and Resistivity – Relation between Voltages, Current, Resistance and Power - Capacitance – Parallel plate capacitor – Energy stored in a capacitor.

ELECTROMAGNETISM

Magnetic field - Field intensity, magnetic flux, Flux density – Permeability – Magnetic effects of electric current – Magnetic circuit – Faraday's laws of Electromagnetic Induction – Self-inductance and Mutual inductance – Energy stored in magnetic field – Magnetic Hysteresis.

AC-CIRCUITS

Alternating voltages and current – Sinusoidal waveform – cycle and frequency – RMS value – vector diagram of sine waves of same frequency – Alternating current through Resistance, Inductance and Capacitance – current through series circuits – Power factor – Active and Reactive power – Generation of three phase voltage – Voltages, Currents and Power in Star and Delta connected loads.

ELECTRICAL MACHINES (Qualitative Treatment Only)

DC motor – Principle of operation – Back-emf and voltage equation – Torque and speed Characteristics of Series and Shunt connected motors – Transformer – Ideal Transformer relationship – Three phase induction motor – Cage rotor and Wound rotor – Principle of operation – Slip – Torque Slip characteristics – Single phase induction motors.

ELECTRONIC CIRCUITS

Semiconductor diode – Half wave and Full wave rectifier – Bipolar Junction transistors – circuit configurations – static characteristics – load line and biasing – simple introduction to amplifiers – Introduction to Binary logic gates – AND, OR, NOT, NAND, NOR, EX-OR & EX-NOR.

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

REFERENCES

- 1. Thomas L Floyd, Electronic Devices, 6th edition, Pearson Education, 2003.
- 2. Muthusubramanian R., Salivahanan S. and Muraleedharan. K.A., Basic Electrical Electronics and Computer Engineering, Tata Mcgraw Hill, 2nd edition, 2006.
- 3. Thyagarajan T., Sendur Chelvi K.P. and Rangaswamy T.R., Engineering Basics, Revised 2nd edition, New Age International Pvt. Ltd.
- 4. Theraja B.L., Fundamentals of Electrical Engineering and Electronics, S. Chand Publishing, 2012.

COURSE OUTCOMES

- CO1: Acquire the knowledge of fundamental laws of electrical and electronics engineering.
- CO2: State the definition of magnetic circuits.
- CO3: Choose suitable motor for desired application.
- CO4: The students have the ability to apply the fundamental laws of magnetic circuits to electrical machines.
- CO5: The learners can verify the truth table of digital logic gates.

U15EET212/ ELECTRICAL AND ELECTRONIC	L	Т	Ρ	С
CIRCUITS	3	0	0	3
(Common to CSE & IT)	5	U	U	5

- To study the characteristics of circuit elements
- To understand relationships among current, voltage and power in DC and AC circuits
- To study the construction, characteristics and applications of amplifiers and oscillators circuitry

DC CIRCUITS

Electrical quantities – SI units – Circuit elements – Ohm's law – Kirchoff's laws – DC series and parallel circuits – Mesh and nodal analysis – Star to delta conversions – Simple problems.

AC CIRCUITS

Sinusoidal excitation – RMS, Average and Peak values – Phasor representation – Power factor – Single phase RC,RL and RLC circuits – Series and Parallel resonance – Introduction to three phase circuits: V, I and P equations – Simple problems.

SEMICONDUCTOR DIODE AND APPLICATIONS

N and P type semiconductors – PN junction – Biasing – VI characteristics – Diode operation – Rectifiers – Half wave, Full wave , Bridge rectifiers – Power supply filters – Zener diode – Applications – Optical diode.

TRANSISTORS AND APPLICATIONS

Transistors – Operation, Characteristics, Biasing – BJT amplifiers – CE – CB – CC – Multistage amplifiers – JFET, MOSFET – Characteristics, Biasing – SCR – Phototransistor.

OSCILLATORS AND OPERATIONAL AMPLIFIERS

Principle of oscillators – RC feedback Circuits – LC feedback circuits – Relaxation oscillators – Introduction to Operational Amplifiers – Input modes and Op- amp parameters – Op-amp with negative feedback – Comparator – Summing amplifier – Integrator and Differentiator.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

9 Hours

9 Hours

9 Hours

9 Hours wer facto

REFERENCES

- 1. Edminister and Nahvi, Electronic Circuits, Schaum's outlines, Tata MCGraw Hill, 1999.
- Robert L. Boylested and Louis Nahelsky, Electronic Devices & Circuit theory, Edition, Prentice Hall, 1999.
- 3. Choudhury R. and Jain S., Linear Integrated Circuits, 3rd edition, New Age Pub., 2007.
- 4. David A. Bell, Electronic Devices and Circuits, Prentice Hall of India, 2004.
- 5. Muthusubramaniam R., Salivahanan S. and Muraleedharan K.A., Basic Electrical Electronics and Computer Engineering, Tata McGraw Hill, 2nd edition, 2006
- 6. Thomas L. Floyd, Electronic Devices, 6th edition, Pearson Education, 2003

COURSE OUTCOMES

- CO1: Define & identify the basic electrical quantities and also able to calculate approximately the voltage, current parameters in DC circuits using basic laws.
- CO2: Understand the phasor representation of various AC circuit parameters and acquire knowledge on fundamentals of three phase ac circuits.
- CO3: Differentiate the various semiconductor diodes and rectifiers
- CO4: Summarize the characteristics of different types of transistors.
- CO5: Apply the achieved basic knowledge about oscillators & op-amp to different dc applications.

U15EEP101/ BASICS OF ELECTRIC CIRCUITS	L	Τ	Р	С
LABORATORY	0	0	4	2
(For Electrical and Electronics Engineering)	U	v	-	-

• To impart hands on experience in verification of circuit laws and theorems, measurement of circuit parameters, study of circuit characteristics and simulation of time response.

LIST OF EXPERIMENTS

- 1. Verifications of Ohm's Laws & Kirchhoff's Laws.
- 2. Verifications of Superposition theorem.
- 3. Verifications of Thevenin's theorem.
- 4. Verifications of Norton' s theorem.
- 5. Verifications of Reciprocity theorem.
- 6. Verifications of Maximum power transfer theorem.
- 7. Verifications of Mesh analysis.
- 8. Verifications of Nodal analysis.
- 9. Phasor relationships in RL & RC circuits.
- 10. Frequency response RL & RC Circuits
- 11. Frequency response of series resonance circuit.
- 12. Frequency response of parallel resonance circuit.

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Reduce the given complex circuit to simple circuit by applying theorems and can verify the theoretical and practical outputs
- CO2: Find the impedance value of the given circuit at which the maximum power is transferred and also confirms with the practical results
- CO3: Find the magnitudes of voltages and currents in the given circuit and verifies experimentally using mesh and nodal analysis
- CO4: Demonstrate frequency response, Phasor relationships for the given RL, RC circuits and verify experimentally.
- CO5: Design a circuit to accept or reject a particular frequency using resonance principle.

U15EEP211/ BASICS OF ELECTRICAL AND	L	Τ	Р	С
ELECTRONICS ENGINEERING LAB	0	0	Δ	2
(For Automobile Engineering & Mechanical Engineering)	v	U	-	-

- To experimentally verify the principle of operation, performance characteristics of DC Motors and AC Motors.
- To obtain the characteristics of electronic devices and its applications

LIST OF EXPERIMENTS

- 1. Load Test on DC Shunt Motor
- 2. Load Test on DC Series Motor
- 3. Speed Control of DC Shunt Motor
- 4. Load Test on three phase Induction Motor
- 5. Load Test on single phase Induction Motor
- 6. Load test on single phase transformer
- 7. Half wave and full wave rectifier
- 8. Characteristics of CE transistor configuration
- 9. Characteristics of PN diode
- 10. Verification of truth table of logic gates

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: The Students will gain the basic knowledge and understanding the concept of AC and DC machines.
- CO2: Students will know the working principle, performance characteristics, (Torque, Speed, Efficiency) control and applications of Electrical Machines.
- CO3: Students will be able to design and conduct performance experiments in machines and Rectifiers.
- CO4: To familiarize the starting methods of all rotating machines.
- CO5: Students will be exposed to the practical applications of identify and solve machines related problems.

U15EIT101 / ELECTRONIC DEVICES	L	Т	P	C	
(For Electronics and Instrumentation Engineering)	3	0	0	3	

- To describe how current flows through PN junction & relating this phenomena to the characteristics & operation of the diodes, bipolar, FET transistors.
- To expose students to the functions and application of diodes, BJT &FET in electronic circuits.

SEMICONDUCTOR DIODE

Theory of p-n junction - p-n junction as diode - Volt-amp characteristics - Diode resistance - Temperature effect of p-n junction - Transition and diffusion capacitance of p-n diode - Diode switching times.

BI-POLAR TRANSISTOR

Junction transistor – Transistor construction – Input and output characteristics of CE, CB and CC configurations – Transistor hybrid model for CE configuration – Transistor switching times – Voltage rating – Power transistors.

FIELD EFFECT TRANSISTORS

Junction field effect transistor – Pinch off voltage – JFET volt-ampere characteristics – JFET small signal model – MOSFETS and their characteristics – FET as a variable resistor – Unijunction transistor.

OPTO ELECTRONIC DEVICES

Photo emissivity and photo electric theory – Theory, construction and characteristics: light emitting diodes, liquid crystal cell, seven segment display, photo conductive cell, photodiode, solar cell, photo transistor, opto couplers and laser diode.

OTHER DEVICES

Theory, characteristics and application: SCR, TRIAC, PUT, tunnel diode, thermistors, piezo electric devices, zener diode, charge coupled devices, varactor diode and LDR.

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

REFERENCES

- 1. Jacob Millman, Christos C. Halkias, Electronic Devices and Circuits, Tata McGraw Hill Publishing Ltd., New Delhi, 2003.
- 2. Salivahanan S. and Suresh Kumar N., Electronic Devices and circuits, Tata McGraw Hill Publishing Ltd., New Delhi, 2003.
- 3. Godse A.P. and Bakshi U.A., Electronic Devices and Circuits, Technical Pub., 2010.
- 4. David A. Bell, Electronic Devices and Circuits, Prentice Hall of India (P) Ltd., New Delhi, 2003.

COURSE OUTCOMES

- CO1: Describe the construction of electronic devices like FET, BJT, PN Junction Diode.
- CO2: Describe the characteristics of electronic devices like FET, BJT, PN Junction Diode and other Electronics devices
- CO3: Explain the working principle of opto electronic devices.
- CO4: Explain the characteristics of devices like SCR, TRIAC, PUT, tunnel diode and many other devices used in electronic system.
- CO5: Explain the applications of devices like SCR, TRIAC, PUT, tunnel diode and many other devices used in electronic system

U15EIP201/ CIRCUITS AND DEVICES LABORATORY	L	Т	P	С
(For Electronics and Instrumentation Engineering)	0	0	4	2

- To experimentally verify the characteristics of P-N diode, BJT, FET, UJT, TRIAC SCR.
- To verify the various theorems like super position, Thevenin, Norton and Maximum power transfer theorem.

LIST OF EXPERIMENTS

- 1. Characteristics of semiconductor and Zener diode.
- 2. Characteristics of transistor under CE configuration and Determination of h parameters
- 3. Characteristics of transistor under CB configuration and Determination of h parameters
- 4. Characteristics of JFET.
- 5. Characteristics of UJT.
- 6. Verification of ohms law, Kirchhoff's voltage and current laws.
- 7. Verification of Thevenin's and Norton's Theorems.
- 8. Verification of Superposition and maximum power transfer theorem.
- 9. Characteristics of SCR.
- 10. Characteristics of Triac.
- 11. Characteristics of MOSFET
- 12. Characteristics of Resonance circuits.

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Demonstrate the working of PN junction diode and zener diode.
- CO2: Compute and experimentally verify thevenin's,Norton,Superposition, Maximum power transfer theorems.
- CO3: Demonstrate the working of semiconductor devices like BJT, SCR, TRIAC and MOSFET
- CO4: Experimentally verify the working of resonance circuits.
- CO5: Compute and experimentally verify Kirchhoff's voltage and current laws.

U15FTT101/ FIBRE SCIENCE	L	Т	Ρ	С
(For Fashion Technology)	3	0	0	3

To enable students to acquire knowledge on

- Cultivation and production of Natural and Man made fibres.
- Properties of natural, man-made and speciality fibres •
- Identification methods of natural and man-made fibres.

INTRODUCTION TO TEXTILE FIBRES

Definition of various forms of textile fibres - staple fibre, filament, bicomponent fibres. Classification of Natural and Man-made fibres, essential and desirable properties of Fibres. Introduction to fibre linear density and strength - units of measurements. Production and cultivation of Natural Fibers: Cotton, Silk, Wool, Flax, Jute -Physical and chemical structure of the above fibres.

MANUFACTURED FIBRES

Production Sequence of Regenerated Cellulosic fibres: Viscose Rayon, Acetate rayon - High wet modulus fibres: Modal and Lyocel -. Production Sequence of Synthetic Fibers: Polyester, Nylon and Acrylic. Introduction to spin finishes and texturisation.

BASIC FIBRE PROPERTIES

Physical (Tensile, Moisture, Density), Chemical, Biological, Thermal and Optical Properties of the above Natural, and manufactured fibres.

SPECIALITY FIBRES

Properties and end uses of high tenacity and high modulus fibres, high temperature and flame retardant fibres, elastomeric fibres, PLA fibre, ultra-fine fibres, nano-fibres, metallic fibres -Gold and Silver coated; Super-absorbent fibres for medical and hygiene applications

IDENTIFICATION OF TEXTILE FIBERS

Appearance (Microscopic view, Colour), Solubility, density and Burning tests

REFERENCES

- 1. Mishra S.P., "Fibre Science & Technology", New Age International Publishers, 2000.
- 2. Morton, W.E and Hearle, J.W.S., "Physical Properties of Textile Fibres", The Textile Institute, Manchester, U.K., 1993.
- 3. Muthopadhyay S.K., "Advances in Fibre Science", The Textile Institute, UK 1992.
- 4. Collier. B and Tortora.P, "Understanding Textiles", Edition 6, Prentice Hall, 2001.
- 5. Gupta V.B., "Textile Fibres: Developments and Innovations", Vol. 2, Progress inTextiles: Science & Technology, Edited by V.K. Kothari, IAFL Publications, 2000.
- 6. Corbman B.P., "Textiles: Fibre to Fabric", McGraw Hill International Edn, 1983

8 Hours

12 Hours

8 Hours

10 Hours

7 Hours

TOTAL: 45 HOURS

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

CO1: Recognize the Essential and desirable properties of fibres

CO2: Acquire Knowledge on the Cultivation of Natural fibres

CO3: Outline the production of Man – made fibres

CO4: Acquire Knowledge on the Properties of natural, man-made fibres

CO5: Identification of different natural and man-made fibres

U15FTT202/ YARN TECHNOLOGY	L	Т	P	С
(For Fashion Technology)	3	0	0	3

- To impart knowledge on the conventional and modern yarn manufacturing process
- To impart knowledge on the post spinning techniques
- To educate on the quality parameters of various yarns

SHORT STAPLE SPINNING SYSTEM (COTTON):

Ginning- objectives, types, suitability and principle of working. Sequence of process in cotton spinning; Objectives and principles of working of Blow room, Carding, Drawing, Combing, Simplex and Ring spinning- Basic Principles of Rotor spinning, Air jet spinning and DREF spinning systems.

LONG STAPLE SPINNING SYSTEM (WORSTED):

Sequence of process; objectives and principles of working of Scouring, Drying, Oiling, Dyeing, Blending, Carding, Gilling and Combing, Drawing, Roving and Spinning. Solo and Compact spinning systems - objectives and principles of working.

YARN QUALITY AND CHARACTERISTICS:

Acceptable yarn Quality standards of cotton, polyester, polyester / cotton.yarns.Yarn faults, imperfections and their identification.Comparison of characteristics of yarns from different spinning systems.

POST SPINNING:

Objectives and principles of working of Cone winding, Cheese winding, Reeling, Assembly winder, Ring doubler and Two for one twister (TFO) - Single yarn and ply yarn characteristics and their applications. Package faults (Cones and Hanks) and identification.

SEWING THREAD AND SPECIALITY YARNS:

Sewing Thread Manufacture: Fibres used and their characteristics. Essential quality requirements of sewing threads, Sequence of manufacturing process for sewing threads for cotton, polyester and polyester / cotton blends.Speciality Yarns: Fancy yarns, textured yarns and Melange yarns-Types and classifications. Core spun yarn production technique in ring frame.

TOTAL: 45 HOURS

REFERENCES

Klien,W.G,"TheTechnologyofShortStapleSpinning"TheTextileInstitute,,
Manhester,1988 (five volumes)
Mahendra Gowda, R. V, "New Spinning Systems", NCUTE Publication, Second Edition, 2006
Joseph. M. L, "Essentials of Textiles", Hold Rienhart Winston Pub. Co., New York, 1990
Oxtoby E, "Spun Yarn Technology", Butterworth and Co., London, 1991.
Corbmann, B. P, "Textiles: Fibre to Fabric", McGraw Hill Inc., USA, 1996.

9 Hours

9 Hours

9 Hours

9 Hours

Chellamani, K. P, Chattopadhyay. D, "Yarns and Technical Textiles" SITRA publication, First Edition, 1999

COURSE OUTCOMES

- CO1: Outline sequentially the processes involved in spinning short staple cotton yarns, and describe the working of various machines used
- CO2 Outline sequentially the processes involved in spinning long staple worsted yarns, and describe the working of various machines used,
- CO3 : Acquire knowledge on post spinning operations and machine used for the process
- CO4: Acquire knowledge on all the quality characteristics of yarn
- CO5: Outline sequentially the processes involved in the production of sewing threads and other speciality yarns

U15FTP101/ TEXTILE PRODUCTION PROCESS	L	Τ	Р	С
LABORATORY	0	0	Δ	2
(For Fashion Technology)	U	U		-

LIST OF EXPERIMENTS

- 1. Study of longitudinal and cross sectional view of natural and synthetic fibres
- 2. Identification of fibres through flammability test.
- 3. Identification of fibres through solubility test.
- 4. Determination of moisture regain of fibres
- 5. Determination of blend proportions of blends
- 6. Study of blow room
- 7. Study of carding
- 8. Study of Draw frame
- 9. Study of comber and simplex
- 10. Study of ring frame and Open end spinning.
- 11. Study of non automatic and automatic looms
- 12. Study of knitting machines

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Ability to identify the given fibre by choosing proper scientific method
- CO2: Knowledge of production process methods of yarn and woven and knit fabric
- CO3: Acquire Skill to determine the blend proportion
- CO4: Knowledge of production process methods of Ring spun and rotor spun yarn
- CO5: Knowledge of woven and knit fabric production process methods

U15ITT101/ FOUNDATIONS OF INFORMATION	L	Τ	P	C
TECHNOLOGY	3	0	0	3
(Common to CSE & IT)	5	U	U	5

- Acquire an overview of data storage and manipulation in computers
- Understand the basic concepts of operating systems, networks and database ٠
- Know the applications of Internet and Information Technology •

COMPUTER BASICS AND ARCHITECTURE 9 Hours

Information Technology Basics: Introduction - Role of IT - Information Technology and Internet

Computer Organization and Architecture: Introduction - CPU - Communication among various units - Instruction Format-Instruction Cycle - Instruction Set - Data Representation in Computers - Coding schemes

Computer Memory and Storage: Memory Hierarchy - Types of Memory - CPU interaction with memory - Secondary Storage devices and its types

BASICS OF OPERATING SYSTEMS AND NETWORKS

Operating systems: Evolution-Types of Operating System -Functions of Operating System-Coordinating machine activities-Handling competition among processes

Data Communication and Computer Networks: Introduction - Data Communication -Transmission Media - Modulation-Multiplexing - Switching - Network Topologies -Communication Protocol - Network devices

BASICS OF INTERNET AND DATABASES

Internet and Internet Tools: Internet Basics - Applications of Internet - Data over Internet -Web Browser - Email, Search Engines, Instant Messaging

Database Fundamentals: Logical and Physical Data Concepts - Database Management System - Architecture - Database Models - Types of databases - Data warehousing and Mining

COMPUTER SOFTWARE AND COMPUTER SECURITY 9 Hours

Introduction to Software - Categories of Software - Software Piracy - Software Terminologies

Computer Security : Security Threats - Malicious Programs – Cryptography - Digital Signature – Firewall - User Identification and Authentication **BASICS OF MULTIMEDIA AND FUTURE TRENDS IN IT**

9 Hours

9 Hours

Multimedia Essentials: Building blocks - Multimedia system - Applications of multimedia E-Commerce – EDI - Wireless Application Protocol - Smart Card - IPTV Blogging – RFID -Brain Computer Interface

TOTAL: 45 HOURS

REFERENCES

- 1. ITL Education solutions limited, Introduction to Information Technology, Pearson Education,2012
- 2. J. Glenn Brookshear , Computer Science: An Overview,11th edition, Pearson Education,2012
- 3. V.Rajaraman, Introduction to Information Technology,2nd Edition, PHI Learning Private Limited,2013

COURSE OUTCOMES

- CO1: Outline various functional components of computer system.[K2]
- CO2: Summarize the functions of operating systems, the different types of network topologies & protocols. [K2]
- CO3: Explain the various internet tools and fundamentals of database.[K2]
- CO4: Interpret the need of computer security. [K2]
- CO5: Explain the basics of multimedia and the future trends in IT. [K2]

U15ITP101/ COMPUTER HARDWARE AND	L	Τ	Р	C
PERIPHERALS LABORATORY	0	0	4	2
(For Information Technology)	U	U		-

- Acquire in-depth practical knowledge of the computer hardware and computer networks.
- Understand the assembly of PC and connection of networks
- Develop skill related to the trouble shooting and configuration of PC.

LIST OF EXPERIMENTS

- 1. Study of different types of cables and network topologies
- 2. Study of different types of network devices
- 3. Study and identification of Major parts of PC
- 4. Assembly and Disassembly of PC
- 5. Connecting a small LAN
- 6. IP configuration and Subnet masking.
- 7. Study and troubleshoot the boot process
- 8. Installation and configuration of Windows 2000
- 9. Implementation of Wireless Network
- 10. Study, Identification, Assembly and Disassembly of Printer and Monitor

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Explain the various computer hardware components and their functionality. [S]
- CO2: Illustrate the assembling process of a computer system. [S]
- CO3: Explain the local area network and file sharing methods. [S]
- CO4: Perform the installation of Windows and Linux operating system. [S]
- CO5: Explain the configuration of wireless adapter. [S]

U15MET101/U15MET201 ENGINEERING GRAPHICS	L	Т	Р	С	
(Common to all branches of Engineering and Technology)	2	4	0	4	

- To understand the principle of orthographic projection of points, lines, surfaces and solids.
- To understand the principle of section and development of solids.
- To understand the principle of Isometric and Perspective projections.
- To study the principle of free-hand sketching techniques.

PLANE CURVES, PROJECTION OF POINTS AND LINES 15 H

Importance of graphics in design process, visualization, communication, documentation and drafting tools, Construction of curves - ellipse, parabola, and hyperbola by eccentricity method only. Orthographic projection of points.

Projections of straight lines located in first quadrant - determination of true length and true inclinations.

PROJECTIONS OF SURFACES AND SOLIDS

Projections of plane surfaces - polygonal lamina and circular lamina, located in first quadrant and inclined to one reference plane., Projection of simple solids - prism, pyramid, cylinder and cone. Drawing views when the axis of the solid is inclined to one reference plane.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of simple solids - prisms, pyramids, cylinder and cone. Obtaining sectional views and true shape when the axis of the solid is vertical and cutting plane inclined to one reference plane. Development of lateral surfaces of truncated prisms, pyramids, cylinders and cones.

PICTORIAL PROJECTIONS

Isometric projection, Isometric scale, Isometric views of simple solids, truncated prisms, pyramids, cylinders and cones.

Perspective projection of prisms and pyramids when its base resting on the ground by vanishing point method.

FREE-HAND SKETCHING

Free hand sketching techniques, sketching of orthographic views from given pictorial views of objects, including free-hand dimensioning.

Sketching pictorial views from given orthographic views.

L: 30Hr; T: 45Hr; TOTAL = 75 HOURS

REFERENCES

15 Hours

15 Hours

15 Hours

15 Hours

- 1. Basant Agrawal and CM Agrawal, Engineering Drawing, McGraw-Hill, New Delhi, First Edition, 2008.
- 2. Venugopal K. and Prabhu Raja V., Engineering Graphics, New Age International (P) Limited, New Delhi, 2008.
- 3. Nataraajan K.V., Engineering Drawing and Graphics, Dhanalakshmi Publisher, Chennai, 2005.
- 4. Warren J. Luzadder and Jon. M. Duff, Fundamentals of Engineering Drawing, Prentice Hall of India Pvt. Ltd., New Delhi, Eleventh Edition, 2005.
- 5. Gopalakirishna K.R., Engineering Drawing (Vol. I & II), Subhas Publications, 2001.

COURSE OUTCOMES

- CO1: Construct various plane curves and projection of lines and surfaces.
- CO2: Develop projection of surfaces and solids.
- CO3: Solve problems in sections of solids and development of surfaces.
- CO4: Apply the concepts of isometric, and perspective projections
- CO5: Apply free hand sketching in engineering practice.

U15MET202/ ENGINEERING MECHANICS	L	Т	P	С	
(Common to CE, AUE, AE, ME, MCE & TXT)	2	2	0	3	

- To understand the concept of equilibrium of particles and rigid bodies.
- To understand the concept of first and second moment of area.
- To understand the concept of various types of frictions.
- To understand the principle of work energy method, Newton's law and impact of elastic bodies.

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics Lame's theorem, Parallelogram and triangular Laws of forces - Coplanar Forces - Resolution and Composition of forces - Free body diagram - Equilibrium of a particle.

EOUILIBRIUM OF RIGID BODIES

Moment of a force about point - Varignon s theorem- Moment of a couple-Resolution of force in to force couple system-Resultant of coplanar non concurrent system - Types of supports and their reactions- Requirements of stable equilibrium - Equilibrium of Rigid bodies in two dimensions.

PROPERTIES OF SURFACES AND SOLIDS

First moment of area and the Centroid of sections Rectangle, circle, triangle, T section, I section Angle section and Hollow section. Second and product moments of plane area Rectangle, triangle, circle. T Section, I section, Angle section and Hollow section, Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia.

FRICTION

Frictional force-Law of coloumb friction, simple contact friction, Rolling resistance and Belt friction, Ladder friction, Wedge friction.

DYNAMICS OF PARTICLES

Kinematics: Rectilinear & Curvilinear motion of particles, Displacements Velocity and acceleration.

Kinetics: Newton's law, Work Energy method, Impulse and Momentum, Impact of elastic bodies.

L: 45Hr; T: 15Hr; TOTAL = 60 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

REFERENCES

- 1. Sukumar T.R. and Sridhar S., Engineering Mechanics, Inder Publications, Coimbatore, 2013.
- 2. Hibbeller, R.C., Engineering Mechanics, Vol. I Statics and Vol. II Dynamics, Pearson Education, Asia Pvt. Ltd., 2000.
- 3. Ashok Gupta, Interactive Engineering Mechanics Statics A Virtual Tutor, Pearson Education, Asia Pvt. Ltd., New Delhi, 2002.
- 4. Palanichamy M.S., and Nagan S., Engineering Mechanics (Statics & Dynamics) Tata McGraw Hill, 2001.
- 5. Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition, Pearson Education, Asia Pvt. Ltd., 2003.
- 6. Beer F.P. and Johnson Jr. E.R., Vector Mechanics for Engineers, Vol. I Statics and Vol. II Dynamics, McGraw-Hill International Edition, 2004.
- 7. Rajasekaran S. and Sankarasubramanian G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt. Ltd., Second Edition, 2002.

COURSE OUTCOMES

- CO1: Explain the concept of equilibrium of particles and rigid bodies.
- CO2: Apply the concepts of equilibrium and moment of inertia for various shapes sections.
- CO3: Make use of various concepts of friction.
- CO4: Solve problems using the concepts in kinematics
- CO5: Solve problems in kinetics.

- To introduce principles of power generation utilizing various sources
- To introduce the basic concepts in various thermal applications like IC engines, gas, steam turbines and compressors.
- To gain knowledge regarding the fundamentals of fluid flow and their Applications.

POWER PLANT ENGINEERING

Introduction, Classification of Power Plants - Working principles of thermal (coal, gas and diesel), Hydro-electric and Nuclear Power plants - Merits and Demerits - Non-conventional power generation methods- Solar and wind power - Boilers - construction and working principles of Cochran, Babcock and Wilcox boilers

PRIME MOVERS

Steam turbines-Impulse (Delaval) and reaction turbines - Hydraulic prime movers- Pelton and Kaplan turbines- Internal combustion engines as automobile power plant - Working principles of Petrol and Diesel Engines - Four stroke and two stroke cycles - Comparison of four stroke and two stroke engines.

REFRIGERATION AND AIR CONDITIONING

Positive displacement compressors - Reciprocating compressors- Rotary positive displacement compressors - Construction and working principles of centrifugal and axial flow compressors. Refrigeration -Vapour compression and vapour absorption refrigeration - Air conditioning-Terminology- Classification as to season of the year - window room air conditioningthermoelectric cooling-applications.

FLUID PROPERTIES AND FLOW CHARACTERISTICS

Fluid properties - Viscosity - Surface Tension - Capillarity - Fluid Pressure and Pressure Head - Types of Fluid Flow - Flow Lines - Continuity Equation Euler's equations - Bernoulli's Equation and Applications – Viscous flow and turbulent flow

FLUID FLOW APPLICATIONS

Energy losses due to fluid flow - Flow through Circular Pipes - Flow through pipes in series and parallel - Major and Minor Losses - Hydraulic Grade Line and Total Energy Line - Working principles of centrifugal pumps, reciprocating pumps (single acting and double acting).

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

L Т Р С 4 0 0 4

REFERENCES

- 1. Domkundwar S., Kotandaraman C.P. and Domkundwar A.V., Thermal Engineering, Dhanpat Rai & Co, 2002.
- 2. Modi P.N. and Seth S.M., Hydraulic & Fluid Mechanics including Hydraulic Machines, Standard Book, 2006.
- 3. Venugopal K. and Prabhuraja V., Basic Mechanical Engineeering, Anuradha Publishers, 2005
- 4. Bansal R.K., Fluid Mechanics & Hydraulic Machines, Lakshmi Publications (P) Ltd., 2006

COURSE OUTCOMES

- CO1: Demonstrate understanding of basic concepts of thermodynamics and power plants
- CO2: Explain the working of prime movers.
- CO3: Understand the working of air conditioning systems.
- CO4: Solve problems in fluid properties
- CO5: Solve problems in flow dynamics.

U15MEP101 / U15MEP201 ENGINEERING PRACTICES	L	Τ	Р	C
LABORATORY	0	0	Δ	2
(Common to all branches of Engineering and Technology)	0	U	-	

LIST OF EXPERIMENTS

GROUP – I

A. CIVIL ENGINEERING

1. Carpentry

- Study of carpentry tools
- Preparation of T joint
- Preparation of dovetail joint

2. Plumbing

• Study of pipeline joints

B. MECHANICAL ENGINEERING

1. Fitting

- Study of fitting tools
- Preparation of L joint
- Preparation of square joint

2. Sheet Metal Working

- Study of sheet metal working tools
- Preparation of cone and tray

3. Welding

- Study of arc welding tools and equipment
- Preparation of butt joint

GROUP - II (ELECTRICAL & ELECTRONICS ENGINEERING) C. ELECTRICAL ENGINEERING PRACTICE

12 Hours

- Basic household wiring using switches, fuse, indicator-lamp, etc.,
- Preparation of wiring diagrams.
- Stair case light wiring.
- Tube light wiring
- Study of iron-box, fan with regulator, emergency lamp and microwave oven.

D. ELECTRONIC ENGINEERING PRACTICE

- 1. Assembling simple electronic component on a small PCB and Testing.
- 2. Soldering simple electronic circuits and checking continuity.
- 3. Measurements using digital multimeter.
 - DC and AC voltage measurement
 - DC and AC current measurements.
 - Resistance Measurement.
 - Continuity measurement.
- 4. Testing of Electronic components
 - Resistors
 - Inductors and capacitors
 - Diodes (resistance in forward bias and reverse bias)
 - Transistors
- 5. Study of CRO and Function generator
 - Study of Panel Controls
 - Measurement of Amplitude, Frequency, phase difference

TOTAL: 45 HOURS

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Select the various tools and equipments used in the fabrication workshop.
- CO2: Develop various models in carpentry, fitting,
- CO3: Make components using sheet metal work and welding.
- CO4: Demonstrate and evaluate the parameters of basic electronic components (wires, resistors, capacitors, diodes etc.) and test the components.
- CO5: Estimate DC and AC Voltage and currents using appropriate measuring instruments.

U15MEP202/ THERMAL ENGINEERING & FLUID	L	Τ	Р	С
MECHANICS LABORATORY	0	0	Δ	2
(For Electrical and Electronics Engineering)	U	U	-	

- Expected to gain knowledge regarding the working of IC engines and air compressors.
- Expected to gain knowledge regarding the fundamentals of fluid flow and their applications to flow through pipes and hydraulic machines.

LIST OF EXPERIMENTS

THERMODYNAMICS LAB

- 1. Study of a Petrol Engine
- 2. Study of a Diesel Engine
- 3. Study of a IC Engine
- 4. Performance evaluation of four stroke diesel engine using rope brake dynamometer
- 5. Test on reciprocating air compressor

FLUID MECHANICS LABORATORY

- 1. Flow measurements using venturi meter
- 2. Test to estimate frictional losses in pipe flow.
- 3. Test on positive displacement pump for obtaining its characteristics curves and design flow parameters.
- 4. Test on centrifugal pump for obtaining its characteristics curves and design flow parameters.
- 5. Test on jet pump for obtaining its characteristics curves and design flow parameters.
- 6. Test on reaction turbine for obtaining the characteristics curve and to design values of specific speed, discharge, output and efficiency.
- 7. Test on impulse turbine to obtain its characteristics curves and hydraulic design values.

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Conduct tests on engine performance.
- CO2: Study petrol engine working principles.
- CO3: Explain diesel engine working principles.
- CO4: Examine the pump characteristics
- CO5: Conduct test on turbines.

U15MCT 201/ ELECTRONIC DEVICES AND CIRCUITS	L	Т	Р	С	
(For Mechatronics Engineering)	3	0	0	3	

CIRCUIT THEORY

Network Theorems: Kirchoff's laws - Thevinin's and Norton's theorems - Superposition theorem. Two port networks: Z Parameters – Y parameters h parameters.

THEORY OF SEMICONDUCTOR DEVICES

PN junction - diode equation (Derivation not required) - forward and reverse bias - Diode dc and ac resistances - Zener diode - Bipolar Junction Transistor - CE, CB and CC configurations-Biasing of a transistor; fixed bias, collector feedback bias, self bias - FET - Common source and drain characteristics of JFET and MOSFET.

APPLICATIONS OF DIODES

HW and FW rectifiers – Filters with Capacitior and Inductors -Clippers and Clampers – Voltage Multipliers - Voltage regulators - Zener, series and shunt types.

AMPLIFIERS AND OSCILLATORS

Small signal amplifiers - h parameter model for low frequencies - Feedback amplifiers, cascading amplifiers, differential amplifier – Oscillators – Hartley and Colpitt oscillators.

OPERATIONAL AMPLIFIERS

Ideal characteristics - Inverting, Non-inverting - summer - Comparator, Integrator, differentiator - Schmitt trigger - R.C. Phase shift oscillator, Wein Bridge Oscillator -Multivibrators.

TOTAL: 45 HOURS

REFERENCES:

- 1. Albert Malvino and Bates J., Electronic Principles, Tata McGraw- Hill Pub. Company Ltd., 7th edition, 2008.
- 2. Millman J., Halkias C.C. and Satyabrata Jit, Electronic Devices and Circuits, Tata McGraw Hill, New Delhi, 2nd edition, 2008.
- 3. Thomas L. Floyd, Electronic Devices, Pearson Education Asia, 5th edition, 2001.
- 4. William Hayt, Kemmerly J. and Durban S.M., Engineering Circuit Analysis, McGraw Hill Education, 2011.
- 5. Sudhakar, Shyammohan and Palli S., Circuits and Networks: Analysis & Synthesis, Tata Mc Graw Hill, New Delhi, 4th edition, 2010
- 6. Salivahanan S., Suresh kumar N. and Vallavaraj A., Electronic Devices and Circuits, Tata Mc Graw Hill publishing company, New Delhi, 2nd edition, 2008
- 7. Roy Chowdhury D. and Jain Shail B., Linear Integrated Circuits, New Age Int. Pub., 4th edition, 2010

COURSE OUTCOMES

9 Hours

9 Hours

9 Hours

9 Hours

- CO1: Use passive elements and basic theorems to solve the electric circuits.
- CO2: Relate the basic semiconductor physics to the characteristics and biasing of low powered electronic devices.
- CO3: Design regulators and rectifiers using diodes.
- CO4: Design amplifiers for oscillators using transistors.
- CO5: Use operational amplifiers to solve simple mathematical operations and build conventional vibrators.

U15TXT201/ TEXTILE FIBERS	L	Τ	Р	C
(For Textile Technology)	3	0	0	3

At the end of the course the students would be exposed to

- Basic concepts about Textile Fibres
- Basic concepts about Specialty Fibres

INTRODUCTION

Definition of fibre, filament and yarn. Characteristics of fibre forming polymers, molecular weight, orientation and crystallinity. Classification of fibres. Essential and desirable properties of fibres. Concept of thermoplastic and thermoset materials.

NATURAL FIBRES

Vegetable fibres:

Cotton: Development of fibre in seed, morphological & chemical structure, physical & chemical properties and applications.

Jute and linen fibres : Chemical constituents, physical, chemical properties and applications of

Animal fibres:

Wool: Types of wool, grading of wool, morphological & chemical structure, physical & chemical properties and applications.

Silk: Types, morphological & chemical structure, physical & chemical properties and applications. Production of silk.

REGENERATED FIBRES

Basic production system of man-made fibres. Merits and demerits of man-made fibres; Viscose rayon: Raw material, physical & chemical properties and applications; Concept of high wet and low wet modulus fibres; Introduction to acetate & triacetate fibres, modal, lyocell and Tencel fibre.

Protein Base: General properties and applications of Caesin, soyabean and zein fibres.

SYNTHETIC FIBRES

Polyamide: Raw material, physical & chemical properties and applications of Nylon6&Nylon 6, 6; Polyester: Raw material, physical & chemical properties and applications. Flame retardant PET, Hygroscopic PET fibre and their applications. Polyacrylonitrile fibre: Raw material, physical & chemical properties and applications of acrylic and modacrylic fibre; Polypropylene and polyethylene: Raw material, physical & chemical properties and applications

9 Hours

9 Hours

9 Hours

SPECIALTY FIBRES AND FIBRE IDENTIFICATION

Raw material, General properties and applications of Aramid fibre, Carbon, Glass, PVA, Polyurethane, PVC fibre; Identification of textile fibres by microscopic, solubility, flammability and density methods.

CASE STUDY:

- 1. Demographic cultivation and production of cotton fibre in India.
- 2. Production trend of synthetic fibres for last five years.
- 3. Worldwide production of high performance fibres.

TOTAL: 45 HOURS

REFERENCES

- 1. Vaidya A.A., Production of synthetic fibres, Prentice Hall of India (P) Ltd., New Delhi, 1988.
- 2. Gupta V.B. and Kothari V.K., Manufactured fibre Technology, Chapman and hall, 1st edition, 1997.
- 3. Moncrieff R.W., Man made fibres, Butterworths Ltd., 1975.
- 4. Gordon Cook J., Hand book of Textile fibres, Vol. 1–Natural fibres, CBS Pub. and Distributors, 2005.
- 5. Gordon Cook J., Hand book of Textile fibres, Vol. 2–Manmade fibres, CBS Pub. and Distributors, 2005.
- 6. Sreenivasa murthy H.V., Introduction to Textile Fibres, The Textile Association (India) Pub., Mumbai, 1987.
- 7. Mishra S.P., A Textbook of fibre science and technology, New Age Int., 2000.
- 8. Gohl E.P.G. and Vilensky L.D., Textile Science, CBS Pub. and Distributors, New Delhi, 2003.

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Classify the textile fibres
- CO2: Describe about the properties of major textile fibres
- CO3: Compare the fundamental properties of major fibres
- CO4: List the end uses of major textile fibres
- CO5: Describe about the structure of textile fibres

U15TXP201 / FIBRE ANALYTICAL LABORATORY	L	Τ	Р	С
(For Textile Technology)	0	0	4	2

LIST OF EXPERIMENTS

- 1. Identification of textile fibres by microscopy method.
- 2. Studying swelling behavior of cotton/Viscose fibres.
- 3. Fibre maturity measurement by caustic soda method.
- 4. Identification of textile fibres by flammability methods.
- 5. Determination of moisture absorption properties of textile fibres.
- 6. Identification of textile fibres through solubility test.
- 7. Determination of blend proportion of given samples.
- 8. Effect of acids on fibres under various factors (Temperature/Time /Concentration).
- 9. Effect of alkalis on fibres under various factors (Temperature/ Time / Concentration).
- 10. Effect of oxidizing agents on fibres under various factors (Temperature/ time/Concentration).
- 11. Determination of molecular weight of polymers using viscometry.
- 12. Study of spin finish in manufactured fibres through soxhlet extraction

Creative Evaluation (Any two)

- 1. Properties of various domestic cotton variety
- 2. Properties of various imported cotton variety
- 3. Collection and characteristics analysis of various micro denier fibres
- 4. Collection and study of modified polyester fibres samples

TOTAL: 45 HOURS

COURSE OUTCOMES

- CO1: Identify & distinguish the major textile fibres
- CO2: Estimate the moisture regain and blend proportion of textile fibres
- CO3: Experiment on effect of temperature, time and concentration on fibre degradation
- CO4: Sketch the cross sectional and longitudinal view of major textile fibres
- CO5: Evaluate the spin finish percentage of manmade fibre & molecular weight of a polymer

U15GHP101/ PERSONAL VALUES -I	L	Т	P	С	
(Common to all branches of Engineering and Technology)	0	0	2	1	1

- To inspire students to become best Humans.
- To know about self.
- To overcome evil temperaments.
- To live with sound health.
- To reach Intuition.

HUMAN LIFE & EXCELLENCE

Human Excellence: Introduction – objective – personal values - importance. Life : Self – Society – Nature – Yoga – purpose of life – philosophy of Human life. Body, Soul, Mind & Their Functional Relationship : Panchboothas and it's association -Form of the body : physical body, astral body, causal body - Effect: Pain, Disease, Death; Soul - Life force - Bio magnetism - Genetic Centre - Mind : Origin & it's ten stages.

INTROSPECTION & THOUGHT ANALYSIS

Introduction – Importance – Blemishes – Six evil temperaments & their maneuvering. **Thought analysis:** Introduction - process of thought – Mind & Thought relationship – causes for origin of thoughts

Exercise: Training & Practice of Thought analysis

MORALIZATION OF DESIRE

Desire : Introduction - Causes - Types - Contra qualities evolving out of desire - Effect of unfulfilled desire - Renunciation - Is attainment of desire in harmony with Law of Nature. Training : Moralization of Desire.

NEUTRALIZATION OF ANGER

Introduction – Origin of Anger – Alternative forms of Anger – A chain action – Consequence of anger on self & others – Neutralization of anger – the point where anger is won. **Training** : Neutralizing anger.

ERADICATION OF WORRIES

Worry: Causes - Effects - Types of problems - Solution to problems - Overcoming Worries. **Training** – Eradication of Worries.

4 Hours

2 Hours

2 Hours

2 Hours

REALIZATION OF SELF

Transformation Theory – Understating Self – Guru's role in guiding – Who am I? – Shaping One's destiny. **Training** : Realization of self.

THEORY & PRACTICAL SESSION ON PHYSICAL EXERCISE: 9 Hours

Introduction – Hints & caution – Live in Health and harmony – Hand Exercise – Leg Exercise – Neuro muscular breathing Exercise – Kapalapathy – Magarasanas I & II – Massage – Acupressure – Body relaxation .

MEDITATION

Meditation: Agna Meditation – Shanthi Meditation.

TOTAL: 30 HOURS

- 1. Vethathiri's Maharishi's, *"Manavalakalai part 1,2&3"* 11th edition, The World Community Service Centre, Vethathiri Publications,1994.
- 2. Vethathiri Maharishi's, "*Rejuvenating Life Force and Mind*" paper-III for M.A. Yoga for Human Excellence" 3rd edition, The World Community Service Centre, Vethathiri Publications, 2010.
- 3. Swami Vivekananda, "*Selections from the complete works*" 23th edition , The Ramakirshna Mission Institute of Culture, 2007
- 4. Vethathiri's Maharishi's, *"Yoga for Modern Age"*, The World Community Service Centre, Vethathiri Publications, 2009.
- 5. Vethathiri's Maharishi's, "*Mind*" The World Community Service Centre, Vethathiri Publications, 1999.
- 6. Russell Kelfer, "Self Control", Tyndale House Publishers, 1985.
- 7. Swami Vivekananda, "*Karma Yoga*" 39th edition, The Ramakirshna Mission Institute of Culture, 2008.

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

- CO1: Acquire knowledge on the individual in relation to Nature and Society.
- CO2: Analysis purity of Thoughts, Moralization of Desire
- CO3: Learn about Neutralization of Anger.
- CO4: Develop skills in Sky yoga and Kaya kalpa.

2 Hours

U15GHP201/ FAMILY&PROFESSIONAL VALUES	L	Τ	Р	С	
(Common to all branches of Engineering and Technology)	0	0	2	1	

- To inculcate the basic need for family life and need to maintain peace in it.
- To lead spiritual development through good family life.
- To know the 5C's & 5E's.
- To know the examples for Self Control.
- To practice meditation & Pranayamam.

PEACE IN FAMILY

Family value: Meaning – Introduction – Essential family values – Greatness of friendship -Family members and their responsibility - Reason for misunderstanding in the family -Individual & family peace – Peace of mind – Vital behavioral requisites.

Greatness of womanhood: Good culture - Cultured behavioral patterns - Love and Compassion.

BLESSING – EFFECTS IN FAMILY

Introduction - Benefits - Mental Frequency level - Effect of vibrations - Make blessings a daily habit.

Training: Method of blessings.

FOOD IS MEDICINE

Food is medicine - Healthy food habits- Method of Medicinal food preparations - Food based on character.

PERSONALITY DEVELOPMENT CONCEPTS - 5C'S & 5E'S

Personality Concepts: Definition - Types of Personality- Personality development activities-Factors affecting personality development - Tools to improve personality- Steps to a dynamic personality-5 C's and 5 E's.

Time Management: Importance – Training.

LEADERSHIP TRAITS & SELF DEVELOPMENT

Leadership Traits – Carrying oneself - Factors of leadership – Principles of leadership. Self Development: Importance - Techniques to development oneself- How to develop oneself?-Ten Commandments of self-development- Self-control technique for teenagers.

Training: Method of Self-Control. SPIRITUAL DEVELOPMENT THROUGH KAYA KALPA YOGA

2 Hours

4 Hours

4 Hours

4 Hours

4 Hours

Spiritual development: Need – Development through Kaya Kalpa - Responsibility of men and women – Need of morality.

KayaKalpa yoga: Aim - kayakalpa philosophy - Importance of kayakalpa training.

Training: Kaya Kalpa Yoga.

EXERCISE & MEDITATION

10 Hours

Simplified Physical Exercise & Meditation Practice.

TOTAL: 30 HOURS

REFERENCES:

- 1. Dr. A. Chandra Mohan, "Leadership and Management", Himalaya Publication House,
- 2. Robert W. Bly, "Make Every Second Count", Career Press, Incorporated, 2010.
- 3. Vethathiri's Maharishi's, *"Manavalakalai part 1,2&3"* 11th edition, The World Community Service Centre, Vethathiri Publications,1994.
- 4. Vethathiri Maharishi's, *"Rejuvenating Life Force and Mind"* paper-III for M.A. Yoga for Human Excellence" 3rd edition, The World Community Service Centre, Vethathiri Publications, 2010.
- 5. Vethathiri's Maharishi's, *"Yoga for Modern Age"*, The World Community Service Centre, Vethathiri Publications, 2009.
- 6. Vethathiri's Maharishi's, *"Genetic Centre"*, The World Community Service Centre, Vethathiri Publications,2003.
- 7. Swami Vivekananda, "*Selections from the complete works*" 23th edition , The Ramakirshna Mission Institute of Culture, 2007
- 8. Vethathiri's Maharishi's, *"Mind"* The World Community Service Centre, Vethathiri Publications, 1999.
- 9. Vethathiri's Maharishi's, *"Kudumpa Amaithi"* The World Community Service Centre, Vethathiri Publications, 2001.
- 10. Russell Kelfer, "Self Control", Tyndale House Publishers, 1985.
- 11. Swami Vivekananda, "*Karma Yoga*" 39th edition, The Ramakirshna Mission Institute of Culture, 2008.

COURSE OUTCOMES

- CO1: Behaves as a responsible family member.
- CO2: Develop skills for personality improvement.
- CO3: Acquire practical knowledge on self-control technique for teenagers.
- CO4: Identify the significant of Genetic Centre for the Soul functional base operation.