KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

COIMBATORE - 641049

B.E., MECHATRONICS ENGINEERING

REGULATIONS 2017

CURRICULUM AND SYLLABI

1 to 8 Semesters

DEPARTMENT OF MECHATRONICS ENGINEERING

VISION

To achieve academic and industrial excellence in industrial automation research and innovative product development driven by mechatronics systems.

MISSION

- Impart the right blend of knowledge and skills to students and enable them to apply it in real life situations.
- Motivate the students towards interdisciplinary research to cater to the local and global needs.
- Achieve innovation in developing industrial products with social responsibility.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of Mechatronics Engineering Undergraduate Program are to prepare the students:

- I. To develop innovative and sustainable products with multidisciplinary Engineering expertise.
- **II.** To solve complex engineering problems by applying mechanical, electrical and computer knowledge and engage in lifelong learning in their profession
- **III.** To work or pursue higher education in multicultural, multilingual and multinational environment with competent oral and written communication.
- **IV.** To lead and contribute in a team entrusted with professional, social and ethical responsibilities.

PROGRAM OUTCOMES (POs)

Graduates of the Aeronautical Engineering Undergraduate Program should have the ability to:

- **PO1:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- **PO6:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:**Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:**Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:**Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:**Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:**Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **PO12:**Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates of the Mechatronics Engineering Undergraduate Program will have the ability to:

- **PSO1.** Design and develop Mechatronics systems to solve the complex engineering problem by integrating electronics, mechanical and control systems.
- **PSO2.** Apply the engineering knowledge to conduct investigations of complex engineering problem related to instrumentation, control, automation, robotics and provide solutions

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE – 641 049 REGULATIONS 2017 <u>B.E. MECHATRONICS ENGINEERING</u> CURRICULUM

SEMESTER-I

Course Code	Course Title	Course	Course	L	Т	Р	J	С
		category	Mode					
U17MAT1101	Linear Algebra and Calculus	BS	Theory	3	1	0	0	4
U17MET1101	Engineering Graphics	ES	Theory	2	1	0	0	3
U17PHT1010	Physics for Mechatronics Engineering	BS	Theory	3	0	0	0	3
U17CHT1008	Chemistry for Mechatronics Engineering	BS	Theory	3	0	0	0	3
U17CSI1211	Structured Programming using C	ES	Embedded	3	0	2	0	4
U17ENI1201	English for Cognizance	HS	Embedded	1	0	2	0	2
U17MEP1501	Engineering Practices Laboratory	ES	Lab	0	0	2	0	1
U17PHP1501	Physics Laboratory	BS	Lab	0	0	2	0	1
U17VEP1501	Personal Values	HS	Lab	0	0	2	0	1
	·			Т	otal	Cre	edits	22
			Total P	erio	ds p	er v	veek	27

	SEMESTER	·II						
Course Code	Course Title	Course category	Course Mode	L	Т	Р	J	C
U17MCT2001	Manufacturing Technology	PC	Theory	3	0	0	0	3
U17MCT2002	Electronic Devices and Circuits	ES	Theory	3	0	0	0	3
U17MET2102	Engineering Mechanics	ES	Theory	3	1	0	0	4
U17PHT2008	Material Science for Mechatronics Engineering	BS	Theory	3	0	0	0	3
U17MAT2101	Advanced Calculus and Laplace Transforms	BS	Theory	3	1	0	0	4
U17ENP25	Language Elective	HS	Lab	0	0	4	0	2
U17CHP2501	Chemistry Laboratory	ES	Lab	0	0	2	0	1
U17MCP2501	Electronic Devices and Circuits Laboratory	ES	Lab	0	0	2	0	1
U17ISP2701	Social Immersion Project	eRIDE	Project	0	0	0	4	2
U17VEP2502	Inter-Personal values	HS	Practical	0	0	2	0	1
				r	Fota	l Cı	edits	s 24
Total Periods per week								31

 \leq

		Semeste	er III							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U17MAT3101	Partial Differential Equations and Transforms	Theory	BS	3	1	0	0	4	-
2	U17MCI3201	Electrical Machines	Embedded - Theory & Lab	PC	3	0	2	0	4	-
3	U17MCT3002	Mechanics of solids	Theory	ES	3	1	0	0	4	-
4	U17MCT3003	Fluid Mechanics and Thermal Sciences	Theory	ES	3	0	0	0	3	-
5	U17MCP3504	Manufacturing Technology Laboratory	Laboratory	PC	0	0	2	0	1	-
6	U17INI3600	Engineering Clinic I	Project based Course	ES	0	0	4	2	3	-
						Tota	al Cr	edits	19	
Total Contact Hours/week							24			

Semester IV										
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U17MAT4101	Numerical Methods and Probability	Theory	BS	3	1	0	0	4	-
2	U17MCI4201	Hydraulics and Pneumatics	Embedded - Theory & Lab	PC	3	0	2	0	4	U17MCT3 003
3	U17MCI4202	Sensors and Instrumentation	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U17MCT4103	Theory of Machines	Theory	PC	3	1	0	0	4	-
5	U17MCT4004	Digital Electronics and Microprocessor	Theory	PC	3	0	0	0	3	-
6	U17INI4600	Engineering Clinic II	Project based course	ES	0	0	4	2	3	-
					7	Fota	Cre	dits	22	
			Tot	tal Co	ntact	Hou	ırs/w	eek	27	

P Sau

		Semester	V							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U17MCI5201	Industrial Electronics and Drives	Embedded - Theory & Lab	PC	3	0	2	0	4	U17MCI3201
2	U17MCI5202	Programmable logic controllers	Embedded - Theory & Lab	PC	3	0	2	0	4	_
3	U17MCT5003	Design of Machine Elements	Theory	PC	3	0	0	0	3	U17MCT3102
4	U17MCT5004	Control Engineering	Theory	PC	3	0	0	0	3	-
5	U17MCO0***	Open Elective I	Theory	OE	3	0	0	0	3	-
6	U17INI5600	Engineering Clinic III	Practical and Project	ES	0	0	4	2	3	-
Total C	redits								20	
Total C	Contact Hours/wee	ek 🛛							25	
		Semester	VI	_						
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U17MCI6201	Robotics Engineering	Embedded - Theory & Lab	PC	3	0	2	0	4	U17MCT4004
2	U17MCI6202	Microcontroller and Embedded Systems	Embedded - Theory & Lab	PC	2	0	2	0	3	U17MCT3005
3	U17MCI6203	Computer aided Manufacturing	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U17MCE00**	Professional Elective I	Theory	PE	3	0	0	0	3	-
5	U17MCO0***	Open Elective II	Theory	OE	3	0	0	0	3	-
6	U17MCE00**	Professional Elective - II	Theory	PE	3	0	0	0	3	-
7	U17INI6600	Engineering Clinic IV	Practical and Project	ES	0	0	4	2	3	-
Total C	redits								23	
Total C	Contact Hours/wee	ek 📃 🗌	٨		7				30	
51Page										

5 | P a g e

		Semester V	'II							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U17MBT7001	Engineering Economics and Financial Management	Theory	HS	3	0	0	0	3	-
2	U17MCT7001	Autonomous Vehicle	Theory	PC	3	0	0	0	3	U17MCI6202
3	U17MCT7002	Image Processing and Computer Vision	Theory	PC	3	0	0	0	3	-
4	U17MCE00**	Professional Elective III	Theory	PE	3	0	0	0	3	-
5	5 U17MCE00** Professional Elective IV		Theory	PE	3	0	0	0	3	-
6	U17MCP7701	Project – Phase I	Project based course	PW	0	0	0	6	3	
Total C	Total Credits						18			
Total C	contact Hours/weel	X							21	
S.No	S.No Course code Course Title Course Mode CT L T P							J	С	Pre-requisite
1 U17MCP8701 Project – Phase II / Internship Project – Phase II / based co				PW	0	0	0	24	12	-
		Total Credits	5						12	
		Total Contact Hour	s/week						24	
			Total Cred	its (3 rd	to 8	th Sei	mest	er)	114	
		er)	160							

P Same

		Mandatory courses			
No.	Course code	Course Title	Course Mode	СТ	Sem.
1	U17VEP3503	Family Values	Workshop	MC	3
2	U17VEP4504	Professional Values	Workshop	MC	4
3	U17CHT4000	Environmental Science	Theory	MC	
4	U17VEP5505	Social Values	Workshop	MC	5
5	U17INT5000	Constitution of India	Theory	MC	
6	U17VEP6506	National Values	Workshop	MC	6
7	U17VEP7507	Global Values	Workshop	MC	7

			Programme Elec	tives						
S.No	Course code		Course Title	Course Mode	СТ	L	Т	Р	J	С
			Mechatronics Sys	stems						
1.	U17MCE0001	Automo	tive Electronics	Theory	PE	3	0	0	0	3
2.	U17MCE0002	Conditi	on Monitoring	Theory	PE	3	0	0	0	3
3.	U17MCE0003	Micro E Systems	llectro Mechanical	Theory	PE	3	0	0	0	3
	Com	putation	al Intelligence							
4.	U17MCE0004	Artificia Machin	al Intelligence and e Learning	Theory	PE	3	0	0	0	3
5.	U17MCE0005	Databas System	e Management	Theory	PE	3	0	0	0	3
6.	U17MCE0006	Soft Co	oft Computing		PE	3	0	0	0	3
7.	U17MCE0014	Underw	nderwater Robotics		PE	3	0	0	0	3
	Desi	gn and M	Ianufacturing							
8.	U17MCE0007	Smart N	Ianufacturing	Theory	PE	3	0	0	0	3
9.	U17MCE0008	Statistic	al Quality Control	Theory	PE	3	0	0	0	3
10.	U17MCE0009	Compos Materia	mposite and Smart aterials		PE	3	0	0	0	3
11.	U17MCE0010	Additiv	e Manufacturing	Theory	PE	3	0	0	0	3
		Autor	Automation				-			
12.	U17MCE0011	Design systems	of material handling	Theory	PE	3	0	0	0	3
13.	U17MCE0012	Design Assemb	for manufacturing and ly	Theory	PE	3	0	0	0	3
14.	U17MCE0013	Precisio	n Manufacturing	Theory	PE	3	0	0	0	3
15.	U17MCE0015	Operation	n Research	Theory	ר PE	3	0	0	0	3
· · · · ·			5	l			•		•	

SEMESTER I

 \leq

Linear Algebra and Calculus

(Common to AE, AUE, CE, MCE, ME)

 L
 T
 P
 J
 C

 3
 1
 0
 0
 4

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Identify eigen values and eigen vectors, apply Cayley Hamilton theorem and convert	K3
	quadratic form to canonical form	
CO2:	Determine the radius, centre, circle of curvature of functions	K4
CO3:	Discover the evolutes of curves and the envelope of a family of curves.	K4
CO4:	Solve first order ordinary differential equation and apply in some Physical situations	K4
CO5:	Solve higher order ordinary differential equations and apply the knowledge	K4
	to physical situations	
CO6:	Evaluate the total derivative of a function, expand the given function as series and locate	K4
	the maximum and minimum for multivariate functions.	

Pre-requisite

Nil

					CO/	PO Maj	oping					
	(S/I	M/W ind	licates s	trength	of corre	lation)	S-S	Strong, N	/I-Mediu	ım, W-'	Weak	
COs					Progr	amme O	utcomes	(POs)				
COS	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1	S	S							Μ	М		Μ
CO2	S	S							М	М		Μ
CO3	S	S							М	М		М
CO4	S	S							М	М		М
CO5	S	S							М	М		М
CO6	S	S							М	М		М
~												

Course Assessment methods:

DIRECT	INDIRECT	
1. Continuous Assessment Test I, II	1. Course -end survey	
2. Open book test; Cooperative learning report,		
Assignment; Journal paper review, Group		
Presentation, Project report, Poster preparation,		
Prototype or Product Demonstration etc. (as		
applicable)		
3. End Semester Examination		
MATRICES		9 + 3 Periods
Rank of a matrix - Linearly dependent and independent	nt vectors – Eigen values and eig	gen vectors of a
real matrix - Properties of eigen values and eigen vector	rs – Cayley Hamilton theorem (e	excluding proof)
- Orthogonal matrices - Orthogonal transformation	of a symmetric matrix to di	agonal form –
Reduction of quadratic form to canonical form by orthog	gonal transformation.	

GEOMETRICALAPPLICATIONS OF DIFFERENTIAL CALCULUS 4+1 Periods

Curvature – Radius, Centre and Circle of curvature in Cartesian, Parametric and Polar for	orm
EVOLUTES AND ENVELOPES	5 + 2 Periods
Evolute – Envelope of family of curves with one and two parameters – Evolute as the er	velope of
normal – properties of evolute and envelope.	
FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS	9 + 3 Periods
Leibnitz's equation – Bernoulli's equation – Equations of first order and higher degree -	Clairauts form
– Applications: Orthogonal trajectories and Newton's law of cooling	
HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS	9 +3 Periods
Linear equations of second and higher order with constant coefficients – Euler's and L	egendre's linear
equations – Method of variation of parameters – First order Simultaneous linear equatio	ns with constant
coefficients - Application - Mass-spring mechanical system. (Differential equations	and associated
conditions should be given).	0.00.1
FUNCTIONS OF SEVERAL VARIABLES	9+3 Periods
Total derivative – Taylor's series expansion – Maxima and minima of functions of Constrained maxima and minima: Lagrange's multiplier method with single constraints	two variables – – Jacobians.
Theory: 45 Tutorial: 15 Practical: 0 Project: 0 Tota	l : 60 Periods
REFERENCES	
1. Kreyzig E., "Advanced Engineering Mathematics", Eighth Edition, John Wiley and s	ons, 2010.
2. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44	^h Edition.
3. Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill Pub	. Co. Ltd., New
Delhi, Revised Edition, 2007.	
4. Kandasamy P., Thilagavathy K., and Gunavathy K., "Engineering Mathematics", New Dalhi (Deprint) 2008	S. Chand & Co.,
New Defini, (Reprint) 2008.	(Devriced) 2000
5. Arunacharanni, L., Engineering Mathematics I, SH Vignesh Fublications, Combatore.	(Revised) 2009.
7 Ramana BV "Higher Engineering Mathematics" Tata McGraw Hill Publishing	Company New
Delhi (2007)	company, new
E books and online learning materials	
1. Advanced Engineering Mathematics, P. V. O'Neil, 5th Indian reprint, 2009, Ce	
India Pvt. Ltd.	ngage Learning
	ngage Learning
2. Advanced Engineering Mathematics, Dennis Zill Warren S Wright Michael R.	ngage Learning Cullen, 4th
2. Advanced Engineering Mathematics, Dennis Zill Warren S Wright Michael R. edition, 2011, Jones & Bartlett Learning.	ngage Learning Cullen, 4th
 Advanced Engineering Mathematics, Dennis Zill Warren S Wright Michael R. edition, 2011, Jones & Bartlett Learning. Online Courses and Video Lectures: 	ngage Learning Cullen, 4th

	^
	V
Saul	

U17MET1101	Engineering Crephics	L	Т	Р	J	C
	Engineering Graphics	2	1	0	0	3
a						

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Construct various plane curves.						
CO2:	Construct projection of points and projection of lines.						
CO3:	Develop projection of surfaces and solids.						
CO4:	Solve problems in sections of solids and development of surfaces.						
CO5:	Apply the concepts of isometric, and perspective projections						
CO6:	Apply free hand sketching in engineering practice.						
Pre-r	Pre-requisite						

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation)					S-S	strong, N	/I-Mediu	ım, W-	Weak		
COs					Progr	amme O	utcomes	(POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	Μ										
CO2	S	S									W	
CO3	S	S									М	
CO4	S	S										
CO5	S											
CO6	S											

Course Assessment methods:

DIRECT	INDIRECT	
1. Continuous Assessment Test I, II (Theory	1. Course-end survey	
component)		
2. Open book test; Cooperative learning report,		
Assignment; Journal paper review, Group		
Presentation, Project report, Poster preparation,		
Prototype or Product Demonstration etc (as		
applicable) (Theory component)		
3. End Semester Examination (Theory component)		
PLANE CURVES, PROJECTION OF POINTS ANI	D LINES	6 + 3 Periods
Importance of graphics in design process, visualization	on, communication, documentati	on and drafting
tools, Construction of curves - ellipse, parabola,	and hyperbola by eccentricity	method only.
Orthographic projection of points. Projections of straigh	t lines located in first quadrant -	determination of
true length and true inclinations		
PROJECTIONS OF SURFACES AND SOLIDS		6 + 3 Periods
Projections of plane surfaces - polygonal lamina and circ	ular lamina, located in first quadr	ant and inclined
11 Page	1	

					-	D · ·
to one ref	ference plan	e. Projection of si	mple solids - prism	, pyramid, cylinde	r and cone	e. Drawing views
when the	axis of the s	solid is inclined to	one reference plane			-
SECTIO	N OF SOL	IDS AND DEVEI	LOPMENT OF SU	RFACES		6 + 3 Periods
Sectioning	g of simple	solids - prisms, r	oyramids, cylinder	and cone. Obtainin	g sectiona	l views and true
shape whe	en the axis o	f the solid is vertica	al and cutting plane	inclined to one refer	rence plane	e.
Developm	nent of later	al surfaces of trunc	cated prisms, pyram	ids, cylinders and o	cones	
PICTOR	RIAL PRO	IECTIONS	• • • •	· *		6 + 3 Periods
Isometric	projection.	Isometric scale, Is	sometric views of si	mple solids, trunca	ted prisms.	, pyramids,
cylinders	and cones	,		1 /	1	× 1 5
Perspecti	ve projectio	on of prisms and py	ramids when its ba	se resting on the gr	ound by va	anishing point
method.		_				1
FREE-H	IAND SKE	TCHING				6 + 3 Periods
						0 1 0 1 0110005
Free hand	d sketching	techniques, sketch	ning of orthographic	c views from given	pictorial v	views of objects,
Free hand including	d sketching g free-hand o	techniques, sketch limensioning.	ning of orthographic	c views from given	pictorial v	views of objects,
Free hand including Sketching	d sketching g free-hand o g pictorial v	techniques, sketch limensioning. iews from given of	ning of orthographic rthographic views.	e views from given	pictorial v	views of objects,
Free hand including Sketching	d sketching g free-hand o g pictorial v heory: 30	techniques, sketch dimensioning. iews from given or Tutorial: 15	ning of orthographic rthographic views. Practical: 0	e views from given Project: 0	pictorial v Tota	views of objects,
Free hand including Sketching TI	d sketching g free-hand o g pictorial v heory: 30	techniques, sketch limensioning. iews from given of Tutorial: 15	ning of orthographic rthographic views. Practical: 0	e views from given Project: 0	pictorial v Tota	views of objects,
Free hand including Sketching T REFERE 1.	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI	techniques, sketch dimensioning. iews from given of Tutorial: 15	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub	e views from given Project: 0 plishing house, 54 th	pictorial v Total edition, 20	i : 45 Periods
Free hand including Sketching T REFERE 1. 2.	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI Venugor	techniques, sketch dimensioning. iews from given or Tutorial: 15), Engineering Dra al K. and Prabhu R	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub Raja V., Engineering	Project: 0 Project: 0	pictorial v Total edition, 20 ge Internati	1 : 45 Periods)14. ional (P)
Free hand including Sketching REFERE 1. 2.	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI Venugop Limited.	techniques, sketch limensioning. iews from given of Tutorial: 15), Engineering Dra al K. and Prabhu R New Delhi, 2016.	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub Raja V., Engineering	e views from given Project: 0 plishing house, 54 th g Graphics, New Ag	pictorial v Total edition, 20 ge Internati	I : 45 Periods)14. ional (P)
Free hand including Sketching The REFERE 1. 2. 3.	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI Venugop Limited, Nataraaja	techniques, sketch dimensioning. <u>iews from given or</u> Tutorial: 15 D, Engineering Dra val K. and Prabhu R New Delhi, 2016. an K.V., Engineeri	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub Raja V., Engineering ng Drawing and Gr	e views from given Project: 0 plishing house, 54 th g Graphics, New Ag aphics, Dhanalaksh	pictorial v Total edition, 20 ge Internati	1 : 45 Periods 14. ional (P) her. Chennai.
Free hand including Sketching T REFERE 1. 2. 3.	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI Venugop Limited, Nataraaja 2006	techniques, sketch dimensioning. iews from given of Tutorial: 15), Engineering Dra val K. and Prabhu R New Delhi, 2016. an K.V., Engineeri	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub Raja V., Engineering ng Drawing and Gr	c views from given Project: 0 lishing house, 54 th g Graphics, New Ag aphics, Dhanalaksh	pictorial v Total edition, 20 ge Internati nmi Publish	1 : 45 Periods 14. ional (P) her, Chennai,
Free hand including Sketching REFERE 1. 2. 3. 4	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI Venugop Limited, Nataraaja 2006. Basant A	techniques, sketch dimensioning. <u>iews from given or</u> Tutorial: 15), Engineering Dra val K. and Prabhu R New Delhi, 2016. an K.V., Engineeri grawal and Agraw	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub Raja V., Engineering ng Drawing and Gr	e views from given Project: 0 Dishing house, 54 th g Graphics, New Ag aphics, Dhanalaksh g Drawing and Grar	Total edition, 20 ge Internati nmi Publish	1 : 45 Periods 1 : 45 Periods 14. ional (P) her, Chennai, raw Hill
Free hand including Sketching REFERE 1. 2. 3. 4.	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI Venugop Limited, Nataraaja 2006. Basant A Edition(techniques, sketch dimensioning. <u>iews from given or</u> Tutorial: 15), Engineering Dra val K. and Prabhu R New Delhi, 2016. an K.V., Engineeri grawal and Agraw ndia) 2013	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub Raja V., Engineering ng Drawing and Gr al C.M, Engineering	e views from given Project: 0 plishing house, 54 th g Graphics, New Ag aphics, Dhanalaksh g Drawing and Grap	pictorial v Total edition, 20 ge Internati nmi Publish phics,McGr	1 : 45 Periods 1 : 45 Periods 14. ional (P) her, Chennai, raw Hill
Free hand including Sketching T REFERE 1. 2. 3. 4.	d sketching g free-hand o g pictorial v heory: 30 ENCES Bhatt NI Venugop Limited, Nataraaja 2006. Basant A Edition(I	techniques, sketch dimensioning. iews from given of Tutorial: 15), Engineering Dra val K. and Prabhu R New Delhi, 2016. an K.V., Engineeri grawal and Agraw ndia), 2013.	ning of orthographic rthographic views. Practical: 0 wing, Charotar Pub Raja V., Engineering ng Drawing and Gr ral C.M, Engineering	Project: 0 Project: 0 Ilishing house, 54 th g Graphics, New Ag aphics, Dhanalaksh g Drawing and Grap	pictorial v Total edition, 20 ge Internati nmi Publish phics,McGu	1 : 45 Periods 1 : 45 Periods 14. ional (P) her, Chennai, raw Hill

P Sau

U17PHT1010	Dhyging for Machatronias Engineering	L	Т	Р	J	С
	T hysics for wreenationics Engineering	3	0	0	0	3
ourse Outcomes						

Course Outcomes

	After successful completion of this course, the students should be able to
CO1:	Analyze and identify the crystal structure in materials
CO2:	Comprehend the types of lasers, optical fibers and its applications.
CO3:	Understand the dual nature of light and its applications.
CO4:	Enumerate the principles and methods for the generation of ultrasonic waves.
CO5:	Apply the NDT techniques as modern engineering tools for measurements.
CO6:	Perceive the principles of electromagnetism.

CO/PO Mapping

Pre-requisite

Nil

	(S/I	M/W ind	licates s	trenath	of corre	lation)	S-S	Strona. N	/I-Mediu	ım. W-'	Weak	
CO -	(0/1			aongar	Progr	amme O	utcomes	(POs)		, ••	rioun	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	М										М
CO2	S	М			S							М
CO3	S	М			S							М
CO4	S	М			S							М
CO5	S	М			S							М
CO6	S	М					Μ					М

Course Assessment methods:

	DIRECT	INDIRECT
1.	Continuous Assessment Test I, II	1. Course-end survey
2.	Group Presentation, Project report, Poster preparation, End Semester Examination	
	Semester Examination	

CRYSTAL PHYSICS

9 Periods

Space lattice - unit cell - lattice planes - Bravais space lattices - Miller indices - calculation of interplanar distances – atomic radius – co- ordination number – packing factor for SC, BCC, FCC and

Signature of BOS chairman, MCE

 \leq

HCP structures. Crystal imperfections: point defects – line defects – surface defects – volume defects – effect of crystal imperfections.

APPLIE	DOPTICS	9 Periods						
Air wedg	e and its applications - Lasers – spontaneous and stimulated emissions – Einste	in's coefficients						
- types of laser - Nd : YAG, CO2 and semiconductor laser - Homo junction (qualitative description)								
- applications - Holography (Qualitative only). Optical fiber: Principle and propagation of								
light in c	ptical fibers - numerical aperture and acceptance angle -types of optical fibers	s – light sources						
and detec	ctors – communication system.	0						
QUANT	UM PHYSICS	9 Periods						
Introduct	ion - Planck's quantum theory of black body radiation (derivation) - photo	electric effect						
(qualitati	ve description only) - Compton effect (derivation) and experimental verification	on of Compton						
effect -	De-Broglie's concept - Schrodinger wave equation - time independent and	time dependent						
equation	s (derivation) - physical significance of wave function - particle in a box (c	one dimensional						
case).								
ULTRA	SONICS AND NDT	9 Periods						
Ultrasoni	cs: Production of ultrasonics - magnetostriction oscillator - piezo electric method	l – properties –						
detection	– acoustic grating – applications - SONAR.							
NDT: Lic	uid penetrant method – ultrasonic flaw detector: A scan, B scan and C scan – X	- ray						
radiograp	hy and fluoroscopy – thermography.							
ELECT	ROMAGNETISM	9 Periods						
Magnetic	effects of electric current - magnetic fields - definition of fundamental terms. p	ermeability -						
forces du	e to currents - uniform and non-uniform magnetic fields - static and time-varyin	g magnetic						
fields - el	ectromagnetic induction - expression for induced emf - Gauss theorem - electro	magnetic waves						
- propaga	tion of electromagnetic waves through isotropic media - Maxwell's equations ar	nd interpretation						
of Maxwe	ell's equations							
Theory:	45 Tutorial: 0 Practical: 0 Project: 0 Total: 4	5 Periods						
REFERE	INCES							
1.	Richard Wolfson, -Essential University Physics, Vols. 1 and 2. Pearson Edu	cation,						
	Singapore, 2011.							
2.	Crawford Jr Waves, F.S. – Berkeley Physics Course, Vol. 3, 2008.							
3.	Purcell, E.M, —Electricity and Magnetism – Berkeley Physics Course, Vol. 2	z, Tata						
	McCraw-Hill ,2007.							
4.	Avadhanulu M.N. and Kshirsagar P.G., A textbook of Engineering Physics, S	.Chand&						
	Company Ltd, New Delhi,2005.							
5.	Gaur R.K. and Gupta S.L., Engineering Physics, 8th edition, DhanpatRai Pub	lications (P)						
	Ltd., New Delhi, 2003.							
6.	Palanisamy P.K., Engineering Physics I, Scitech Publications, Chennai, 2011.							
7.	Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.							
8.	Rajendran V, Applied Physics, Tata McGraw Hill Publishing Company Limit	ed, New Delhi,						
	2003.							
9.	Gopal S., Engineering Physics, Inder Publications, Coimbatore, 2006.	· D 2015						
10.	Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford Univer	sity Press, 2015.						

 \leq

U17CHT1008		L	Т	Р	J	С
	Chemistry for Mechatronics Engineering	3	0	0	0	3

Course Outcomes

	After successful completion of this course, the students should be able to
CO1:	Discuss Basic concepts of electrochemistry involved in corrosion
CO2:	Defend corrosion problems
CO3:	Apply the principle of electrochemistry and assemble a battery
CO4:	Select conducting polymers for a particular application.
CO5:	Outline about PCB and discuss the process of PCB fabrication
CO6:	Apply the concepts of etching and plating in developing printed circuit boards

Pre-requisite

Nil **CO/PO Mapping** (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO7 PO2 PO3 PO4 PO5 PO6 PO8 PO9 PO10 PO11 **CO1** Μ Μ **CO2** Μ **CO3** W Μ Μ **CO4** S Μ Μ S **CO5 CO6** Μ **Course Assessment methods:**

PO12

INDIRECT DIRECT 1. Continuous Assessment Test I, II 1. Course-end survey 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) **3.** End Semester Examination ELECTROCHEMISTRY 9 Hours Introduction - Electrode potential - Nernst equation and problems - Electrochemical series - Application of EMF measurements and problems - Kohlrausch law of independent migration of ions and its application Electrodes: Standard and Reference electrode (Hydrogen and Calomel) - Types of electrodes (Metal -15 | P a g e

Metal ion; Metal – Metal insoluble salt, Redox electrode) - Ion selective (gla	ss electrode) -
Determination of pH, pO_2 , pCO_2 - Classification of electrochemical cell	(11
CORROSION SCIENCE	6 Hours
Corrosion: Principles and Mechanism of electrochemical corrosion - Factors influencing	g corrosion.
Types of corrosion: Galvanic corrosion - Differential aeration corrosion (pitting corro	sion, water line
corrosion) - Stress corrosion.	
Corrosion control : Inhibitors - Dehumidifier gels - Cathodic protection (sacrificial anot	de)
- Plating Techniques: Plating - Need for plating - Electroforming -Electropolishing - I	Electrochemical
machining - Electrophoretic painting	
ENERGY STORING DEVICES	12 Hours
Batteries: Factors for selection of batteries - Rating calculation using datasheet.	
Primary Battery (Alkaline battery) - Secondary Battery (Lead acid storage battery, Nic	ckel - Cadmium
battery, Lithium ion battery & Lithium polymer battery) - Nuclear battery-Nano battery.	
Flow battery: Introduction - Construction of Types of fuel cell	
Solar Cells: Silicon Solar cells - Hybrid Solar cells - Dye sensitized Solar cells - Tanden	n Solar cells.
CONDUCTING POLYMERS	12 Hours
Electron conducting polymers: Synthesis, Structure, Properties and Application of polya	cetylene,
polyphenylene, poly aniline, polypyrrole and polythiophine.Introduction - Polymer types	s - Conducting
Polymers - Nature of doping process - Theory of conductivity.	
Electron conducting polymers: Synthesis, Structure, Properties and Application of polya	cetylene, poly
aniline, polyphenylene, polythiophine, polypyrrole & indole carbazole.	
BASICS OF PRINTED CIRCUIT BOARDS	6 Hours
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi	stry of
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types	stry of
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from	stry of m PCBs.
Introduction- Components of PCB - Flexible printed circuit boards (an overview) ChemiLaminates in PCB: Properties and TypesEtching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu froTheory: 45Tutorial: 0Practical: 0Project: 0Total: 45	stry of m PCBs. 5 Periods
Introduction- Components of PCB - Flexible printed circuit boards (an overview) ChemiLaminates in PCB: Properties and TypesEtching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu fromTheory: 45Tutorial: 0Practical: 0Project: 0REFERENCES	stry of m PCBs. 5 Periods
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press,	stry of m PCBs. 5 Periods 2009.
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W	stry of m PCBs. 5 Periods 2009. Vest Press
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007.	stry of m PCBs. 5 Periods 2009. 'est Press
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a	stry of m PCBs. 5 Periods 2009. 'est Press and
Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993.	stry of <u>m PCBs.</u> 5 Periods 2009. Zest Press and
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth Electrochemistry and the professional control in the provide the pr	stry of m PCBs. 5 Periods 2009. 'est Press and Heinemann,
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 	stry of m PCBs. 5 Periods 2009. Zest Press and Heinemann,
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H 	stry of <u>m PCBs.</u> 5 Periods 2009. Zest Press and Heinemann, Iill Companies,
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 	stry of <u>m PCBs.</u> 5 Periods 2009. Zest Press and Heinemann, Iill Companies,
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 2. 	stry of <u>m PCBs.</u> 5 Periods 2009. 2009. 7 est Press and Heinemann, Iill Companies, 2014.
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu from Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 7. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, Inder Publishers, Coi 	stry of <u>m PCBs.</u> 5 Periods 2009. Zest Press and Heinemann, Iill Companies, 2014. imbatore, 2014
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu fro Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 7. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing 6 	stry of <u>m PCBs.</u> 5 Periods 2009. 2009. 2est Press and Heinemann, Iill Companies, 2014. imbatore, 2014 Company,
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu fro Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 7. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, Inder Publishers, Coi 8. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing New Delhi, Reprint 2017. 	stry of <u>m PCBs.</u> 5 Periods 2009. 2009. 2est Press and Heinemann, Iill Companies, 2014. imbatore, 2014 Company,
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu fro Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 1 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 7. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, Inder Publishers, Coi 8. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing New Delhi, Reprint 2017. 9. Seymour R.B. and Carraher C.E. Jr, Polymer chemistry, 6th Edition, Plenum Pub. Component and provide the state of th	stry of <u>m PCBs.</u> 5 Periods 2009. Zest Press and Heinemann, Hill Companies, 2014. imbatore, 2014 Company, prporation, New
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu fro Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 1 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 7. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, Inder Publishers, Coi 8. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing New Delhi, Reprint 2017. 9. Seymour R.B. and Carraher C.E. Jr, Polymer chemistry, 6th Edition, Plenum Pub. Corrosion. 	stry of <u>m PCBs.</u> 5 Periods 2009. 2009. 2est Press and Heinemann, Iill Companies, 2014. imbatore, 2014 Company, orporation, New
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu fro Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 42 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 1 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 7. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, Inder Publishers, Coi 8. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing New Delhi, Reprint 2017. 9. Seymour R.B. and Carraher C.E. Jr, Polymer chemistry, 6th Edition, Plenum Pub. Coryork, 2003. 10. Terje A. Skotheim and John R. Reynolds, The Handbook of Conducting Polymers in 10. 	stry of <u>m PCBs.</u> 5 Periods 2009. 2009. 2est Press and Heinemann, Iill Companies, 2014. imbatore, 2014 Company, orporation, New Conjugated
 Introduction- Components of PCB - Flexible printed circuit boards (an overview) Chemi Laminates in PCB: Properties and Types Etching Techniques: Chemistry of Etching Solutions - electrochemical etching of Cu fro Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 REFERENCES 1. Atkins, P. and de Paula, J., Atkins, Physical Chemistry, 9th ed., Oxford Univ. Press, 2. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East W Private Limited, 2007. 3. Derek Pletcher and Frank C Walsh., Industrial Electrochemistry, Blackie Academic a Professional, London, 1993. 4. Ahmed Z., Principles of Corrosion Engineering and Corrosion Control, Butterworth 2006. 5. David Linden & Thomas B. Reddy., Handbook of Batteries, 3rd edition, McGraw-H Inc. 2001 6. Revankar S.T., Majumdar P., Fuel Cell: Principles, Design and Analysis, CRC Press, 7. Syed Shabudeen, P.S. and Shoba U.S., Engineering Chemistry, Inder Publishers, Coi 8. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing New Delhi, Reprint 2017. 9. Seymour R.B. and Carraher C.E. Jr, Polymer chemistry, 6th Edition, Plenum Pub. Cor York, 2003. 10. Terje A. Skotheim and John R. Reynolds, The Handbook of Conducting Polymers in polymers theory, synthesis, properties and characterization, 3rd Edition, CRC Press, 20 	stry of <u>m PCBs.</u> 5 Periods 2009. Zest Press and Heinemann, Hill Companies, 2014. Imbatore, 2014 Company, prporation, New Conjugated 006

Company Limited., New Delhi, 2005

 \leq

U17CSI1211

Structured Programming using C

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Explain the basics of problem solving techniques
CO2:	Select appropriate data types and control structures for solving a given problem
CO3:	Illustrate the representation of arrays, strings and usage of string operations
CO4:	Illustrate the importance of pointers and functions
CO5:	Explain the fundamentals of structures and unions
CO6:	Explain the fundamentals of file handling

Pre-requisite Nil

	CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COa	Programme Outcomes(POs)														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	S	М													
CO2	S	М													
CO3	S	L			L				L	L					
CO4	М	L			L				L	L		М			
CO5	М	L			L				L	L		М			
CO6	L	L													
Cours	e Assess	sment m	ethods:												
			DIREC'	Г					INDI	RECT					

 \leq

1. Continuous Assessment Test	I, II (Theory	1. Course-er	nd survey							
Component)	<u>`</u>									
2. Assignment (Theory Compon	ent)									
3. Group Presentation (Theory C	Component)									
4. Pre/Post - experiment Test/V	iva; Experimental									
Report for each experiment (lab component)									
5. Model examination (lab com										
o. End Semester Examination (
component)										
FUNDAMENTALS OF PRO	BLEM SOLVING			9 Periods						
Programs and Programming – (Classification of Pro	gramming Lan	guages based on	Generations –						
Structured Programming Concept	– Algorithm – Flowc	hart – Pseudo c	ode							
STRUCTURED PROGRAM	MING			9 Periods						
Introduction to C Programming – C	Operators and Express	ions – Data Inpi	ut and Output $-C$	ontrol						
Statements										
ARRAYS AND STRINGS				9 Periods						
Defining an array – Processing an	array – Passing array	s to functions –	Multidimensiona	l Arrays						
Defining a string – NULL character	er – Initialization of S	trings – Reading	g and Writing Stri	ings –						
Processing Strings – Character Ar	ithmetic – Searching	and Sorting of S	Strings – Library	functions for						
strings										
FUNCTIONS, STORAGE CLA	SSES AND POINTH	ERS		9 Periods						
Defining a function – Accessing a	function – Function	prototypes – Pas	ssing arguments t	o a function –						
Recursion – Storage classes – Poin	ter Fundamentals – P	ointer Declarati	on – Passing Poir	iters to a						
Function – Pointers and one dime	nsional arrays – opera	tions on pointer	rs – Dynamic mer	mory allocation						
STRUCTURES, UNIONS AND	FILES			9 Periods						
Structures and Unions: Defining a	Structure – Processir	ng a Structure –	User defined data	a types						
(Typedef) – Unions										
Files: Opening and Closing a Da	ta File – Reading an	d writing a dat	a file – Processi	ng a data file –						
Unformatted data files – Concept	of binary files – Acce	ssing a file rand	lomly using fseek							
Theory: 45 Tutorial: 0	Practical: 0	Project: 0	Total: 45 Pe	eriods						
REFERENCES	an Kaunan Chhahma "I)	the C'' Tata Mac							
1. Byron S Gourned and Jitend	ar Kumar Chhaora, T Edition Now Dolhi 2	or 1	In C, Tala McG	raw mili						
2 PradipDev and ManasGhosh	"Programming in C"	011. 2 Second Editio	n Oxford Univer	city						
2. FraupDey and Manasonosh Press 2011		, Second Editio		Sity						
3. Kernighan R W and Ritchie	D.M. "The C. Program	mino language	" Second Edition	Pearson						
Education 2006		ining language		, i va isoli						
4. Ashok N. Kamthane, "Comp	uter programming". P	Pearson Education	on, 2007.							
Lab Component	1 0 0 , 1		,							
List of Experiments				30 Periods						
1. Writing algorithms, flow	charts and pseudo coc	les for simple p	roblems.							
2. Programs on expression	ns and conversions	 Programs on expressions and conversions 								
^	1		1							
		l								
18 P a g e		1								

3.	Programs	using if, if-else, swi	itch and nested if star	ements								
4.	Programs using while, do-while, for loops											
5.	Programs on one dimensional arrays, passing arrays to functions and array operations											
6.	Programs	Programs using two dimensional arrays, passing 2D arrays to functions										
7.	Programs	Programs using String functions										
8.	Programs	using function calls	s, recursion, call by v	alue								
9.	Programs on pointer operators, call by reference, pointers with arrays											
10.	Programs	using structures and	d unions.									
11.	Programs	on file operations a	nd modes.									
12.	Working v	with text files, rando	om files and binary f	les								
	Theory: 0	Tutorial: 0	Practical: 30	Project: 0	Total: 30 Periods							
REFE	RENCES											
1. By:	ron S Gottfrie	d and Jitendar Kum	ar Chhabra, "Program	nming with C", Tata	a McGraw Hill							
Pul	blishing Comp	any, Third Edition	, New Delhi, 2011.									
2. Pra	dipDev and N	IanasGhosh, "Prog	ramming in C". Seco	nd Edition. Oxford	University Press, 2011.							
3 Ko	$rnighan \mathbf{R} \mathbf{W}$	and Ritchia D M "	The C Programming	languago" Socond	Edition Doorson							

- 3. Kernighan,B.W and Ritchie,D.M, "The C Programming language", Second Edition, Pearson Education, 2006
- 4. Ashok N. Kamthane, "Computer programming", Pearson Education, 2007

 \leq

	English for Cognizance													P	J	С
U17	7ENI12	01	(Co	mmo	n to a	ll bra Tec	nches chnolog	of Eng gy)	ginee	ring a	nd	1	0	2	0	2
C	ourse O	utcon	nes													
Aft	er succe	essful	comp	letio	n of tl	nis co	urse, t	he stu	dents	shoul	d be a	ble t	tO			
CO1:	Underst	and an	d appr	eciate	e vocał	oulary	and syr	ntax w	ith acc	uracy a	and cla	rity.				
CO2:	Commur	nicate e	effectiv	ely by	v using	approp	oriate gr	ammar	and te	chnical	parlanc	e in a	a Rar	nge of	acad	emic
<u>CO3</u> ,	scenarios	s and or	itically	avalu	ata disc	ourses	to fund	tional	English							
$\frac{CO3}{CO4}$	Interpret and critically evaluate discourses related to functional English															
CO5.	 Comprehend critical text leading to academic articulation. Disseminate professional information through appropriate means of comm 															
CO5.	Disseminate professional information through appropriate means of communication												toxta			
CO0.	Demonstrate an understanding for innovative language learning strategies and write texts applying registers formats and language appropriate to the context															
Pı	applying registers formats and language appropriate to the context.															
	Nil															
CO/PO Mapping																
$(\Omega/M/W)$ in dispetan other for a state of the second state of th																
COs	(5)	/ M/ W	indica	tes sti	rength	OI COI	ramme	$\frac{1}{0}$	-Stron	ng, M-N POs)	lediun	1, W-	wea	IK		
COS		Programme Outcomes(POs)														
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI0	POIT	POI	.2 P	SOI	PS	02
CO1	W	Μ				W			М	S		M	[
CO2		W	М		W	S		W	М	S		S				
CO3	W	S				W	W			S		M	[
CO4		Μ								S		M	[
CO5		S				W			М	S		S				
CO6		W				W			W	S		S				
Co	ourse As	sessm	ent me	ethod	s:											
			DIRE	СТ							INDIF	REC	Γ			
1.	Contir	nuous	Assess	ment	Test I											
2.	Open	book t	est					1. Co	ourse-e	end sur	vey					
3.	Assign	ıment														
4.	End S		$\frac{1}{1}$	minat	$\frac{10n}{7DAD}$	VCV	TITC					<u> </u>				
Dorto	of Space	$\frac{110\Gamma}{h}$	v IU	rmati				omoni	ones s	and Ua	magree	$\frac{1}{2}$)no I	U Vord	9 H 0	urs
Subst	titutes A	r = w	ms and		reviatio	onony	eading	Aloud	Onicl	k Read	ing. Se	auen	cing	of		
jumb	led sente	nces, l	Readin	g to F	redict		caung	. noud				7.001		51		
<u> </u>		,					\leq	l								
20 P a g	g e				Sign	ature o	fBOSA	hairma	- n MC	=						
					Signa	atureo	10030	nannia	in, wict	-						

TECHNICAL NUANCES	9 Hours
Tense, Voice, Kinds of Syntax, Gerund and Infinitives, Cause and effect expressi	ions, Purpose and
functional expressions, Conditional clauses, Reported speech, Diary Writing, Edi	ting (Grammar –
Concord, Articles, Parts of Speech, Modifiers – Dangling participles, Misplaced,	Squinting and
Punctuation).	
COMPREHENSION AND ANALYSIS	9 Hours
Sub Skills of Reading, Reading Comprehension, Text Visualization, Peer Reading, Cloze	e Test, Inferring
Technical Texts, Reading a Travelogue, Reading for Interrogation, Reading to Respond, N	Note making – Linear
and Non-linear.	I
PRACTISING LITERARY SKILLS	9 Hours
Instructions and Recommendations, Discourse markers – Process description, Writing a I	Paragraph –
Descriptive, Narrative, Compare and Contrast, Persuasive, Creative Writing, Critical Rea	ding, Twirl Reading,
Google Reading.	
TECHNICAL CORRESPONDENCE	9 Hours
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ In	9 Hours n-plant Training,
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ In Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo	9 Hours n-plant Training, and Notes, Report
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ Ir Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing.	9 Hours n-plant Training, and Notes, Report
TECHNICAL CORRESPONDENCETechnical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ In Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing.Theory: 15Tutorial: 0Practical: 30Total: 4	9 Hours a-plant Training, and Notes, Report 45 Periods
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ Ir Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing. Theory: 15 Tutorial: 0 Practical: 30 Total: 0 REFERENCES:	9 Hours n-plant Training, and Notes, Report 45 Periods
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ In Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing. Theory: 15 Tutorial: 0 Practical: 30 Total: 0 REFERENCES: 1. English for Engineers—Regional Institute of English, South India, Bangalore	9 Hours a-plant Training, and Notes, Report 45 Periods
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ In Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing. Theory: 15 Tutorial: 0 Practical: 30 Total: 4 REFERENCES: 1. English for Engineers—Regional Institute of English, South India, Bangalore Foundation Books, Chennai.	9 Hours n-plant Training, and Notes, Report 45 Periods
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ In Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing. Theory: 15 Tutorial: 0 Practical: 30 Total: 0 REFERENCES: 1. English for Engineers—Regional Institute of English, South India, Bangalore Foundation Books, Chennai. 2. Effective Technical Communication—A Guide for Scientists and Engineers—	9 Hours n-plant Training, o and Notes, Report 45 Periods e, published by
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ Ir Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing. Theory: 15 Tutorial: 0 Practical: 30 Total: 0 REFERENCES: 1. English for Engineers—Regional Institute of English, South India, Bangalore Foundation Books, Chennai. 2. Effective Technical Communication—A Guide for Scientists and Engineers—BarunK.Mitra—Oxford University Press, New Delhi.	9 Hours n-plant Training, and Notes, Report 45 Periods e, published by
TECHNICAL CORRESPONDENCE Technical Discourse, Modules of a letter, Professional Letters, Industrial Visit/ Ir Basics of E-Mail writing and E-mail etiquette, Writing Notices, Circulars, Memo writing. Theory: 15 Tutorial: 0 Practical: 30 Total: 0 REFERENCES: 1. English for Engineers—Regional Institute of English, South India, Bangalore Foundation Books, Chennai. 2. Effective Technical Communication—A Guide for Scientists and Engineers—BarunK.Mitra—Oxford University Press, New Delhi. 3. Interchange, Fourth Edition—Jack.C.Richards et.al,Cambridge University	9 Hours h-plant Training, and Notes, Report 45 Periods e, published by Press, Sri

Saul

TIAR		01		Б	•	•	D		L	Т	P	J	С			
UI7	MEP15	01		E	ngine	ering	g Praci	lices	Labo	ratory	y	0	0	2	0	1
C	ourse O	utcon	nes													
Aft	er succe	essful	comp	oletion	n of tl	his co	urse, tl	ne stu	dents	s shoul	d be a	ble 1	to			
CO1:	Select t	he vai	rious to	ools ar	nd equ	ipmen	t's used	l in the	e fabri	cation v	worksh	op.				
CO2:	Develo	p vari	ous mo	odels i	n carp	entry	and fitti	tting								
CO3:	Make co	ompon	ents us	ing she	eet met	al wor	k.									
CO4:	Select t	he vai	rious to	ools ar	nd joir	nts for	differen	t appl	ication	ns in pl	umbing	g				
CO5:	Demonstrate and evaluate the parameters of basic electronic components (wires, resistors, capacitors, diodes etc.) and test the components.															
CO6:	Estimate DC and AC Voltage and currents using appropriate measuring instruments															
Pre-requisite																
Nil																
CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak																
COs	Programme Outcomes(POs)															
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 F	PSO 1	PS	02
C01	S															
CO2					М											
CO3			М													
CO4						W										
CO5	М															
CO6	M															
Co	ourse As	sessm	ent m	ethods	5:											
			DIRE	СТ							INDIF	RECI	Г			
1. P E C E 2 E	re-or Pos xperimen Comprehe Examinati	st-experiment Test/Viva; ntal Report for each experiment; ensive report / Model tion														
List of	of Exper	imen	ts	uion									30	Perio	ods	
GRO	UP - I													1 .11		
A. C	VIL ENC Carpentr Study Prepa	GINE y of cation	ERIN rpentry of T j	G y tools oint												
	• Prepa	ration	of dov	vetailj	oint			D								
22 P a g	ge				Signa	ature o	f BOS cl	hairma	n, MC	E						

2. Plumbing

• Study of pipeline joints

B. MECHANICAL ENGINEERING

- 1. Fitting
 - Study of fitting tools
 - Preparation of L joint
 - Preparation of square joint
- 2. Sheet Metal Working
 - Study of sheet metal working tools
 - Preparation of cone
 - Preparation of tray

GROUP - II (ELECTRICAL & ELECTRONICS ENGINEERING) C. ELECTRICAL ENGINEERING PRACTICE

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair-case wiring.
- 4. Measurement of electrical quantities-voltage, current, power & Power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.

D. ELECTRONIC ENGINEERING PRACTICE

- 1. Testing of Electronic components and Measurements using a digital multimeter.
- 2. Study of CRO and Function generator.
- 3. PCB Design and Fabrication.
- 4. Soldering simple electronic circuits and checking continuity

Theory: 0 Tutorial: 0 Practical: 30 Total: 30 Periods

TT4 #					Р	hvsic	s labo	rator	V			L	Т	Р	J	C
UI7.	PHP150)1	(Co	ommo	n to A	E, AU	J , BT, C	CE, CS	5, IT, I	MC,TX	X)	0	0	2	0	1
C	ourse O	utcon	nes													
Aft	ter succe	essful	comp	oletio	n of t	his co	urse, tl	he stu	dents	shoul	ld be a	ble	to			
CO1:	CO1: Determine different physical properties of a material like thermal conductivity, thickness of the material.															
CO2:	Perform	exper	iment	s invo	lving t	the phy	ysical pl	henom	ena lik	te inter	rferenc	e and	diff	ractio	n	
CO3: Apply physical theories in real life situations by also taking into account its limitation.																
Pre-requisite																
Nil																
						CC)/PO M	appin	g							
CO/I O Mapping																
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak																
Programme Outcomes(POs)																
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12 F	PSO 1	PS	02
CO1	S															
	~		0													
CO2		M	S													
CO3		S		М												
CO4																
CO5																
CO6																
C	ourse As	sessm	ent m	ethod	s:											
			DIRE	СТ							INDI	REC	Г			
1.	Pre-or F	ost-ex	perim	ent T	est/Viv	va;										
	Experin	nental	Repor	t for e	each											
	experim	ent; M	Iodel I	Exami	nation	l		1. Co	ourse-e	end sur	vey					
2.	End Ser	nester	Exam	inatic	n											
List	of Exper	rimen	ts										30	Peri	ods	
	1. Deterr	nine tł	nermal	l cond	uctivit	ty of th	ne given	cardb	oard b	y Lee'	s disc 1	nethe	od.			
	2. Deter	mine t	the thi	cknes	s of a t	thin sh	leet by a	ir wec	lge me	thod.		• ~				
	3. Deter	mine t	the co-	ettici	ent of	V1SCOS	ity of th	e give	n liquio	d by Po	oiseuill	e's fl	ow n	netho	d.	
	4. Deter	mine i	the val	lue of	accele	ration	due to	gravity	y by co	mpour	na peno	lulun	n.			
	5. Calcu 6 Deter	mine	the w	n pane aveler	orths of	of the	violet	g iux i blue - o	neter.	and ve	llow in	mer	curv	snec	trum	
	using	spect	romete	er gra	ting m	ethod	(the gro	een sp	ectral 1	line fo	r which	h the	wav	veleng	gth is	
	5401 7 Dotor	A'). mina`	Vounc	r'e mo	dulue	ofthe	aivon h	or 11011	10 202	unifor	m han	dina	math	od		
	7. Deter 8 Calcu	iiiiie ilate th	i oung	s s mo	outus	or the	givell D	ai usii <u>fork</u> k	ng non	-unition	al and t	rane	uncui Verce	mod	e of	
	vibra	tional	metho	ds.	01-tik	51701			<i>y</i> 1011 <u>2</u>	,100111	ui uiiu I	ans	. 01 50	mou		
24 P a	ge						Sau	1	-							
	-				Sign	ature o	of BOS c	hairma	an, MCE	E						

- 9. Determine the velocity of ultrasonic sound and compressibility of the given liquid by using ultrasonic interferometer.
- 10. By using semiconductor laser determine:
 - i. Wavelength of LASER using grating
 - ii. Acceptance angle & numerical aperture of optical fiber (grating element:
 - N=5,00,000 lines/meter).

11-5,00,000				
Theory: 0	Tutorial: 0 Practical: 30	Project: 0	Total: 30 Hours	
REFERENCES				
1. Laboratory Mar	nual of Engineering Physics by	Dr. Y. Aparna	& Dr. K. Venkateswara Rao	
(V.G.S Publishe	ers)			
2. "Practical Phy	sics", G.L. Squires, Cambridg	e University Pre	ess, Cambridge, 1985. 11. 12.	
3. "Great Experi	ments in Physics", M.H. Sham	os, Holt, Rineha	rt and Winston Inc., 1959.	
4. "Experiments	in Modern Physics", A.C. Me	lissinos, Acaden	nic Press, N.Y., 1966. Gupta	
S.C, and Kapur, J.N.				

U17VEP1501]	Perso	onal V	alues				L	T	P	J	С
												0	0	2	0	1
Course Outcomes																
Aft	ter succes	ssful	comp	letio	n of tl	his co	urse, t	he stu	dents	shoul	ld be a	ble t	to			
CO1:	CO1: Become an individual in knowing the self															
CO2:	Acquire and express Gratitude, Truthfulness, Punctuality, Cleanliness & fitness.															
CO3:	Practice	simp	le phy	sical e	exercis	se and	breathi	ng tecł	nnique	S						
CO4:	Practice	Yoga	a asana	a whic	h will	enhan	ice the o	quality	of life	e.						
CO3:	Practice	Medi	itation	and g	get ben	efited.										
CO3:	Procure	Self I	Healin	g tech	inique	s for p	ropagat	ing he	althy s	society						
Pr	re-requis	site														
	N1l					CO		annin	~							
						U		appin	g							
					(S/M/	W ind	icates s	trengtl	n of co	orrel						
	atic	on)			`			ĭS	S-Stror	ng, M-N	Mediun	n, W-	Wea	ak		
COs						Pro	ogram (Dutcon	nes(PC) s)						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 1	PSO 1	PS	O2
C01												M	I			
CO2										S						
CO3						М										
CO4						S			М							
CO5										М						
CO6								W				S				
Co	ourse Ass	essm	ent m	ethod	s:											
			DIRE	СТ							INDIF	RECI	Г			
1. Gro and	oup Activi assignme	ity / Ir nt	ndivid	ual p	perform	nance		1. Co	ourse-e	end sur	vey					
2. Ass	sessment o	on Va	lue wo	ork she	eet / T	est										
Valu	es throug	gh Pr	ractic	al act	ivitie	s:								30 P	erio	ds
1.Knowing the self : Introduction to value education - Need & importance of Value education – Knowing the self – realization of human life – animal instinct vs sixth sense																
2. N	/Iental He	ealth	:Evol	ution	ot sen	ises –	tunctio	ning s	teps o	t huma	an min	d – ł	⊰ody	y and	Min	1 c
coordination - Analysis of thoughts – moralization of desires– autosuggestions – power of positive affirmations. – Meditation and its benefits.																
3 Physical Health: Physical body constitution. Types of food affects of food on body and mind																
- healthy eating habits – food as medicine– self healing techniques.																
							\leq	P								
26 P a g e Signature of BOS chairman, MCE						E										

4.Core value : Self love& Self care Gratitude - Happiness - Optimistic –Enthusiasm – Simplicity – Punctual - Self Control - Cleanliness & personal hygiene - Freedom from belief systems.

5.Fitness: strengtheni listening to	Simplified physicang practices: Naad nature – Meditation	al exercises – Sun suddhi pranayama	salutation - – Silent sittin	Lung ng and	
Theory: 0 Total:30	Tutorial: 0 Periods	Practical: 30	Project:	0	
REFEREN	ICES				
1. KNO PD www self 2. STE PD con 3. PRO PD www	W YOURSELF — F format at w.au.af.mil/au/awc/a -aware.pdf PS TO KNOWLED F format at www.new tent/uploads/pdfs/bo MOTING MENTA F format at w.who.int/mental_h	SOCRATES – wcgate/army/rotc_ GE: The Book of Inner vmessage.org/wp- oks/STK_NKL_v1.5.p L HEALTH - World H ealth/evidence/MH_Pr	r Knowing – o <u>df</u> lealth Organiza romotion_Bool	ation – <u>k.pdf</u>	
4. LEA UN W	RNING TO BE: A l ESCO PDF format a ww.unesdoc.unesco.	HOLISTIC AND INT t org/images/0012/0012	EGRATED AF 279/127914e.p	PPROACH T df	O VALUES –
5. PER VIV ww Dev	SONALITY DEVE EKANANDA w.estudantedavedan elopment.pdf	LOPMENT By SWAN	ЛI		

<

SEMESTER II

 \leq

11714772001	Monufooturing Toobnology	L	Т	Р	J	С
U17MCT2001	Manufacturing Technology	L I I J C 3 0 0 0 3		3		
Course Outcomes						

Course Outcomes

A (%)						
After	After successful completion of this course, the students should be able to					
CO1:	Define and distinguish various manufacturing processes					
CO2:	Select and justify appropriate casting methods					
CO3:	Anticipate general casting defects and explain their remedies					
CO4:	Summarize various bulk deformation processes and the explain the working machineries					
CO5 :	Describe the working principles of machines and various machining processes.					
CO6:	Choose a suitable metal joining process for a given application.					

Pre-requisite Nil

	CO/PO Mapping											
	((S/M/W	indicates	s strength	n of corre	elation)	S-Str	ong, M-	Medium	, W-Wea	ık	
CO -					Progr	amme O	utcomes	(POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М											
CO2	М											
CO3	М											
CO4	М											
CO5	М											
CO6	М											

Course Assessment methods:

DIRECT			INDIRE	CT			
1. Continuous Assessment Tes	st I, II	1. Course	-end survey				
2. Assignment: Journal paper	review, Group						
Presentation.							
3. End Semester Examination							
FOUNDARY TECHNOLOGY 9 F							
Pattern and Core making – Mo	oulding sand – Melting	furnaces: Cu	pola and Induct	ion furnaces			
– Special casting processes – S	- Special casting processes - Shell, Investment, Die casting - Defects in casting.						
FORMING PROCESSES			1	9 Period			
Hot and Cold Working Rolling	; - Introduction – Ro	lling Mills -	Rolling Oper	ations – Forging -			
29 P a g e							
	Signature of BOS cha	irman, MCE					

Introduction – Related Forging Operations – Drop forging- Extrusion and Drawing - Extrusion Practice – Hot, Cold, Impact and Hydrostatic extrusion. Drawing Process – Defects and Residual Stresses – Drawing Equipment. Sheet metal operations – Blanking, Punching and Piercing. (Treatment is to be given only on operations)

CONVENTIONAL MACHINING PROCESS	9 Periods					
Lathes and Lathe Operations, Drilling and Drilling Machines, Reaming and Reamers, Tapping						
and Taps – Tool nomenclature, cutting speed, feed, machining Time calculations.						
(No Treatment on mechanisms).						
SPECIALIZED MACHINING AND SUPER FINISHING PROCESS	9 Periods					
Milling Machines and Operations, Planning and Shaping, Broaching, Gear Hobbing	g and Shaping.					
Grinding Process – Abrasives – Finishing Operations – Lapping, Honing Burnishin	g.					
(No Treatment on mechanisms)						
PRINCIPLES & APPLICATIONS OF JOINING PROCESSES	9 Periods					
Gas welding, Basic Arc Welding Processes, Thermit Welding, Electron – Beam We	elding, Laser					
 Beam Welding. Solid State Welding: Cold Welding, Ultrasonic Welding, Friction Welding, Resistance Welding and Explosive Welding. Principles and applications of Brazing and Soldering. 						
Theory: 45Tutorial: 0Practical: 0Project: 0Total: 45 P	eriods					
REFERENCES:						
 Kalpakjian S., "Manufacturing Engineering and Technology", 4th edition, Pears India, 2009. 	on education					
2. Hajra Choudhury S K. and Hajra Choudhury A K., "Elements of Workshop Technology", Volume I and II, Media Promoters and Publishers Private Limited, Mumbai, 1997.						
3. Paul Degarma E, Black J T. and Ronald A Kosher, "Materials and Processes in Manufacturing", 8 th edition, Hall of India, 2008.						
4. Sharma P C., "A Textbook of Production Technology", S. Chand and Co., Ltd.,	2009.					
5. P N Rao,"Manufacturing Technology-Metal cutting and machine tools,4E(Volu	ime II),Mc Graw					
Hill Education.						

U17MCT2002	

Electronic Devices and Circuits

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to						
CO1:	Use passive elements and basic theorems to solve the electric circuits.					
CO2:	Relate the basic semiconductor physics to the characteristics and biasing of low powered					
	electronic devices					
CO3:	Design regulators and rectifiers using diodes.					
CO4:	Design amplifiers for oscillators using transistors					
CO5:	Use operational amplifiers to solve simple mathematical operations and build conventional					
	vibrators.					

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO11 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO12 **CO1** М **CO2** Μ **CO3** Μ **CO4** Μ **CO5** Μ

Course Assessment methods:

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	
2. Assignment: Journal paper review, Group	
Presentation Group Presentation, Project report,	1 Course and survey
Poster preparation, Prototype or Product	1. Course-end survey
Demonstration etc (as applicable)	
3. End Semester Examination	
CIRCUIT THEORY	9 Period

CIRCUIT THEORY

Network Theorems: Kirchoff's laws - Thevinin's and Norton's theorems - Superposition theorem. Two port networks: Z Parameters - Y parameters h parameters

THEORY OF SEMICONDUCTOR DEVICES

9 Period

PN junction – diode equation (Derivation not required) – forward and reverse bias – Diode dc and ac resistances – Zener diode – Bipolar Junction Transistor – CE, CB and CC configurations– Biasing of a transistor; fixed bias, collector feedback bias, self bias – FET – Common source and drain characteristics of JFET and MOSFET.

APPLICATION OF DIODES	9 Period
HW and FW rectifiers – Filters with Capacitior and Inductors -Clippers and Clam	pers – Voltage
Multipliers – Voltage regulators – Zener, series and shunt types.	
AMPLIFIERS AND OSCILLATORS	9 Period
Small signal amplifiers - h parameter model for low frequencies - Feedback amplifie	ers, cascading
amplifiers, differential amplifier – Oscillators – Hartley and Colpitt oscillators	
OPERATIONAL AMPLIFIERS	9 Period
Ideal characteristics - Inverting, Non-inverting - summer - Comparator, Integrator, d	ifferentiator
- Schmitt trigger - R.C. Phase shift oscillator, Wein Bridge Oscillator - Multivibrate	ors
Theory: 45 Tutorial: 0Practical: 0 Project: 0 Total: 45 Pe	eriods
REFERENCES:	
1. Albert Malvino and Bates J., Electronic Principles, Tata McGraw-Hill Pub.	Company Ltd.,
7th edition, 2008	
2. Millman J., Halkias C.C. and Satyabrata Jit, Electronic Devices and Circuits,	, Tata McGraw
Hill, New Delhi, 2nd edition, 2008.	
3. Thomas L. Floyd, Electronic Devices, Pearson Education Asia, 5th edition, 2	2001.
4. William Hayt, Kemmerly J. and Durban S.M., Engineering Circuit Analysis,	, McGraw Hill
Education, 2011.	
5. Sudhakar, Shyammohan and Palli S., Circuits and Networks: Analysis & Syr	nthesis, Tata Mc
Graw Hill, New Delhi, 4th edition, 2010 (Unit: 1).	
6. Salivahanan S., Suresh kumar N. and Vallavaraj A., Electronic Devices and	Circuits, Tata Mc
Graw Hill publishing company, New Delhi, 2nd edition, 2008 (Units: 2,3,4).	
7. Roy Chowdhury D. and Jain Shail B., Linear Integrated Circuits. New Age I	nt. Pub., 4th

edition, 2010 (Unit: 5).

U17MET2102	To since Machenies	L	Т	Р	J	C
017ME12102	Engineering Mechanics	3	1	0	0	4

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Explain the concept of equilibrium of particles subjected to concurrent forces.
CO2:	Determine the reactions in different types of support and loading conditions.
CO3:	Estimate the moment of inertia for various shapes and sections.
CO4:	Make use of various concepts of friction.
CO5:	Solve problems using the concepts in kinematics
CO6:	Solve problems in kinetics.

Pre-requisite Nil

CO/PO Mapping												
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COa					Progra	amme O	utcomes	(POs)		- -		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2		S										
CO3		S										
CO4		Μ										
CO5	S											
CO6	S											

Course Assessment methods:

DIRECT			INDIRECT
1. Continuous Assessment Tes	st I, II	1. Course-end	l survey
2. Open book test; Cooperati	ve learning report,		
Assignment; Journal pape	er review, Group		
Presentation, Project	report, Poster		
preparation,Prototype	or Product		
Demonstration etc (as appli	cable)		
3. End Semester Examination			
]		•	
33 P a g e	Signature of BOS cha	1 irman, MCE	

BASICS& STATICS OF PARTICLES	12 Periods						
Introduction - Units and Dimensions - Laws of Mechanics Lame's theorem, Parallelogram and							
triangular Laws of forces - Coplanar Forces - Resolution and Composition of force	es –						
Free body diagram - Equilibrium of a particle.							
EQUILIBRIUM OF RIGID BODIES	12 Periods						
Moment of a force about point – Varignon's theorem- Moment of a couple-Reso	lution of force						
and their reactions- Requirements of stable equilibrium - Equilibrium of Rigid h	odies in						
two dimensions							
PROPERTIES OF SURFACES AND SOLIDS	12 Periods						
First moment of area and the Centroid of sections Rectangle, circle, triangle, T se	ction, I section Angle						
section and Hollow section. Second and product moments of plane area Rectan	gle, triangle, circle. T						
Section, I section, Angle section and Hollow section, Parallel axis theorem a	nd perpendicular axis						
theorem - Polar moment of inertia.							
FRICTION	12 Periods						
Frictional force-Law of coulombiniction, simple contact friction, Rolling resista	ince and Belt friction,						
Ladder Incuoli, wedge Incuoli.							
DYNAMICS OF PARTICLES	12 Periods						
Kinematics: Rectilinear & Curvilinear motion of particles, Displacements Velo	city and acceleration.						
Kinetics: Newton's law, Work Energy method, Impulse and Momentum, Impac	t of elastic bodies.						
Theory: 45 Tutorial: 15 Practical: Project: 0 Total: 60 Per	iods						
REFERENCES:							
1. Beer F.P. and Johnson Jr. E.R., Vector Mechanics for E	Ingineers, Vol. I S						
2. Hibbeller, R.C., Engineering Mechanics, Vol. I Statics and Vol. II Dynar	nics, Pearson						
Education, Asia Pvt. Ltd., 2000.							
3. Ashok Gupta, Interactive Engineering Mechanics Statics A Virtual Tutor	,						
 Ashok Gupta, Interactive Engineering Mechanics Statics A Virtual Tutor PearsonEducation, Asia Pvt. Ltd., New Delhi, 2002. 	·,						
 Ashok Gupta, Interactive Engineering Mechanics Statics A Virtual Tutor PearsonEducation, Asia Pvt. Ltd., New Delhi, 2002. Palanichamy M.S., and Nagan S., Engineering Mechanics (Statics & Dyn Hill, 2001. 	, namics) TataMcGraw						
 Ashok Gupta, Interactive Engineering Mechanics Statics A Virtual Tutor PearsonEducation, Asia Pvt. Ltd., New Delhi, 2002. Palanichamy M.S., and Nagan S., Engineering Mechanics (Statics & Dyn Hill, 2001. Irving H. Shames, Engineering Mechanics – Statics and Dynamics, IV Education 	, namics) TataMcGraw lition, Pearson						
 Ashok Gupta, Interactive Engineering Mechanics Statics A Virtual Tutor PearsonEducation, Asia Pvt. Ltd., New Delhi, 2002. Palanichamy M.S., and Nagan S., Engineering Mechanics (Statics & Dyn Hill, 2001. Irving H. Shames, Engineering Mechanics – Statics and Dynamics, IV Ed Education, Asia Pvt. Ltd., 2003. 	, namics) TataMcGraw lition, Pearson						

111701172008	Materials Science for Mechatronics	L	Т	Р	J	С
01/1112008	Engineering	3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Understand the core concepts of conductors.							
CO2:	Explain the behavior of semiconductors and its applications							
CO3:	Differentiate the structure and physical properties of magnetic materials.							
CO4:	Understand the mechanism of dielectrics and its applications							
CO5:	Elucidate the various process of heat treatment.							
CO6:	Study of composite & new engineering materials, their properties with applications.							

Pre-requisite Nil

CO/PO Mapping												
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COa		-			Progra	amme O	utcomes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М					М						
CO2	М											
CO3	W	М				Μ						
CO4	S		М			Μ						
CO5	S											
CO6	М											

Course Assessment methods:

DIRECT			INDIRE	CT				
1. Continuous Assessment Tes	t I, II	1. Course-	end survey					
2. Cooperative learning report,	Assignment; Group							
Presentation, Project report,	Poster preparation							
3. End Semester Examination								
CONDUCTING MATERIALS			9 Period					
Classical free electron theory of 1	metals-electrical condu	ctivity – theri	nal conductivity	y - expression				
– Wiedemann Franz law(derivati	on) – Lorentz number -	– drawbacks o	of classical theo	ry – Fermi				
distribution function – density of	energy states - effect of	of temperature	e on Fermi ener	gy.				
SEMICONDUCTING MATERIALS 9 Period								
Origin of band gap in solids (Q	in an intrinsic semi							
35 P a g e								
	Signature of BOS cha	irman, MCE						
conductor (derivation) – Fermi level – variation of Fermi level with temperature - electrical conductivity – band gap –Extrinsic semiconductor(Qualitative only) – Variation of Fermi level with temperature and impurity concentration – Hall effect – Determination of Hall coefficient – experimental set up – applications

MAGNETIC AND DIELECTRIC MATERIALS 9 Period Magnetic materials: Properties of dia, para, ferro, anti ferro and ferri magnetic materials – Domain theory of ferromagnetism - hysteresis - soft and hard magnetic materials - ferrites - applications. Dielectric materials: Electronic, ionic, orientation and space charge polarization - frequency and temperature dependence of polarization – dielectric loss –internal field –Classius Mossotti relation– dielectric breakdown - different types of break down mechanism - ferro electric materials - properties and applications HEAT TREATMENT 9 Period Definition - annealing types - normalizing, hardening and tempering of steel - isothermal transformation diagrams – cooling curves superimposed on I.T. diagram CCR - hardenability, Jominy end quench test – austempering, martempering – case hardening - types COMPOSITE AND NEW ENGINEERING MATERIALS 9 Period **Composite materials:** Types - production techniques - properties and applications of composites - advanced structure ceramics - Al₂O₃ and diamond. Shape memory alloys (SMA): Characteristics - applications - advantages and disadvantages of SMA properties of NiTi alloy Theory: 45 **Tutorial: 0 Practical: 0** Project: 0 **Total: 45 Periods REFERENCES:** 1. Halliday D., Resnick R. & Walker, J. "Principles of Physics". Wiley, 2015. 2. Calister, "Material Science and Engineering: An Introduction", 7th Edition, John Wiley and Sons, 2006. 3. Gaur R.K. and Gupta S.L., Engineering Physics, 8th edition, DhanpatRai Publications (P) Ltd., New Delhi, 2003. 4. Palanisamy P.K., Materials Science, 2nd edition, Scitech Pub. India, (P) Ltd., Chennai, 2003. 5. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 6. Rajendran V, Materials science, 5th edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003. 7. Avadhanulu M.N. and Kshirsagar P.G., A textbook of Engineering Physics, S.Chand & Company Ltd, New Delhi, 2005. 8. Gopal S., Engineering Physics, Inder Publications, Coimbatore, 2006.

9. Van Vlack, —Elements of Material Science and Engineeringl, Pearson Education India, 2008.

U17MAT2101

Advanced Calculus and Laplace Transforms (Common to AE, AUE, CE, MCE, ME)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After successful completion of this course, the students should be able to						
CO1:	Evaluate multiple integrals and apply them to find area, moment of inertia, centre of mass	K3				
	and volume					
CO2:	Apply various vector differential operators and integral theorems for solving Engineering problems	K4				
	involving cubes and rectangular parallelepipeds.					
CO3:	Construct analytic functions of complex variables and transform functions from z- Plane and w-	K4				
	plane and vice-versa, using conformal mappings					
CO4:	Use the fundamentals of residues, complex integration to evaluate real integrals	K3				
CO5:	Transform functions in time domain to frequency domain using Laplace transform	K4				
CO6:	Convert ordinary differential equations into algebraic equations using Laplace	K4				
	Transform and solve them using inverse Laplace transform					

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
CO -					Progr	amme O	utcomes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S							М	М		М
CO2	S	S							М	М		М
CO3	S	S							М	М		М
CO4	S	S							М	М		М
CO5	S	S							М	М		М
CO6	S	S							М	М		М

Course Assessment methods:

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	1. Course-end survey
 Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as 	Δ
37 Page	1

applicable)

3. End Semester Examination

MULTIPLE INTEGRALS

Double integration - Cartesian and polar coordinates - Change of order of integration - Change of variables between cartesian and polar coordinates - Triple integration in cartesian coordinates -Application : Area as double integral -- Moment of inertia - Centre of mass - Volume as triple integral.

VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelepipeds

ANALYTIC FUNCTIONS

Functions of a complex variable - Analytic functions - Necessary conditions, Cauchy- Riemann equations in Cartesian coordinates and sufficient conditions (excluding proofs) – Properties of analytic function - Construction of analytic function by Milne Thomson method

- Conformal mapping : w = z + c, cz, 1/z and bilinear transformation.

COMPLEX INTEGRATION

Statement and applications of Cauchy's integral theorem and Cauchy's integral formula (excluding proofs) - Taylor's and Laurent's series expansions - Singularities - Residues - Cauchy's residue theorem (excluding proof) - Application of residue theorem to evaluate real integrals - Unit circle and semi-circular contours (excluding poles on real axis).

LAPLACE TRANSFORMS

Definition - Properties - Superposition - Shift in t - Shift in s - Time Derivatives - Time Integral - Initial and Final Value Theorems – Periodic functions: sine wave, saw-tooth, square and triangular waves

INVERSE LAPLACE TRANSFORM

Inverse Laplace Transform - Simple system dynamic models - Transfer Functions - Poles and Zeroes -Response of First-Order Systems - Solution of RC Free, Step and Sinusoidal Responses; Response of Second-Order Systems - Free Response, step Response - Convolution theorem

Theory: 45	Tutorial: 15	Practical: 0	Project: 0	Total: 60 Periods
DEFEDENCES.				

REFERENCES:

- Kreyzig E., Advanced Engineering Mathematics, John Wiley & Sons (Asia), Pvt, Ltd., 1. Sing
- Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, Delhi, 42nd Edition, 2012. 2.
- 3. Philip D. Cha, James J. Rosenberg, Clive L. Dym, Fundamentals of Modelling and Analyzing Engineering Systems, Cambridge University Press, United Kingdom, 2000.
- 4 Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill, Pub. Co.

Ltd., New Delhi, Revised Edition, 2007.

9 + 2 Periods

9 + 3 Periods

9 + 3 Periods

9 + 2 Periods

5 + 3 Periods

4 + 2 Periods

- 5 Venkataraman M.K., Engineering Mathematics, Volume II, The National Pub. Co., Chennai, 2003.
- 6 Kandasamy P., Thilagavathy K. and Gunavathy K.,
- 7 Arunachalam T. and Sumathi K., Engineering Mathematics II, Sri
- 8 Weir .MD, Hass J, Giordano FR: Thomas Calculus Pearson education 12th ED, 2015.
- 9 N.P.Bali., Dr. Manish Goyal., —Transforms and partial Differential equations, University science Press, New Delhi, 2010.

E books and online learning materials

- 1. Advanced Engineering Mathematics, P. V. O'Neil, 5th Indian reprint 2009, Cengage Learning India Pvt. Ltd.
- 2. Advanced Engineering Mathematics, Dennis Zill Warren S Wright Michael R. Cullen, 4th edition, 2011, Jones & Bartlett Learning.

Online Courses and Video Lectures:

- 1. . <u>http://nptel.ac.in/course.php?disciplineId=111</u>
- 2. www.mathworld.wolfram.com

U17CHP2501

Chemistry Laboratory (COMMON TO ECE, E&I, EEE, FT & ME)

L	Т	Р	J	С
0	0	2	0	1

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Prepare standard solutions (S1)
CO2:	Analyse the properties of water by applying the chemical concepts (S2)
CO3:	Analyse the solutions by electrochemical techniques and apply it in real life situations like
	corrosion, soil, water testing etc (S2)
CO4:	Analyse the solutions by spectroscopic techniques and apply it in real life situations like
	corrosion, soil, water testing etc (S2)

Pre-requisite Nil

					CO/	PO Map	oping					
	(S/M/W	indicates	strength	n of corre	elation)	S-Str	ong, M-I	Medium	, W-Wea	ık	
CO -		`		0	Progr	amme O	utcomes	(POs)		,		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М											
CO2	М											
CO3	М					М						
CO4	М					М						

Course Assessment methods:

DIRECT	INDIRECT	
1. Post-experiment Test/Viva; Experimental Report	1. Course-end survey	
for each experiment; Model Examination		
2. End Semester Examination		
LIST OF EXPERIMENTS		30 Periods
1. Preparation of normal solutions of the following	substances -	
Sodium carbonate, Hydrochloricacid and Buffer	solution	
WATER TESTING		
2. Determination of total, temporary and permanen	t hardness by EDTA method.	
3. Estimation of DO by Winkler'smethod		
4. Estimation of alkalinity by Indicatormethod.		
5. Estimation of chloride by Argentometricmethod		
	1	

ELECTRO CHEMICAL ANALYSIS

- 6. Estimation of hydrochloric acid by pHmetry.
- 7. Conductometric estimation of mixture of acids and strongbase
- 8. Estimation of corrosion of Iron byPotentiometry

PHOTOMETRY

- 9. Estimation of the extent of dissolution of Copper / Ferrous ions by Spectrophotmetry.
- 10. Estimation of sodium and potassium in water by Flamephotometry.

DEMONSTRATION

- 11. Determination of Fire point and Flash point
- 12. Determination of Cloud and Pour point
- 13. Microscopic usage in Metallurgy.
- 14. Determination of Molecular weight by Viscometer

Theory: 0	Tutorial: 0	Practical: 30	Project: 0	Total: 30 Periods
EFEDENCES				

REFERENCES:

- 1. Jeffery G.H., Bassett J., Mendham J. and Denny R.C., Vogel's Text Book of Quantitative Chemical Analysis, Oxford, ELBS, London, 2012.
- 2. Shoemaker D.P. and C.W. Garland., Experiments in Physical Chemistry, Tata McGraw-Hill Pub. Co., Ltd., London, 2003.
- 3. Shoba U.S., Sivahari R. and Mayildurai R., Practical Chemistry, Inder Publications, Coimbatore, 2011.

U17MCP2501	Electronic Devices and Circuits	L	Т	Р	J	C
	Laboratory	0	0	2	0	1

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Construct input output characteristics of electronic devices.
CO2:	Measure current voltage resistance capacitance of a given circuit.
CO3:	Design and construct regulators, rectifiers, amplifiers and oscillators using electronic devices and
	operational amplifiers
CO4:	Simulate electronic circuits using software.
CO5:	Inspect the manufactured components using suitable measurement techniques.

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COa	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	М													
CO2	М													
CO3	М					М								
CO4	М					М								
CO5														

Course Assessment methods:

	DIRECT	INDIRECT						
1.	Post-experiment Test/Viva; Experimental							
	Report for each experiment; Model	1 Course and survey						
	Examination	1. Course-end survey						
2.	End Semester Examination							
LIST	Γ OF EXPERIMENTS		30 Periods					
	1. Characteristics of Semiconductor diode and	Zener diode						
	2. Input and Output characteristics of BJT							
	3. Characteristics of JFET							
	4. Frequency response of CE amplifier							
-		^						

Signature of BOS chairman, MCE

 \leq

Ł

- 5. Clipper and Clamper
- 6. Phase shift and Wein Bridge oscillators using OP-AMP
- 7. Astable multivibrator using OP-AMP
- 8. Monostable and Bistable multivibrator using OP-AMP
- 9. Voltage Regulator (Zener diode, Transistor series and shunt)
- 10. Half-wave and Full-wave Rectifier with and without filter.
- 11. Circuit design using software (Multisim, Pspice)
- 12. Printed Circuit Board (PCB) design and fabrication using (software) for simple circuits.

Theory: 0 Tutorial: 0 Practical: 30 Project: 0 Total: 30 Periods

1171602701	Social Immersion Project	L	Т	Р	J	С
01/15F2/01	(Common to all branches of Engineering and Technology)	0	0	0	4	2

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Achieve the desirable awareness regarding significant social problems and identify the needs to
	provide a possible and innovative solution.
CO2:	Acquire and demonstrate effective professional and technical skills to deal with social issues
	through innovative leadership and sustainable services / approaches.
CO3:	Provide students with a rich practical and socially oriented team work approach.
CO4:	Explain how to make leadership decisions concerning organizational structure and the role of
	project resources on a project's team.
CO5:	Enhance technical knowledge in addressing the needs of a community problem.
CO6:	Identify tools and techniques for planning and working on a project.

Pre-requisite

Nil

	CO/PO Mapping											
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
CO -	Programme Outcomes(POs)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			S			S	S					
CO2			М	S		S	М	М	М			
CO3			S	W		S	S		S			М
CO4			S			S	S		W		М	
CO5	S		М			S	М					
CO6			S			S	S					

Course Assessment methods:

DIRECT	INDIRECT
1. Project Review	1. Impact study
2. General report preparation	2. Field Visit & Observation Skill
3. Team Presentation	3. Course end survey

SOCIAL BONDING AND ENGINEERING

Society and its impact on the individual – Responsibility of individuals towards community building – Essential requirement of the society – Role of an engineering graduate in approaching the requirements - Developing social consciousness.

ENGINEERING PREREQUISITE FOR ENHANCED SOCIAL LIVING

Theoretical reading (Based on the project / general – Books to be identified by the team) - Inculcating Social immersion and Leadership- Study on the society and identifying problems - Social immersion and Engineering implementation - Analysis of problems on issue based - Identification of causes and effects of the social issue identified.

44 | P a g e

ESSENTIAL ENGINEERING INNOVATION

Essential Engineering Concepts - Multiple approaches towards the problem &Selection for addressing-Addressing a theoretical social problem -Providing multiple solutions for the problem

PROJECT PLANNING AND APPROACHES

Knowledge on budgeting and fund raising - Approaching agencies related to problems. Partnering with agencies- Presentation Skills - Report preparation

BROAD AREA OF PROJECTS (Students can also identify their own social issue)

Water / Sanitation and Hygiene - Waste Management -Women Empowerment- Community health - Child health/ Poverty/Education/others - Energy management -Environment Management - Adult Education - -Youth Empowerment - Green Industry - Given above are the broad areas of projects recommended. Projects may vary to individuals/ groups/ class/ branch.

REFERENCES:

 Nicholls Alex and Murdock Alex, Social Innovation Blurring Boundaries to reconfigure markets, Palgrave Macmillan., New York, 2012.

TOTAL : 60 Hours

- 2. Osburg Thomas and Schmidpeter Rene`, Social Innovation Solutions for sustainable Future. Springer, Germany 2013.
- 3. Adedeji B. Badiru, STEP Project Management: Guide for Science, Technology, and Engineering Projects. Taylor and Francis Group., Florida 2009.

11770502502	Internersonal Values	L	Т	Р	J	С
017 V EF 2502	interpersonal values	0	0	2	0	1

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Develop a healthy relationship & harmony with others
CO2:	Practice respecting every human being
CO3:	Practice to eradicate negative temperaments
CO4:	Acquire Respect, Honesty, Empathy, Forgiveness and Equality
CO5:	Practice Exercises and Meditation to lead a healthy life
CO6:	Manage the cognitive abilities of an Individual

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
CO					Progra	amme O	utcomes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										S		
CO2									S			
CO3											М	S
CO4						М						
CO5												М
CO6											М	

Course Assessment methods:

DIRECT	INDIRECT
1.Group Activity / Individual performance and assignment 2.Assessment on Value work sheet / Test	1. Mini project on values / Goodwill Recognition
Values through Practical activities:	30 hours

 Introduction: Introduction to interpersonal values – Developing harmony with others – Healthy relationship – Need & importance of interpersonal values for dealing with others and team -Effective communication with others.

- 2. **Maneuvering the temperaments:** From Greed To Contentment Anger To Tolerance Miserliness To Charity Ego To Equality Vengeance To Forgiveness.
- Core value : Truthfulness -Honesty –Helping–Friendship Brotherhood Tolerance Caring & Sharing – Forgiveness – Charity –Sympathy — Generosity – Brotherhood - Adaptability.
- 4. Pathway to Blissful life :

Signs of anger – Root cause – Chain reaction – Evil effects on Body and Mind – Analyzing roots of worries – Techniques to eradicate worries.

5. **Therapeutic measures:** Spine strengthening exercises - Nero muscular breathing exercises - Laughing therapy - Mindfulness meditation.

Theory: 0		Tutorial:	0	Practical: 30 Project: 0		oject: 0	r	Fotal: 30 hours		
REFER	ENCES:									
1.	INTERPE	RSONAL	SKILLS	Tutorial	(PDF	Version)	—	TutorialsPoint		
	www.tutor	ialspoint.cor	n/interper	sonal_skills/in	terperson	al_skills_tu	torial.j	pdf		
2.	INTERPE	RSONAL RI	ELATION	SHIPS AT W	ORK - K	I Open Arch	nive - I	Karolinska www.		
	publications.ki.se/xmlui/bitstream/handle/10616/39545/thesis.pdf?sequence=1									
3.	VALUES	EDUCATIO	N FOR P	EACE, HUMA	N RIGH	TS, DEMO	CRAC	CY – UNESCO		
	www.unes	doc.unesco.o	org/images	s/0011/001143	/114357e	o.pdf				
4.	MANEUV	ERING OF	SIX	темре	RAMEN	TS	-	Vethathiri		
	Maharishiwww.ijhssi.org/papers/v5(5)/F0505034036.pdf									
5.	THE BLIS	S OF INNE	R FIRE: H	IEART PRAC	TICE OF	THE SIX	Wi	sdom		
	Publication	nswww.wisdo	mpubs.org	/sites//Bliss%	20of%20I	nner%20Fire	%20B	ook%20Preview.pd		

ENGLISH ELECTIVES

 \leq

U1/ENE2501 (Common to all branches of Engineering and	1170010201	Academic English	L	Т	Р	J	С
Technology) 0 0 4 0	U17ENE2501	(Common to all branches of Engineering and Technology)	0	0	4	0	2

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Maintain the standards of communal communication and acquire excellent listening skills with
	good Received Pronunciation.
CO2:	Accommodate with speaking skills, with fluency in communication obtaining levels of
	competency.
CO3:	Project desirable research oriented skills to interface the corporate and meet out the challenges
	of the modern trends.
CO4:	Familiarising with learner-centred strategies and improve writing activities through proper
	analysis.
CO5:	Develop the ability in procuring information and effectiveness in communication based on
	situations.
CO6:	Ability to present the individuals opinions, persuasion skills and academic curricular along with
	career profiles.

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progra	amme (Dutcor	nes(PO	s)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		S	М		М	S	S	М	М		S	М	
CO2	М		S	М		М	S	S	М	М		S	М	
CO3	М		S	М		М	S	S	М	М		S	М	
CO4	М		S	М		М	S	М	М	М		S	М	
CO5	М		S	М		М	S	М	М	М		S	М	
CO6	М		S	М		М	S	М	М	М		S	М	

Course Assessment methods:

DIRECT			INDIRECT
 Continuous Assessment Cooperative learning Assignment Presentation End Semester Examination 		1. Course-ei	nd survey
49 P a g e	Signature of BO	S chairman, MCE	

AUDITORY PERCEPTION	12 Periods							
Listening for understanding & information - short announcements, short conversations, telephonic								
conversation; Listening to British, American, Australian and Neutral Accent of Indian English;								
Listening and synthesizing information; Listening to TED/INK Talks (General); Critical review of								
short films, documentaries.								
ORAL FLUENCY	12 Periods							
Informal introduction of self and others, conversation starters, articulating simple	e thoughts and ideas							
with clarity, Seeking Permission, Talking about People and Places. Describe	an object or event.							
Retelling an incident, voicing opinions, persuasion skills, speaking from a	single perspective							
(debate) - preparing and delivering an informal talk,								
Introduction to Presentation Skills – Formal tone – Impersonal style - Structuring a	and Presenting							
FOUNDATIONS OF ACADEMIC WRITING	12 Periods							
Plan and write a library-based coursework assignment on an Engineering topic. Read ac	ademic textbooks and							
journal articles. Research and analyse scientific data and express understanding. Pro	ocuring information -							
Identifying research papers in a specific discipline, reading abstracts of research papers, i	reading the abstract of							
projects, reading articles from journals and publications and documenting/ archiving information.								
TRAILS OF RESEARCH WRITING	12 Periods							
Reading research articles and summarizing. Review of Secondary sources - Writing an abstract -								
Writing an introduction to a paper in academic writing - Avoiding plagiarism	n – Bibliography –							
DROCESS OF DREDARING A RESEARCH ARTICLE								
PROCESS OF PREPARING A RESEARCH ARTICLE	12 Periods							
Research Projects - Converging areas of interest into field of research - Identifying	g the problem of							
research – Formulating hypothesis	1 (1 1 1							
- Research Objectives - Literature Review - Identifying the research gap - Research	ch methodology –							
Theory 0 Tutorial 0 Practical 60 Projects 0	Appendices.							
DEFEDENCES.	Total: ov Perious							
KEFERENCES: 1 English and Communication Skills S. D. Dhanaval Orient Dischargen D	with tool Unidenshad							
1 English and Communication Skins—S.P.Dhanavei—Orient Blackswan P	VI Lieu, Hyderadad.							
2 Effective Technical Communication—Ashraf Rizvi—Tata McGraw Hill,	New Delhi.							
3 A Course in Communication Skils—Kiranmai Dutt, Geetha Rajeevan, C.	L.N.Prakash—							
Foundation Books, New Delhi.								

	^
	V
Saul	

U1	7	EI	V	E^2	25	02

(Common to all branches of Engineering and Technology)

L	Т	Р	J	С
0	0	4	0	2

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Formulate an understanding for effective use of short telephonic and oral conversations.
CO2:	Analyse and identify necessary interpersonal and persuasive skills for effective oral presentation.
CO3:	Employ appropriate strategies to articulate random thoughts and ideas in brainstorming sessions.
CO4:	Analyse and review technical and non-technical contents.
CO5:	Compose and compile effective written documents needed in a professional scenario.
CO6:	Recognize and establish dynamic corporate communication and relationship

Pre-requisite

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 Μ S Μ **CO2** S **CO3** Μ S S S Μ S **CO4** Μ Μ Μ S **CO5** М Μ Μ S S S **CO6**

Course Assessment methods:

DIRECT	INDIRECT
1. Continuous Assessment	1. Course-end survey
2. Review	
3. Assignment	
4. Report	
5. End Semester Examination	
AUDITORY PERCEPTION	12 Periods

51 | P a g e

Signature of BOS chairman, MCE

 \leq

Listening for understanding & information - short announcements, short conversations, telephonic conversation; Listening to British, American, Australian and Neutral Accent of Indian English; Listening and synthesizing information; Listening to TED/INK Talks (General); Critical review of short films, documentaries

ORAL FLUENCY	12 Periods							
Informal introduction of self and others, conversation starters, articulating simple thoughts and ideas								
with clarity, Seeking Permission, Talking about People and Places, Describe an object or event.								
Retelling an incident, voicing opinions, persuasion skills, speaking from a single p	perspective (debate) -							
preparing and delivering an informal talk, Introduction to Presentation Skill	ls – Formal tone –							
Impersonal style - Structuring and Presenting information. Transcode graphics or	ally							
FOUNDATIONS OF PROFESSIONAL COMMUNICATION	12 Periods							
Focused listening, Listening to lectures and talks on science and technology, Liste	ening in international							
seminars, Video Documentary review, Receiving compliments and sharing inforr	nation in a corporate							
scenario, Speaking in Formal Context. Business Vocabulary. Speaking pract	tice in a variety of							
registers, Giving and Getting Product and Service Information. Product Review. H	Recording equipment							
and safety checklist. Business Itinerary, Presenting a Company Profile, Enco	oding and decoding							
advertisements								
CORPORATE DYNAMICS	12 Periods							
Corporate Social Responsibility, Crisis Management - handling issues and situations, Creating a								
powerful first impression, Goal Setting - Immediate goals, short term goals, long term goals, smart								
goals, strategies to achieve goals, Time Management - Types of time, Identifying time wasters, time								
management skills, Stress Management - Reasons, Strategies to cope up with stress, Stress-busters,								
Emotional Intelligence – Mental health, Job performance, Managing emotions								
PROFESSIONAL WRITING	12 Periods							
Writing Agenda and minutes of the meetings, Writing daily/periodic reports,	, Writing business /							
professional letters, Business E-mail - Writing an Email Announcing a Meeting	g -Writing an Email							
Announcing the modifications in a Meeting - Writing an Email Announcing	ng the cancellation/							
postponement of Meeting								
Theory: 0 Tutorial: 0 Practical: 60 Project: 0	Total: 60 Periods							
REFERENCES:								
1. Soft Skills for Young Managers—Prof.M.S.Rao—Biztantra Publications, Ne	w Delhi.							
2 Coff Chills Dr. K. Alers C. Chandlers J. Co. New Delle								
2. Son Skills—Dr.K.Alex—S.Chand and Co, New Deini.								
3. Professional Communication—Aruna Koneru—Oxford University Press, Ne	w Delhi.							

Sul

1172012202	English for Competency			Р	J	С
U1/ENE2505	(Common to all branches of Engineering and Technology)	0	0	4	0	2

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Recognize the inventory of listening strategies by various proposed listening activities.
CO2:	Construct learning situations and increase speaking skills based on strong educational and
0020	communication theories.
CO3:	Invent and practice effective reading strategy to enhance competent communication CO4:
	Honing the strengths of writing skills and set objectives for future development CO5:Showcase
	industry-ready attitude along with corporate communication
CO4:	Develop imaginative and critical thinking abilities, and improve the problem solving
CO5:	Recognize the inventory of listening strategies by various proposed listening activities.
CO6:	Construct learning situations and increase speaking skills based on strong educational and
	communication theories.

Pre-requisite Nil

						CO	'PO Ma	apping	5					
		(S/M/	W indi	cates s	trength	of corr	elation)	S	-Strong	, M-Me	dium, V	V-Weal	K	
COs						Progr	amme	Outcor	nes(PO	s)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1				M		S	М		М	S	S	М		
CO2				M		S	M		М	S	S	Μ		
CO3				M		S	M		М	S	S	М		
CO4				M		S	M		М	S	М	М		
CO5				M		S	M		М	S	М	М		
CO6				Μ		S	М		М	S	Μ	М		

Course Assessment methods:

DIRECT

INDIRECT

Sam

1. Continuous Assessment	1. Course-end survey
2. Review	
3. Assignment	
4. Report	
5. End Semester Examination	
AUDITORY PERCEPTION	12 Periods
Listening for understanding & information - short	announcements, short conversations, telephonic
conversation; Listening to British, American, Aust	tralian and Neutral Accent of Indian English;
Listening and synthesizing information; Listening to	o IED/INK Talks (General); Critical review of
snort mins, documentaries.	
ORAL FLUENCY	12 Periods
Informal introduction of self and others, conversation	n starters, articulating simple thoughts and ideas
with clarity, Seeking Permission, Talking about Pe	cople and Places. Describe an object or event.
Retelling an incident, voicing opinions, persuasion ski	ills, speaking from a single perspective (debate) -
preparing and delivering an informal talk, Introdu	action to Presentation Skills - Formal tone -
Impersonal style - Structuring and Presenting information	tion. Transcode graphics orally.
impersonal style Structuring and Presenting informa	······································
FOUNDATIONS OF ETS	12 Periods
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De	rivational and Inflectional, Affixes – Prefix and
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular	rivational and Inflectional, Affixes – Prefix and ry
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular VERBAL BASED COMPETENCY	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,;
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation Two part Analysis Table Analysis Mu	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabulat VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKUL BASED COMPETENCY	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKILL BASED COMPETENCY	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods 12 Periods
 FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –Dee Suffix, strategies to improve high frequency vocabulat VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dece and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKILL BASED COMPETENCY Analytical writing – Argumentative writing, a 30-min an issue Listoning and Speeking Tasks in ETS. Page 	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods automatication automatication <
 FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKILL BASED COMPETENCY Analytical writing – Argumentative writing, a 30-min an issue, Listening and Speaking Tasks in ETS, Real IFLTS GATE 	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods nute Analyse an argument, a 30-minute Analyse ading Comprehension – GRE, GMAT, TOEFL,
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabulat VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKILL BASED COMPETENCY Analytical writing – Argumentative writing, a 30-min an issue, Listening and Speaking Tasks in ETS, Real IELTS, GATE Theory: 0 Tutorial: 0	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods nute Analyse an argument, a 30-minute Analyse ading Comprehension – GRE, GMAT, TOEFL, 60 Project: 0 Total: 60 Periods
FOUNDATIONS OF ETSAnalogy, Synonyms and antonyms, Morphemes –DeSuffix, strategies to improve high frequency vocabularVERBAL BASED COMPETENCYVerbal Reasoning - Critical Reasoning & Verbal Decand Arguments, Statement and Inference, StrongSentence Equivalence, Text Completion, WordInterpretation, Two-part Analysis, Table Analysis, MuSKILL BASED COMPETENCYAnalytical writing – Argumentative writing, a 30-minan issue, Listening and Speaking Tasks in ETS, ReaIELTS, GATETheory: 0Tutorial: 0Practical: 0	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods nute Analyse an argument, a 30-minute Analyse ading Comprehension – GRE, GMAT, TOEFL, 60 Project: 0 Total: 60 Periods
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –Dee Suffix, strategies to improve high frequency vocabulat VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dee and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKILL BASED COMPETENCY Analytical writing – Argumentative writing, a 30-min an issue, Listening and Speaking Tasks in ETS, Rea IELTS, GATE Theory: 0 Tutorial: 0 Practical: 0 REFERENCES: 1 Personality Development and Soft Skill—Baru	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods nute Analyse an argument, a 30-minute Analyse ading Comprehension – GRE, GMAT, TOEFL, 60 Project: 0 Total: 60 Periods
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabular VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKILL BASED COMPETENCY Analytical writing – Argumentative writing, a 30-min an issue, Listening and Speaking Tasks in ETS, Rea IELTS, GATE 1 Personality Development and Soft Skill—Baru 2 A Modern Approach to Verbal and Non-verbal	12 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods nute Analyse an argument, a 30-minute Analyse ading Comprehension – GRE, GMAT, TOEFL, 60 Project: 0 Total: 60 Periods m.K.Mitra—Oxford University Press, New Delhi. Reasoning—R S Agarwal—S Chand & Co.
FOUNDATIONS OF ETS Analogy, Synonyms and antonyms, Morphemes –De Suffix, strategies to improve high frequency vocabulat VERBAL BASED COMPETENCY Verbal Reasoning - Critical Reasoning & Verbal Dec and Arguments, Statement and Inference, Strong Sentence Equivalence, Text Completion, Word Interpretation, Two-part Analysis, Table Analysis, Mu SKILL BASED COMPETENCY Analytical writing – Argumentative writing, a 30-min an issue, Listening and Speaking Tasks in ETS, Rea IELTS, GATE 1 Personality Development and Soft Skill—Baru 2 A Modern Approach to Verbal and Non-verbal New Delhi.	12 Periods I2 Periods erivational and Inflectional, Affixes – Prefix and ry 12 Periods duction - Statement and Assumptions, Statement and Weak Arguments, Sentence Correction,; Groups, Integrated Reasoning – Graphics alti-source Reasoning 12 Periods nute Analyse an argument, a 30-minute Analyse ading Comprehension – GRE, GMAT, TOEFL, 60 Project: 0 Total: 60 Periods In.K.Mitra—Oxford University Press, New Delhi. Reasoning—R.S.Agarwal—S.Chand & Co.,

SEMESTER III

 \leq

U17MAT3101

PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS (Common to AE/AUE/CE/ME/MCE/EEE)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Form partial differential equations and solve certain types of partial differential equations.
CO2:	know how to find the Fourier Series and half range Fourier Series of a function
CO3:	know how to solve one dimensional wave equation, one dimensional heat equation in steady state using Fourier series
CO4:	apply Fourier Series to solve the steady state equation of two-dimensional heat equation in Cartesian coordinates.
CO5:	Apply the Fourier Transform, Fourier sine and cosine transform to certain functions and use Parseval's
	identity to evaluate integrals.
CO6:	Evaluate Z - transform for certain functions. Estimate Inverse Z - Transform of certain functions and to
	solve difference equations using them

Pre-requisite

Nil

						CO/P	'O Map	oping						
		(S/M/V	V indica	ates stre	ngth o	f correl	ation)	S-S	trong,	M-Mec	lium, W	/-Weak		
COs						Program	mme O	utcome	es(POs)				
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М			М				М	М		S	Μ	Μ
CO2	S	М		М									W	W
CO3	S	S	S		S				М	М		S	W	W
CO4	S	М	М									М	W	W
CO5	S	М	М		S								W	W
CO6	S	S			S				М	М		S		

Course Assessment methods:

DIRECT

INDIRECT

 \leq Signature of BOS chairman, MCE

1. Continuous Assessment Test I,II2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as	end survey						
applicable)							
PARTIALDIFFERENTIALEQUATIONS	9+3 Hours						
Formation of partial differential equations by elimination of arbitrary	constants and arbitrary functions -						
differential equations (excluding reducible to standard types) Lagrange?	slipearequation						
LinearHomogeneouspartial differential equations of second and high	er order with constant coefficients						
FOURIER SERIES	9+3 Hours						
Dirichlet's conditions – General Fourier series – Odd and even functions – cosine series – Parseval's identity – Harmonic Analysis	Half range sine series – Half range						
BOUNDARY VALUE PROBLEMS – ONE DIMENSIONAL EQUAT	TONS 5+2 Hours						
Classification of second order quasi linear partial differential equations	-Solution of one-dimensional wave						
equation – One dimensional heat equation (excluding insulated ends) –	Fourier series solutions in Cartesian						
coordinates.							
BOUNDARY VALUE PROBLEMS – TWO DIMENSIONAL EQUA	FIONS 4+1 Hours						
Steady state solution of two-dimensional heat equation (Insulated edges ex	ccluded) – Fourier series solutions in						
FOURIER TRANSFORM	9+3 Hours						
Statement of Fourier integral theorem – Infinite Fourier transforms – Sine	and Cosine Transforms – Properties –						
Transforms of simple functions – Convolution theorem – Parseval's identi	ty.						
Z-TRANSFORM	9+3 Hours						
Z-transform - Elementary properties – Convolution theorem- Inverse Z – t	ransform (by using partial fractions,						
residues and convolution theorem) – Solution of difference equations usin	g Z - transform.						
Theory : 45 Hours 1 otal :00 Hours	1 otal :60 Hours						
REFERENCES:							
1. Grewal B.S., "Higher Engineering Mathematics", Khanna Pu 2014.	blishers, New Delhi, 44th Edition.						
2. Veerarajan. T., "Transforms and Partial Differential Equation	s", Tata McGraw Hill Education						
Pvt. Ltd., New Delhi, Second reprint, 2012.							
3. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineer	ring Mathematics Volume III",						
S.Chand& Company ltd., New Delhi, 2006.							
4. Ian Sneddon., "Elements of partial differential equations", McGraw – Hill, New Delhi, 2003							
5. Arunachalam T., "Engineering Mathematics III", Sri Vignesh	Publications, Coimbatore 2013.						

P Sau

ELECTRICAL MACHINES

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

U17MCI3201

After	successful completion of this course, the students should be able to
CO1:	Define the basic theorems in Magnetic circuits.
CO2:	Describe the principle of operation and performance of DC motors and Induction Machines
CO3:	Summarize the speed control methods of electrical machines
CO4:	Explain the principle of operation and performance of special machines and permanent magnet machines
CO5:	Select suitable motor for simple applications

Pre-requisite Nil

Г

						CO/F	PO Maj	oping						
		(S/M/V	V indica	ates stre	ngth o	f correl	lation)	S-S	trong,	M-Mee	lium, V	/-Weak		
COs						Progra	mme O	utcome	es(POs)				
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	Μ												Μ	
CO3	М												Μ	
CO4	М												Μ	
CO5	М												Μ	

Course Assessment methods:

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	
 Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, 	
Prototype or Product Demonstration etc. (as	1. Course-end survey
58 Page	1

applicable)	
3. End Semester Examination	
DCMACHINES	7 Hours
DCmachines: Princileof working-Construction, - Types of DCmachines based on construction	n-Backemf,
voltage equations, torque equation-Characteristics of DC motors - Speed control of DC	series and
Shunt motors -Armature and Field control.	
ACMACHINES	12 Hours
Three phase induction motor: Principle of working -construction - Production of RMH	F - Torque-
slip characteristics, torqueequation-cogging-crawling-Speedcontrolofthreephase induction	onmotor -
Voltage Control-Voltage/frequency control-slip power recovery scheme.	
PERMANENT MAGNET MACHINES	6 Hours
PMDC motors: Construction, principle of operation	
Permanent magnet and variable reluctance type: Construction principle of operation BLI	OC motors:
Construction principle of operation	oc motors.
SPECIAL MACHINES	6 Hours
Stepper motors: Construction, principle of operation	01100115
Servo motors: Types of servo motors -Servo Mechanism-Construction of AC and DC ser	vo Motors
SELECTION OFAMOTOR	6Hours
Factors influencing the selection of a motor - Motor Application Requirements - V	elocity profiles –
Current Density – Heat flow in a Motor - Fatigue and Lubrication tests – trends in	n test automation
CASE STUDY: Selection of a motor for an industrial application.	
Theory:45 Tutorial:30 Total: 75 Hours	
Theory:45 Tutorial:30 Total: 75 Hours REFERENCES: Image: 1 minute of the second	
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volun	ne 2: AC and
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.	ne 2: AC and
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited	ne 2: AC and 1, Delhi, 2014.
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2. Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3. Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw	ne 2: AC and 1, Delhi, 2014. -Hill, New Delhi,
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volun DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw- 2006.	ne 2: AC and l, Delhi, 2014. -Hill, New Delhi,
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volun DC machines, student edition, S.Chand Publications, 2013.2. Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3. Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw 2006.4. Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.	ne 2: AC and l, Delhi, 2014. -Hill, New Delhi,
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2. Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3. Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw 2006.4. Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5. Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2. Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3. Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw 2006.4. Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5. Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series and Computer Engineering 4th edition, 2005	ne 2: AC and l, Delhi, 2014. -Hill, New Delhi, in Electrical and
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2. Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3. Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw 2006.4. Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5. Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series & Computer Engineering 4th edition, 20056. UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Enverting Operation" Academ University 2002	ne 2: AC and l, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design,
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2. Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3. Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw- 2006.4. Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5. Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series & Computer Engineering 4th edition, 20056. UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation", Aachen University, 2002.	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design,
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volun DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw- 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series & Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation" ,Aachen University, 2002.LIST OF EXPERIMENTS	ne 2: AC and l, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series : Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1.Load test on DC series motors	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volun DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series & Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1.Load test on DC series motors2.Load test on DC Shunt motor	ne 2: AC and l, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1. TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2. Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3. Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw 2006.4. Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5. Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series : Computer Engineering 4th edition, 20056. UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1. Load test on DC series motors2. Load test on DC Shunt motor3. Speed control of DC shunt motor (Armature and Field Control)	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series : Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1.Load test on DC series motors2.Load test on DC Shunt motor3.Speed control of DC shunt motor (Armature and Field Control)4.Load Test on Three Phase Squirrel Cage Induction	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series : Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1.Load test on DC series motors2.Load test on DC Shunt motor3.Speed control of DC shunt motor (Armature and Field Control)4.Load Test on Three Phase Squirrel Cage Induction5.Speed control of BLDC motor	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volum DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3 rd Edition, Tata McGraw 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series : Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I F Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1.Load test on DC series motors2.Load test on DC Shunt motor3.Speed control of DC shunt motor (Armature and Field Control)4.Load Test on Three Phase Squirrel Cage Induction5.Speed control of BLDC motor6.Speed control of Servo AC or DC motor	ne 2: AC and I, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volun DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited 3.3.Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series : Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I F Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1.Load test on DC series motors2.Load test on DC Shunt motor3.Speed control of DC shunt motor (Armature and Field Control)4.Load Test on Three Phase Squirrel Cage Induction5.Speed control of Stepper motor.	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours
Theory:45Tutorial:30Total: 75 HoursREFERENCES:1.TherajaB.L and Theraja A.K , "A Textbook of Electrical Technology", Volun DC machines, student edition, S.Chand Publications, 2013.2.Janardanan E G., "Special Electrical Machines" PHI Learning Private Limited3.Nagrath I J and Kothari DP., "Electrical Machines", 3rd Edition, Tata McGraw 2006.4.Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 1998.5.Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series : Computer Engineering 4th edition, 20056.UnivProf. DrIng., Dr. H.C. Gerhard Henneberger , "Electrical Machines I H Function, Operation", Aachen University, 2002.LIST OF EXPERIMENTS1.Load test on DC series motors2.Load test on DC Shunt motor3.Speed control of DC shunt motor (Armature and Field Control)4.Load Test on Three Phase Squirrel Cage Induction5.Speed control of Stepper motor.8.Speed control of Stepper motor.8.Speed control of Stepper motor.	ne 2: AC and d, Delhi, 2014. -Hill, New Delhi, in Electrical and Basics, Design, 30 Hours

Sal

U17MCT3002	MECHANICS OF SOLIDS	L	Т	Р	J	С
01111010002		3	1	0	0	4

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Recognize the elastic response of the materials and calculate the stresses and deflection in simple and compound bars
CO2:	Calculate the thermal stresses and the material response due to temperature variations
CO3:	Find the stresses in bi-axial load system and strain energy for different loads
CO4:	Develop the shear force, bending moment diagram and locate maximum values of
	shear force and bending moments induced in various types of beams
CO5:	Estimate the slope and deflection of beams under various loading conditions and
	crippling load for a column with different end conditions
CO6:	Determine the power transmitting, torque carrying capacities of the circular shafts and
	required thickness of the pressure vessel for a given internal pressure

Pre-requisite Nil

						CO/F	PO Maj	oping						
		(S/M/V	V indica	ates stre	ength o	f corre	lation)	S-S	trong,	M-Mee	lium, V	/-Weak		
COs						Progra	mme O	utcome	es(POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		Μ										S	М
CO2	S		Μ										S	М
CO3	М		Μ										S	
CO4	Μ		Μ										S	W
							_	P						
						· · · · · · · · · · · · · · · · · · ·	<u> </u>	_						

60 | P a g e

Signature of BOS chairman, MCE

CO5	S	М					S	W
CO6	S	S					S	Μ

Course Assessment methods:

DIRECT	INDIRE	СТ
1. Continuous Assessment Test I, II		
2. Open book test; Cooperative learning report,		
Assignment; Journal paper review, Group		
Presentation, Project report, Poster preparation,		
Prototype or Product Demonstration etc. (as	1.Course-end survey	
applicable)	5	
3. End Semester Examination		
ELASTIC RESPONSE OF MATERIALS		12 Hours
Introduction to elastic response - stresses (tensile, compr	essive, shear & bending) & s	trength – strain and
deformation, stress-strain curve for steel Stresses and defo	rmation of simple and compo	und bars under axial
loads - Elastic constants and their relations-Thermal stresses	s and creep.	
BI-AXIAL STRESSES AND STRAIN ENERGY		12 Hours
Principal stresses – Introduction, significance, calculation of	principal stresses - Mohr's circ	ele to find principal
stresses		
Strain energy in gradually applied loads, suddenly applied lo	ads and Impact loads	
STRESSES IN BEAMS		12 Hours
Types of beams: supports and loads – Cantilever, Simply sup	ported and Overhanging beams	s - Shear force and
bending moment diagrams.		
Stresses in beams – theory of simple bending and its applica	bility for actual conditions eff	ect of shape of beams
on stress induced - Bending stress and flexural strength.		10.11
DEFLECTION OF BEAMS		12 Hours
Elastic curve– Evaluation of beam: Double integration metho	od & Macaulay's method	Dentin 2
formula for columns	on and its limitations – sienderi	ness ratio – Rankine's
TOPSION OF CIPCULAR SECTIONS AND DESIGN (TE DDESSLIDE VESSELS	12 Hound
Analysis of torsion of circular bars shaar stross distribution	twist and torsional stiffnass	Rars of solid and
hollow circular sections		- Dais of solid and
Thin cylinders and shells Hoop stress and longituding	1 strassas	
Theory: 45Hours Tutorials: 15 Hours	Total Hours:60	
DEFEDENCES.	Total Hours.00	
		2014
1. Ramamrutham S, "Strength of materials", 14 th Edition	i, Dhanpat Rai Publishing Com	npany, 2014.
2. Rattan S S, "Strength of materials", 2 nd edition, McGra	aw Hill, 2014.	
3. Ferdinand Beer and Russell Johnston Jr., "Mechanics	of materials", 3 rd edition, Tata	McGraw Hill 2007.
4. Nash W A, "Strength of materials", 4 th edition, Tata N	AcGraw Hill, 2011.	
5. RC hibbeler, "mechanics of materials", 9 th edition, Pe	arson, 2014.	

Sul

U17MCT3003

FLUID MECHANICS AND THERMAL SCIENCES

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Describe the properties of fluids and its importance in selection of fluid for suitable application.
CO2:	Apply the concept of fluid statics to determine the pressure and forces on plane and curved surfaces.
CO3:	Differentiate the types of flow with its characteristics and also calculate the flow rate by applying concept of fluid kinematics and dynamics.
CO4:	Identify the major and minor losses involved in the fluid flow through pipes.
CO5:	Explain the concept of boundary layer and methods of preventing the boundary layer separation
CO6:	Summarize the laws of thermodynamics and concept of heat transfer mechanisms in energy interactions.

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
COS	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS										PSO2			
CO1	S													М
CO2	S	Μ												М
								Δ						

62 | P a g e

Signature of BOS chairman, MCE

 ≤ 1

CO3	S													М
CO4	S													Μ
CO5	S	M												М
CO6	S													М
Cours	e Asses	ssment	metho	ls:										
			DIRI	ЕСТ						Ι	NDIRE	СТ		
1. In	ternal te	est I												
2. In	ternal te	est II	. ,.					1.0						
J. El	a seme	ester Exa	iminatio	n				1.Co	ourse ei	nd surve	ey			
FLU	DPRC) PERT	IES									6H	Iours	
Fluid	l - defi	nition.	distincti	on betv	veen so	olid and	d fluid -	- Units	and di	mensio	ons - Pi	operties	s of flui	ds
- den	- density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility,													
vapo	vapor pressure, capillary and surface tension.													
FLIUD STATICS AND BUOYANCY 10 Hours														
Fluid statics: Pascal law - Hydrostatic law - Pressure measurements using Manometers and										d pressu	re gauge	es -		
Forces on immersed plane and curved surfaces – Buoyancy – Meta-centre - Stability of floating and														
subm	submerged bodies. ELIUD KINEMATICS AND ELUID DVNAMICS 10 Hours													
FLI	FLIUD KINEMATICS AND FLUID DYNAMICS										10 Hours			
Fluid Kinematics – Types of flow - velocity and acceleration - continuity equation.														
Fluid	l dynan	nics - ec	quations	s of mot	ion - E	Euler's o	equation	n along	strear	nline -	Bernou	lli's equ	lation –	
Appl	ication	s - Ven	turi met	er, Orit	ice me	ter, Pit	ot tube.					10 T	Louna	
FLU	ID FL	<u>OW A</u>	ND BO	JUND	ARY		<u>R CO</u>	NCEP	<u>TS</u>				iours	
Hage	n Poise	euille E	quation	- Darcy	Wels	bach eo	quation	- Frict	ion fac	tor - N	lajor an	id minoi	-	
energ	gy losse	es - Flov	w throu	gn pipe	s in sei	nes and	1 in para	allel.	fath a d	- f.		. . .	Jam. 1ar.	~ "
Type	solbol	indaryia	ayertific	kness-l	Sounda	arylaye	rsepara	uon–w	ietnou	sorprev	entingi	nebound	lary lay	er
THE		L ENF	RGY	INTEF	RACT	ION						9 H o	ours	
Zerot	h law c	of therm	odvnar	nics - N	leasur	ing tem	peratu	e. The	rmal ex	xpansic	on, abso	rption o	f heat b	v
solids	andlig	uids.Fir	stlawof	thermo	lynam	ics–Fir	stlawar	pliedto	oflowa	ndnon-	flowpro	cess.He	at	5
transf	er mec	hanism	s: Cond	uction-	Fourie	r'sLaw	,therm	alresist	ance.C	onvect	ion–Ne	wton'sla	awof	
cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmannlaw.														
Theory:45 Hours Total Hours:45														
REF	EREN	CES:												
1.	White	FM., "F	Fluid M	echanic	s", 7 th	Editior	n, Tata I	McGrav	w-Hill	, New I	Delhi, 2	011.		
2.	Cengel	YA., C	Cimbala	J M., "	Fluid N	Mechan	ics - F	undam	entals a	and app	plication	ns",		
2	2^{nu}]	Edition,	McGra	w Hill	higher	educat	10n, 20	10. M. 1.		oth 1.	: т		1.1:	(D)
3.	Bansal	KK.,	Fluid	viechar	ncs an	a Hyd	raulics	Machi	nes [~] , 9	edit	10n, La	ıxmı pu	DIICatio	ns (P)
4	Liu., Raman	nirtham	S "Fl	uid Me	chanic	s and F	Ivdraul	ics and	Fluid	Machi	nes" D	hannat	Rai and	Sons
	Delhi	2006	, 11	uiu 1910	manne	, und I	ryuraul	ies and	i iuiu	11100111	1103 , D	nanpar	ixar anu	50113,
5.	Nag P.	K., "En	gineeri	ng therr	nodyna	amics".	, Tata N	/lcGrav	v hill, 2	2005.				
6.	Rajput	R.K., "	Heat ar	d Mass	transf	er", S.C	Chand a	and Co	Publis	hing, 2	008.			

U17MCP3504

MANUFACTURING TECHNOLOGY LABORATORY

L	Т	Р	J	С
0	0	2	0	1

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Perform various operations in lathe.
CO2:	Inspect the manufactured components using suitable measurement techniques
CO3:	Read and interpret the shop floor drawings
CO4:	Perform various milling operation for a given drawing
CO5:	Demonstrate various grinding operations
CO6:	Perform machining operation in shaping and slotting machine

Pre-requisite

1. U17MCT201 Manufacturing Technology

CO/PO Mapping

		(S/M/V	V indica	ates stre	ength o	f corre	lation)	S-S	trong,	M-Mea	lium, V	V-Weak		
COs						Progra	mme O	utcome	es(POs)				
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	W									Μ				W
CO2	М									Μ				W
CO3	W									Μ				W
CO4	W									Μ				W
CO5	W									Μ				W
CO6	W									М				W

Course Assessment methods:

64 | P a g e

 \leq

DIRECT	INDIRECT
1. Lab Exercises	
2. Model Practical Examination	
3. End Semester Practical Examination Assignment	1. Course Exit Survey
LIST OF EXPERIMENTS	
1. Experiment on mechanical measurement (linear and	l angular measurement).
2. Turning: Step, taper	
3. Thread cutting	
4. Knurling	
5. Tapping	
6. Boring	
7. Surface Milling	
8. Gear Cutting	
9. Grinding (surface, cylindrical and center less)	
10. Cutting key way (shaping and slotting machine)	
11. Dove Tail Cutting	
	Total Hours: 45

	FNCINEERING CLINIC - I	L	Т	Р	J	С
01/11/15000	ENGINEERING CLINIC - I	0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and teamwork
- To create an engaging and challenging environment in the engineering lab

Cours	se Outcomes
After	successful completion of this course, the students should be able to
CO1:	Identify a practical problem and find a solution
CO2:	Understand the project management techniques
CO3:	Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO6 PO9 PO10 PO11 PO12 PSO1 PO5 PO7 PO8 PSO2 S S S S S W S S М S Μ **CO1 CO2** S S Μ S S Μ **CO3**

65 | P a g e

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1. Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce40%	
A	

Content:

The course will offer the students with an opport unity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the third semester, students will focus primarily on IOT with C programming using Arduino

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

U17VEP350	3

FAMILY VALUES (Mandatory)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Develop skills in maintaining the harmony in the family.
CO2:	Create impulsive activities for healthy family
CO3:	Be receptive to troubled Individuals
CO4:	Gain healthy life by practicing Kundalini Yoga &Kayakalpa
CO5:	Possess Empathy among family members.
CO6:	Reason the life and its significance

Pre-requisite

- 1. U17VEP1501 / PERSONAL VALUES
- 2. U17VEP2502 / INTERPERSONAL VALUES

CO1						S			
CO2				М					
CO3							Μ		
CO4								S	
CO5			S						
CO6					Μ				

Course Assessment methods:

DIRECT	INDIRECT
1. Group Activity / Individual performance and	1. Mini project on values / Goodwill
assignment	Recognition
2. Assessment on Value work sheet /Test	
Values through Practical activities:	
1. Family system: Introduction to Family Values –	elements of family values -Adju
2. Peace in Family : Family members and their responsi	bility - Roles of parents, children, grant parents
Respectable women hood	
3. Core value: Empathy: Unconditional love - Respect	- Compassion - sacrifice-Care & share -helping
- emotional support- hospitality $-$ cleanliness	
4 Blessing: Blessing - methods - Vibration effect - Ben	efits - Reason for misunderstanding in the
Family and resolution through blessings	
5 Healthy Family: Good relationship with neighbors -	Counseling - Simplified Kundalini Yoga -Kaya
Kalna Yoga	Counsening Simplified Kundunini Togu Kuyu
Workshop	mode
REFERENCES	
1. FAMILY - www.download.nos.org/331courseE/L-1	3%20FAMILY.pdf
2. FRAMEWORK FOR ACTION ON VALUES EDU	CATIONI EARLY CHILDHOOD –
UNESCO – PDF –	
www.unesdoc.unesco.org/images/0012/001287/1287	<u>712e.pdf</u>
3. TRUE FAMILY VALUES Third Edition – Tparents	s Home
4. <u>www.tparents.org/Library/Unification/Books/TFV3</u>	/_TFV3.pdf
5. FAMILY VALUES IN A HISTORICAL PERSPEC	TIVE - The Tanner
Lectures on <u>www.tannerlectures.utah.edu/_documer</u>	nts/a-to-z/s/Stone95.pdf
6. PROBLEMS OF INDIA'S CHANGING FAMILY A	AND STATE the United
Nations - www.un.org/esa/socdev/family/docs/egm0	09/Singh.pdf

^	
$ \leq 1 $	

SEMESTER IV

 \leq

U17MAT4101

NUMERICAL METHODS AND PROBABILITY (Common to AE/AUE/CE/ME/MCE/EEE)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Apply various numerical techniques for solving non-linear equations and systems of linear
	equations.
CO2:	Analyze and apply the knowledge of interpolation and determine the integration and
	differentiation of the functions by using the numerical data.
CO3:	Predict the dynamic behaviour of the system through solution of ordinary differential equations
	by using numerical methods.
CO4:	Solve PDE models representing spatial and temporal variations in physical systems through
	numerical methods.
CO5:	Apply the concepts of probability to random variables.
CO6:	Construct probabilistic models for observed phenomena through distributions which play an
	important role in many engineering applications.

Pre-requisite

Nil

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S												
CO2	S	S												
CO3	S	S							М					
CO4	S	S											М	М
CO5	S	S							Μ				М	М
CO6	S	S												

Course Assessment methods:

DIRECT	INDIRECT						
1. Continuous Assessment Test I,II							
2. Open book test; Cooperative learning report,							
Assignment; Journal paper review, Group							
Presentation, Project report, Poster preparation,							
Prototype or Product Demonstration etc. (as							
applicable)							
3 End Semester Examination							
SOLUTION OF EQUATIONS AND EIGEN VALU	9+3 Hours						
Linear interpolation method – Iteration method – Newton's method – Solution of linear system by							
Gaussian elimination and Gauss-Jordan methods - Iterative methods: Gauss Jacobi and Gauss - Seidel							
methods – Inverse of matrix by Gauss – Jordan method – Eigen values of a matrix by Power method.							
INTERPOLATION, NUMERICAL DIFFERENTL	9+3 Hours						
INTEGRATION							
Lagrange's and Newton's divided difference interpolation - Newton's forward and backward							
difference interpolation – Approximation of derivatives using interpolation polynomials –							
Numerical integration using Trapezoidal and Simpson's rules.							
NUMERICAL SOLUTION OF ORDINARY DIF	9+3 Hours						
EQUATIONS							
Single step methods: Taylor'sseries method-Euler and Improved Euler methods for solving a first order							
equations – Fourth order Runge-Kutta method for solving first and second order equations – Multistep							
method: Milne's predictor and correct or method.							
BOUNDARY VALUE PROBLEMS IN DADTIAL DIFFEDENTIAL FOLIATIONS	9+3 Hours						
FARTIALDIFFERENTIALEQUATIONS							
rectangular domain_Solution of one dimensional heat equation using Bender Schmidt and Crank							
Nicholson difference schemes –Solution of one dimensional wave equation by explicit scheme							
PROBABILITY AND RANDOM VARIABLES	9+3 Hours						
Axioms of probability - Conditional probability – Tota	em –						
This of producting Conditional producting Total producting Dayes incorent –							
Random variable – Distribution function – properties – Probability mass function- Probability							
density function – moments - Binomial, Poisson and Normal distributions – Properties.							
Theory:45 Hours Tutorials: 15 Hours Total: 60 Hours							
REFERENCES:							

71 | P a g e

p \leq
- 1. Grewal, B.S. and Grewal, J.S., "Numerical methods in Engineering and Science", 9thEdition, Khanna Publishers, New Delhi, 2007.
- 2. Gerald, C. F. and Wheatley, P. O., "Applied Numerical Analysis", 7thEdition, Pearson Education Asia, New Delhi,2007.
- 3. Chapra,S.CandCanale,R.P."NumericalMethodsforEngineers",7thEdition,TataMcGraw-Hill, New Delhi, 2016.
- 4. R.A. Johnson and C.B. Gupta, "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition,2016.
- 5. R.E. Walpole, R.H. Myers, S.L. Myers, and K Ye, "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th edition,2017.
- 6. Gupta S.C, and Kapur V.K "Fundamentals of Applied Statistics", Sultan Chand, NewDelhi, 4th Edition,2014.

	HVDDALII ICS AND DNELIMATICS	L	Τ	P	J	C
U17WIC14201	HIDRAULICS AND PNEUWATICS	3	0	2	0	4

After	After successful completion of this course, the students should be able to						
CO1:	Describe the concept of fluid power and different types of fluid power systems.						
CO2:	Explain the working principles of different types of hydraulic pumps.						
CO3:	Discuss the working principles of different types of hydraulic actuators						
CO4:	Summarize the working principles of compressors and pneumatic components.						
CO5:	Design hydraulic and pneumatic circuits for simple applications.						
CO6:	Explain the concept of fluid logic control systems, maintenance of fluid power systems						

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

72 | P a g e

COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ													М
CO2	Μ	М												М
CO3	Μ													М
CO4	Μ													М
CO5	S	Μ			S								Μ	М
CO6	Μ													М

Course Assessment methods:

DIRECT INDIREC	СТ
1. Continuous Assessment Test I, II	
2. Open book test; Cooperative learning report,	
Assignment; Journal paper review, Group	
Presentation, Project report, Poster preparation,	
Prototype or Product Demonstration etc. (as 1. Course end survey	
applicable)	
3. End Semester Examination	
FUNDAMENTALS OFFLUIDPOWER	6 Hours
Introduction to fluid power, Advantages of fluid power, Application of fluid power system.	Types of fluid power
systems, Properties of hydraulic fluids – General types of fluids. Fluid power symbols.	
Introduction to fluid power, Advantages of fluid power, Application of fluid power system.	Types of fluid power
systems, Properties of hydraulic fluids – General types of fluids. Fluid power symbols.	
HYDRAULIC SYSTEM AND COMPONENTS	10 Hours
Pumping theory - Pump classification - Gear pump, Vane Pump, piston pump, construct	ction and working of
pumps - pump performance - Variable displacement pumps. Linear hydraulic actuators -	– Types of hydraulic
cylinders-Singleacting, Doubleactingspecialcylindersliketandem, Rodless, Telescopic-Constru	ictionand
application. Cushioning mechanism, Rotary actuators - Gear, Vane and Piston motors -	Selection of Pumps
andactuators.	10 -
HYDRAULIC VALVES, ACCUMULATORS AND CIRCUITS	10 Hours
Directional control valve $-3/2$ way valve $-4/2$, $4/3$ way valve $-$ Shuttle valve $-$ check valve	. Pressure control
valves, Flow control valve – Fixed and adjustable, electrical control solenoid valves. Types (of accumulators,
Accumulators circuits, intensifier – Circuit and Application, Speed control circuits, synchrof	nizing circuit and
DNEUMATIC SYSTEMS COMPONENTS AND CIDCUITS	10 Hound
PREUMATIC STSTEMS, COMPONENTS AND CIRCUITS	IV HOURS
Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves valves and province of a simulational structures.	, Quick exhaust
valves and pheumatic actuators. Pheumo hydrautic chcuit, Sequential chcuit design for simp	ble applications using
FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE	0 Hours
Hudro Machanical serve systems Electro hydroulic and Electro proumatic systems and pro-	9 110015
Fluidic Logic and switching controls. PLC applications in fluid power control. Maintenance	Eailure and
trouble shooting in fluid power systems	- Panule and
Theory: 45 Hours Tutorials: 30 Hours Total: 75 Hours	
REFERENCES.	
1 Anthony Esposite "Fluid Power with Applications" Pearson Education Inc. 7th Editi	on2014
2 MaiumdarS R "Pneumaticsystems_Principlesandmaintenance" TataMcGraw-Hill 200	9
3. James A. Sullivan, "Fluid Power: Theory and Applications". C.H.L.P.S. 4th edition 200	07.
4. Andrew Parr, "Hydraulics and Pneumatics ". Jaico Publishing House.2005.	÷
5. Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education, 2008.	

LIST OF EXPERIMENTS

- 1. Design and testing of the following hydraulic circuits:
 - i. Pressure control
 - ii. Flow control
 - iii. Sequential circuit using an Electro hydraulic Trainer kit.
- 2. Design and testing of the following pneumatic circuits:
 - i. Pressure control
 - ii. Flow control
 - iii. Circuits with logic controls
 - iv. Circuits for multiple cylinder sequencing in Pneumatic, Electro pneumatic Trainer kits.
- 3. Simulation of basic hydraulic, pneumatic and electrical circuits using Automation Studio software.

11714014202	SENICADS AND INCTDUMENTATION	L	Т	Р	J	С
U17WIC14202	SENSORS AND INSTRUMENTATION	3	0	2	0	4

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Classify the transducers and instruments base don their working principles, characteristics
	and order of the system.
CO2:	Describe the working principle and characteristics of non-electrical transducers.
CO3:	Discuss about the construction, working principles and characteristics of bio medical sensors
CO4:	Generate appropriate design procedure, suitable for signal conversion to interface with computer.
CO5:	Design appropriate circuits by using conventional formulas used in signal conditioning
	and conversion.
CO6:	Use sensors and transducers to create simple Mechatronics applications using data logging software

Pre-requisite

Nil

CO/PO Mapping

		(S/M/V	V indica	ates stre	ngth o	f correl	lation)	S-S	trong,	M-Meo	lium, W	/-Weak		
COs	Programme Outcomes(POs)													
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S			W									W	
CO2	S			Μ	М								Μ	
CO3	S			Μ	М								Μ	
CO4	S	Μ	S	S	М								S	М
CO5	Μ	M	S	S	М								S	М
CO6	Μ	Μ		S	S								S	

Course Assessment methods:

DIRECT	INDIREC					
1. Continuous Assessment Test I,II						
2. Open book test; Cooperative learning report,						
Assignment; Journal paper review, Group						
Presentation, Project report, Poster preparation,						
Prototype or Product Demonstration etc. (as	1.Course end survey					
2 End Semester Exemination						
S. End Semester Examination MEASUREMENT SYSTEMS		9 Hours				
Generalized Measurement System – Performance Character	istics: Static and Dynamic Char	acteristics – Errors in				
Measurements – statistical Analysis of errors - Calibration a	and Standards – Generalized Per	formance of Zero				
Order, First Order and Second Order Systems – Classificati	ons of Transducers.					
MEASUREMENT OF NON-ELECTRICAL PARAMET	TERS-1	9 Hours				
Linear and angular displacement: Resistive, capacitive, in	lers), proximity					
sensors Velocity magging month techometers. Techo concreters and	reactivers					
Temperature measurement: Contact type: Bimetallic, B T	Thermocouple and Thermisto	or Non-				
Contact type: Radiation Pyrometer – Optical Pyrometer	, Thermocoupie and Thermiste	1 1 1011 -				
Humidity: Capacitive and resistive and hot and wet bulbs.						
Other sensors: Fire, smoke and metal detectors						
MEASUREMENT OF NON-ELECTRICAL PARAMET	FRS_2	1				
Force measurement: Resistive type strain gauges: Bridge configurations, Temperature compensation, Load cells. Fiber optic strain gauge- Semiconductor strain gauges- Piezo electric transducers						
Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges	onfigurations, Temperature con - Piezo electric transducers.	9 Hours				
Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges Vacuum Measurement: McLeod Gauge. Thermal Conduct	onfigurations, Temperature com - Piezo electric transducers.	9 Hours npensation, Load				
Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges- Vacuum Measurement: McLeod Gauge, Thermal Conduct Airflow: Anemometers	onfigurations, Temperature con - Piezo electric transducers. ivity Gauge – Ionization Gauge.	9 Hours				
 Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges. Vacuum Measurement: McLeod Gauge, Thermal Conduct Airflow: Anemometers Light: UV, ID, Light amittan and dataston. 	onfigurations, Temperature com - Piezo electric transducers. ivity Gauge – Ionization Gauge.	9 Hours ppensation, Load				
 Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges Vacuum Measurement: McLeod Gauge, Thermal Conduct Airflow: Anemometers Light: UV, IR, Light emitter and detector 	onfigurations, Temperature com - Piezo electric transducers. ivity Gauge – Ionization Gauge.	9 Hours				
 Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges. Vacuum Measurement: McLeod Gauge, Thermal Conduct Airflow: Anemometers Light: UV, IR, Light emitter and detector Introduction to Acoustics and acoustic sensors: Ultrason Hydrophones – Sound level meters- Nuclear radiation sensor 	onfigurations, Temperature con - Piezo electric transducers. ivity Gauge – Ionization Gauge. ic sensor- Types and working of ors.	9 Hours npensation, Load				
 Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges. Vacuum Measurement: McLeod Gauge, Thermal Conduct Airflow: Anemometers Light: UV, IR, Light emitter and detector Introduction to Acoustics and acoustic sensors: Ultrason Hydrophones – Sound level meters- Nuclear radiation sensor MEASUREMENT OF BIO SIGNALS 	onfigurations, Temperature con - Piezo electric transducers. ivity Gauge – Ionization Gauge. ic sensor- Types and working of ors.	9 Hours ppensation, Load Microphones and 9 Hours				
 Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges. Vacuum Measurement: McLeod Gauge, Thermal Conduct Airflow: Anemometers Light: UV, IR, Light emitter and detector Introduction to Acoustics and acoustic sensors: Ultrason Hydrophones – Sound level meters- Nuclear radiation senso MEASUREMENT OF BIO SIGNALS Basic transducer principles Types – source of bioelectric portion 	onfigurations, Temperature com - Piezo electric transducers. ivity Gauge – Ionization Gauge. ic sensor- Types and working of ors.	9 Hours ppensation, Load f Microphones and 9 Hours interface,				
 Force measurement: Resistive type strain gauges: Bridge c cells, Fiber optic strain gauge- Semiconductor strain gauges. Vacuum Measurement: McLeod Gauge, Thermal Conduct Airflow: Anemometers Light: UV, IR, Light emitter and detector Introduction to Acoustics and acoustic sensors: Ultrason Hydrophones – Sound level meters- Nuclear radiation sensor MEASUREMENT OF BIO SIGNALS Basic transducer principles Types – source of bioelectric por electrode potential, resting and action potential – electrodes 	onfigurations, Temperature com - Piezo electric transducers. ivity Gauge – Ionization Gauge ic sensor- Types and working of ors. tentials - electrode – electrolyte for their measurement, ECG, E	9 Hours ppensation, Load Microphones and 9 Hours interface, EG.				

<

SIGN	AL CONDITIONING AND DATA ACQUISITION	9 Hours					
Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circuit – Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and P/I converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging							
– Data	conversion – Introduction to Digital Transmission system.						
	Theory:45Hours Practical:30Hours Total Hours:75						
REFE	RENCES:						
1.	ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hi	11,2009.					
2.	Patranabis D, "Sensors and Transducers", 2 nd Edition, PHI, New Delhi,2010.						
3.	John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science						
	Publications, 2009						
4.	Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instr	rumentation and					
	Control", 12 th edition, Dhanpat Rai & Co, New Delhi, 2013.						
LIST	OF EXPERIMENTS						
1.	Design and testing of Voltage to frequency converter and frequency to voltage conv	erter					
2.	Design and testing of sample and hold circuit.						
3.	Displacement measurement using potentiometer and LVDT and plotting the charact	eristic curves.					
4.	Study of Characteristics and calibration of strain gauge and Load Cell						
5.	Measurement of strain using resistive type strain gauges with temperature compensation	ation and various					
-	ridge configurations						
6.	Temperature measurement using Thermocouple, Thermistor and RTD and comparing	ng the characteristics.					
7.	Comparison of capacitive and resistive type transducer for humidity measurement w characteristics	with their					
8.	Measurement of sound using microphones and sound level meter.						
9.	Measurement of temperature, strain, displacement, acceleration using NI DAQ and	RIO cards.					
10.	Signal conditioning the physical signals using LABVIEW						

1117140774102	THEODY OF MACHINES	L	Т	Р	J	С
U17NIC 14105	THEORY OF MACHINES	3	1	0	0	4

After successful completion of this course, the students should be able to								
CO1:	Select mechanisms to achieve desired motion transformation							
CO2:	Calculate the position, velocity, acceleration of multi-bar mechanisms by graphical methods							
CO3:	Construct a cam profile for a given application.							
CO4:	Explain the significance of balancing and solve balancing problems related to							
	rotating and reciprocating masses.							
CO5:	Choose appropriate gear train for a given application							

Nil

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 P	CO/PO Mapping											
COs Programme Outcomes(POs) P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 P	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 P	Programme Outcomes(POs)											
	502											
CO1 M S												
CO2 M												
CO3 M M M M												
CO4 M W M M												
CO5 M W M M												
CO6 M M M M												

Course Assessment methods:

DIRECT	INDIREC	CT
1. Continuous Assessment Test I,II		
2. Open book test; Cooperative learning report,		
Assignment; Journal paper review, Group		
Presentation, Project report, Poster preparation,		
Prototype or Product Demonstration etc. (as	1 Course end survey	
applicable)		
3. End Semester Examination		
INTRODUCTION		6 Hours
Basic Elements of Mechanisms – Introduction to kinem	atic links, pairs, chain, machi	ne and
structure, degrees offreedom. Grashoff'slaw, Kutzbackcrite	erion.Kinematicinversionsoff	our- bar and slider
crank chain.		
KINEMATICS		10 Hours
Velocity and acceleration analysis for simple mech	anism, Classification of C.	AM and follower,

displacement diagram. Construction of cam profile for uniform velocity, uniform acceleration of follower. Construction of cam profile for Simple Harmonic Motion (SHM) and cycloidal motion of follower.

GEAR AND FRICTION DRIVES

9 Hours

Gear and Friction drives - Fundamentals of toothed gearing, spur gear terminology. Involute gear tooth profile. Gear meshing, contact ratio. Gear trains, simple compound gear trains and epicyclic gear train. Belt, Clutch (Including Problems) – Screw and Brake (Concept only).

BALANCING

Introduction, static and dynamic. Balancing of single mass rotating in single plane. Balancing of several masses rotating in single plane. Balancing of several masses rotating in different planes. Balancing of reciprocating masses. Balancing of single cylinder engine. Balancing of multi cylinder inline engine. Hammer blow, swaying couple, tractive force. Turning moment

diagram of multi cylinder engine. Energy stored in flywheel.

GYROSCOPE

77 | P a g e

Signature of BOS chairman, MCE

12 Hours

8 Hours

Forces and couples, effect of gyroscopic couple in aero planes and ships, stability of two-wheel and four- wheel vehicle. Types of vibration, longitudinal, transverse and torsional, transverse vibration: Dunkerley's method. Critical speed of shafts, frequency of undamped system

J)			
	Theory:45 Hours	Tutorials:15 Ho	ours Tot	tal Hours:60	
REFERE	INCES:				

1. Rattan S S., "Theory of Machines", 2ndEdition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.

- 2. R.L. Norton, "Kinematics and Dynamicsof Machinery", Tata McGraw Hill Publishing CompanyLtd., 2014.
- 3. R.K. Bansal, "Theory of Machines", Lakshmi publications pvt.ltd.,2011.
- 4. SingiresuS.Rao, "Mechanical Vibrations", Nem Chand and Bros, 1998.
- 5. Thomas Beven, "Theory of Machines", CBS Publishers and Distributors, 3rd edition, 2013.

U17MCT4004

DIGITAL ELECTRONICS AND MICROPROCESSOR

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Use number systems, Boolean algebra and explain various digital logic families.							
CO2:	Apply basic logic gates to form simple circuits and can simplify logic circuits using K- Map technique.							
CO3:	Design various combinational and sequential circuits							
CO4:	Explain the architecture of 8085 microprocessor							
CO5:	Write assembly language program for 8085 for the given application.							
CO6:	Explain the memory Mapping and I/O devices.							

78 | P a g e

1														
						CO/I	PO Maj	pping						
			x 7 · 1·		.1	c	1	0.0	G		1, 1,	7 3 3 7 1		
	r	(S/M/)	N indic	ates stre	ength o	of corre	lation)	8-8	strong,	M-Mee	lium, V	v-weak		
COs						Progra	imme O	utcom	es(POs	5)				_
005	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01								PSO2				
CO1	M													
CO2	S	W	Μ										W	
CO3	M	S	S										M	М
CO4	M													М
CO5	M				S									S
CO6	Μ		S		S								М	S
Cours	Course Assessment methods:													
			DIR	ЕСТ						Ι	NDIRE	CT		
1. C	Continuo	us Asse	ssment '	Test I,II										
2. C	Dpen b	ook te	st; Co	operativ	e lear	ning 1	report,							
	Assignn	nent;	Journal	paper	revi	lew,	Group							
	Presenta	ation, F	Project	report,	Poster	prepa	ration,							
	Prototyp	be or	Product	t Demo	onstrati	on etc	. (as	1.C	lourse e	nd surv	ey			
	applicat	ole)												
3.	End Ser	nester E	xaminat	ion										
NUN	ABER S	SYSTEN	AS, DIO	GITAL I	LOGIC	C FAMI	LIES A	NDBO	OLEA	N LOG	IC	9	Hours	
Intro	duction	to Num	ber syste	ems: Bir	nary, Oo	ctal, He	xadecim	al, BCI	D, Gray	code, E	Excess 3	code - E	Binary	
arith	metic: 1	's comp	lements	, 2's con	npleme	nts, and	Code c	onversi	ons -Di	gital Lo	gic Fam	ilies: TT	TL, CMC	DS,
NMO	OS, ECL	- Perfor	mance of	comparis	son of v	various	logic far	nilies- I	Boolear	n algebra	a: Basic	Postulat	es and	
theor	rems, sw	vitching	functior	ns, Cano	nical fo	orms, Lo	ogic gate	es- Simp	olificati	on using	g K- ma	ps and Iı	nplemer	itation
using	using logic gates.													

COMBINATIONAL CIRCUITS 9 Hours Problem formulation and design of combinational circuits: adder, subtractor, Parallel adder and Subtractor-Carry look ahead adder-BCD adder, Magnitude Comparator, parity checker Encoder. decoder, Multiplexer/Demultiplexer, codeconverters, Functionrealizationusinggates and multiplexers. Implementation of Combinational circuits using Multiplexers and Demultiplexers- Memory: PROMs and PLAs.

SEQUENTIAL CIRCUITS

General model of sequential circuits: Latch, Flip Flops, Level triggering, Edge triggering, Master slave configuration- Realization of one flip flop using other flip flop- Registers-Counters: Binary counters, Modulon counter, Decade, Counters, Ring counter and Johnson counter. 9 Hours

9 Hours

MICROPROCESSOR 8085 Organization of 8085: Architecture, Internal Register Organization and Pin Configuration – Instruction

Set of 8085 - addressing modes - instruction and machine cycles with states and timing diagram - 8085 assembly language programming 9 Hours

MEMORY AND I/O INTERFACING

Address space partitioning – address map – Address decoding – Designing decoder circuit for the given address map -I/O Interfacing- Peripheral ICs*: 8255, 8279 and 8251 A. * Emphasis to be given on architecture with simple applications.

	Theory:45Hours	Total Hours:45	
REFERENCES:		^	
79 P a g e	Signature	Saul fBOS chairman MCE	

- 1. Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2008.
- 2. Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Applications", 8th edition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special Indian Edition, 2014.
- 3. Salivahanan S. and Arivazhagan S., "Digital Circuits and Design", 5th edition, oxford university

press, 2018.

- 4. Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with the 8085", 6th edition, Penram International (India), 2013.
- 5. Aditya P Mathur, "Introduction to Microprocessor", 3rdedition, Tata McGraw Hill, New Delhi, 2003.

		L	Т	Р	J	С
U1/IN14000	ENGINEERING CLINIC - II	0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and teamwork
- To create an engaging and challenging environment in the engineering lab

Cours	Course Outcomes							
After	After successful completion of this course, the students should be able to							
CO1:	Identify a practical problem and find a solution							
CO2:	Understand the project management techniques							
80 P a	g e	Signature of BOS chairman, MCE						

Nil

						CO/F	'O Mar	ping						
		(S/M/V	V indica	ates stre	ngth o	f correl	lation)	S-S	trong,	M-Mee	lium, V	V-Weak		
COs						Progra	mme O	utcome	es(POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	Μ	W		S			S	S	М
CO2											S		S	М
CO3										S			S	М

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	1. Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce 40%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flyingmachines.

In the fourth semester, students will focus primarily on Raspberry pi-based

controllers with Python programming

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

1117XED4504	DDOFFSSIONAL VALUES	L	Т	Р	J	С
U17VEP4504	PROFESSIONAL VALUES	0	0	2	0	0

After	successful completion of this course, the students should be able to
CO1:	Develop the ethical values in both professional and personal life
CO2:	Develop ability to take decision to reinforce professional life
CO3:	Rational in professional skills required for diverse society
CO4:	Excel in ingenious attitude to congregate professional life
CO5:	Research into the professional stand
CO6:	Spruce an Individual with decorum to achieve professional life

Pre-requisite

NiĪ

82 | P a g e

Signature of BOS chairman, MCE

Saul

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 S CO1 **CO2** Μ S CO3 **CO4** S CO5 Μ CO6 Μ

Course Assessment methods:

	DIRECT INDIRECT								
1.Group Activity / Individual performance and	1. Mini project on values	s / Goodwill							
assignment	Recognition								
2. Assessment on Value work sheet /Test		-							
VALUES THROUGH PRACTICAL ACTIVITIES:		30 Hours							
1. ProfessionalskillsWithValues:PositiveAttitude,A	1. ProfessionalskillsWithValues: PositiveAttitude,Adaptability,Responsibility,Honesty and								
Integrity, Self Esteem, & Self Confidence									
2. Building Innovative work cultures: Creative thin	king, Critical thinking, Confl	ict Resolution,							
Problem Solving, & Decisionmaking									
3. Professional Work Ethics: Types of Ethics, Etiqu	ette, personality Grooming,								
 Emotional quotient, Human Dignity, Safety & Role of Professional in Social Responsibility 4. Engineering Ethics: Engineering Council of India - Objectives - Code of Ethics - Social responsibility -Professional Quality - Ethical issues - Effects - Strategy - Corruption, Consequences, Cures 5. Case studies in engineering ethics: Discussion of case studies relating to Public safety, health, welfare, Quality of product, Improper conduct by management, Product 									
responsibility, Intellectual property	er conduct by management, P	roduct							
responsibility, Intellectual property Theory:0 Tutorial:0 Prac	er conduct by management, P tical:30 Project:0Tota	roduct d: 30hours							
responsibility, Intellectual property Theory:0 Tutorial:0 Prac	er conduct by management, P tical:30 Project:0Tota mode	roduct il: 30hours							
responsibility, Intellectual property Theory:0 Tutorial:0 Prac Workshop REFERENCES:	er conduct by management, P tical:30 Project:0Tota mode	roduct d: 30hours							
responsibility, Intellectual property Theory:0 Tutorial:0 Prac Workshop REFERENCES: 1. LEARNING TO DO SOURCEBOOK 3 - UNESC	er conduct by management, P tical:30 Project:0Tota mode CO-UNEVOC - PDF	roduct al: 30hours							
safety, health, wehare, Quanty of product, hipropression of product, hipropress	er conduct by management, P ical:30 Project:0Tota mode O-UNEVOC - PDF LearningToDo.pdf	roduct d: 30hours							
safety, health, wenare, Quanty of product, impropression of product, improve of product, improduct, improduct, improve of product, improve of produ	er conduct by management, P tical:30 Project:0Tota mode CO-UNEVOC - PDF LearningToDo.pdf S AND ETHICAL STANDAI	roduct il: 30hours RDS							
Safety, health, wehare, Quanty of product, hispropression of hispropression of product, hispropression of hispropression o	er conduct by management, P tical:30 Project:0Tota mode O-UNEVOC - PDF LearningToDo.pdf S AND ETHICAL STANDAI	roduct il: 30hours RDS							
Safety, health, wenare, Quanty of product, hispopresponsibility, Intellectual property Theory:0 Tutorial:0 Praction Workshop REFERENCES: 1. LEARNING TO DO SOURCEBOOK 3 - UNESC www.unevoc.unesco.org/fileadmin/user_upload/pubs 2. DECLARATION OF PROFESSIONAL VALUES www.garda.ie/Documents/User/declarationvalues.pdf 3. KARMA YOGA - SWAMI VIVEKANANDA	er conduct by management, P tical:30 Project:0Tota mode O-UNEVOC - PDF LearningToDo.pdf S AND ETHICAL STANDAI	roduct il: 30hours RDS							
safety, health, wenare, Quanty of product, hipropression of product, hipped data for the product, hipped data for hipped	er conduct by management, P tical:30 Project:0Tota mode CO-UNEVOC - PDF LearningToDo.pdf S AND ETHICAL STANDAI	roduct il: 30hours RDS							
safety, health, wenare, Quanty of product, hispropression of hispropression of product, hispropression of hispropression o	er conduct by management, P tical:30 Project:0Tota mode O-UNEVOC - PDF LearningToDo.pdf S AND ETHICAL STANDAI	roduct il: 30hours RDS							
safety, health, wenare, Quanty of product, hipropresponsibility, Intellectual property Theory:0 Tutorial:0 Prac Workshop REFERENCES: 1. LEARNING TO DO SOURCEBOOK 3 - UNESC www.unevoc.unesco.org/fileadmin/user_upload/pubs 2. DECLARATION OF PROFESSIONAL VALUES www.garda.ie/Documents/User/declarationvalues.pdf 3. KARMA YOGA - SWAMI VIVEKANANDA www.vivekananda.net/PDFBooks/KarmaYoga.pdf 4. PROFESSIONAL ETHICS IN ENGINEERING - Engineering www.sasurieengg.com//GE2025%20	er conduct by management, P tical:30 Project:0Tota mode CO-UNEVOC - PDF LearningToDo.pdf S AND ETHICAL STANDAI Sasurie College of Professional%20Ethics%20in%2	roduct il: 30hours RDS <u>0Engineering</u>							
safety, health, wenare, Quanty of product, hipropression responsibility, Intellectual property Theory:0 Tutorial:0 Prac Workshop REFERENCES: 1. LEARNING TO DO SOURCEBOOK 3 - UNESC www.unevoc.unesco.org/fileadmin/user_upload/pubs 2. DECLARATION OF PROFESSIONAL VALUEX www.garda.ie/Documents/User/declarationvalues.pdf 3. KARMA YOGA - SWAMI VIVEKANANDA www.vivekananda.net/PDFBooks/KarmaYoga.pdf 4. PROFESSIONAL ETHICS IN ENGINEERING - Engineering www.sasurieengg.com//GE2025%200 5. ENGINEERING ETHICS CASE STUDY; Challed	er conduct by management, P tical:30 Project:0Tota mode CO-UNEVOC - PDF LearningToDo.pdf S AND ETHICAL STANDAI Sasurie College of Professional%20Ethics%20in%2 enger	al: 30hours							

Sam

111701174000	Environmental Science and Engineering	L	Т	Р	J	С
U17CHT4000	(Common to All branches)	3	0	0	0	0

After	After successful completion of this course, the students should be able to						
CO1:	Analyze the impact of engineering solutions in a global and societal context.						
CO2:	Discuss contemporary issues that results in environmental degradation and would attempt to						
	provide solutions to overcome those problems.						
CO3:	Highlight the importance of ecosystem and biodiversity.						
CO4:	Consider issues of environment and sustainable development in his/her personal and professional						
	undertakings.						
CO5:	Paraphrase the importance of conservation of resources.						
CO6:	Play an important role in transferring a healthy environment for future generations.						

Pre-requisite

P \leq

84 | P a g e

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	mme O	utcome	es(POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		Μ					S		Μ					
CO2						Μ				Μ			Μ	
CO3							Μ							
CO4						Μ	S						Μ	
CO5							S							
CO6			W				S					Μ		

Course Assessment methods:

DIRECT	INDIRECT				
1. Internal TestI					
2. Internal TestII					
3. Assignment	1.Course end survey				
4. Group presentation					
INTRODUCTION TO ENVIRONMENTAL STUD	14 Hours				
NATURAL RESOURCES					
Definition, scope and importance - Need for public	awareness - Forest resource	ces: Use and over-			
exploitation, deforestation, case studies - Timber extra	ction, mining, dams and the	ir effects on forests			
and tribal people.					
Water resources: Use and overutilization of surface and	ground water, conflicts over	water, dams			

– benefits and problems – Water conservation, rain water harvesting, watershed management. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.

Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, case studies.

Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources, case studies.

Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification, Wasteland reclamation – Role of an individual in conservation of natural resources.

ECOSYSTEMS AND BIODIVERSITY ECOSYSTEM:

9 Hours

Concept of an ecosystem – Structure and function of an ecosystem: Producers, consumers and decomposers, Food chain, Food web, Energy flow in the ecosystem and Ecological pyramids – Ecological succession – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem

(d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

BIODIVERSITY: Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity – Bio geographical classification of India – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic values – India as a mega-diversity nation – Hot-spots of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts - Endangered and endemic species of India - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution – Organic and inorganic pollution – cyclone separator, electrostatic precipitator (b) Water pollution (c) Heavy metal pollution (d) Noise pollution (e) Thermal pollution (f) Nuclear hazards – Role of an individual in prevention of pollution – Pollution case studies – Solid waste and hazardous Management: Causes, effects and control measures from factories, small scale and large scale industries – Waste minimization – Disaster management: floods, earthquake, cyclone and landslides.

SOCIAL ISSUES AND THE ENVIRONMENT

7 Hours

8 Hours

From Unsustainable to Sustainable development – Urban problems related to energy – Resettlement and rehabilitation of people; its problems and concerns, case studies – Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion – Environment Production Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act

- Issues involved in enforcement of environmental legislation - Human Rights.

HUMAN POPULATION AND THE ENVIRONMENT

7 Hours

Population growth and explosion – Welfare Program – Environment and human health – Communicable disease – Role of Information Technology in Environment and human health – Case studies.

Theory:45Hours Total Hours:45

REFERENCES:

- 1. G. Tyler Miller and Scott Spoolman, 'Environmental Science', Fourteenth Edition, Brooks Cole, 2012.
- 2. Gilbert M. Masters and Wendell P. Ela, 'Introduction to Environmental Engineering and Science', Third Edition, Pearson Education, 2013.
- 3. Bharucha Erach, 'The Biodiversity of India', Mapin Publishing Pvt. Ltd., Ahmedabad, 2002.
- 4. Trivedi R.K and P.K.Goel, 'Introduction to Air Pollution', Techno-Science Publications, 2003.
- 5. Trivedi R.K., 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media, 1996.
- 6. Cunningham, W.P. Cooper and T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publication House, Mumbai, 2001.
- 7. Wager K.D., 'Environmental Management', W.B. Saunders Co., Philadelphia, USA, 1998.
- 8. Colin R. Townsend, Michael Begon and John L. Harper, 'Essentials of Ecology', Third Edition, Blackwell Publishing, 2008.

Signature of BOS chairman, MCE

P Sau

SEMESTER V

INDUSTRIAL ELECTRONICS AND DRIVES

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO1:	Relate the basic semiconductor physics to the properties of real power semiconductor	K2				
CO2:	Describe the concept of operation of AC-DC converters	K2				
CO3:	Identify the operating the single phase and three phase inverter circuits	K3				
CO4:	Describe the various PWM techniques.	K2				

Soul

U17MCI3201- Electrical Machines

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S				М					Μ			S	
CO2	S												Μ	
CO3	S				М								Μ	
CO4	S	S	S										W	
CO5		Μ	S		М						М		S	
CO6	S				М					Μ			S	

Course Assessment methods:

DIRECT	INDIRE	CT
1. Continuous Assessment Test I, II	1. Course end survey	
2. Open book test; Cooperative learning report,		
Assignment; Journal paper review, Group		
Presentation, Project report, Poster preparation,		
Prototype or Product Demonstration etc. (as		
applicable)		
3. End Semester Examination		-
POWER SEMICONDUCTOR DEVICES	9 Hours	
Thyristors – Volt-Ampere Characteristics – Switching C	Characteristics-Power MOSFE	ET – Volt-
Ampere Characteristics - Switching Characteristics - Po	ower IGBT – Volt-Ampere Cl	haracteristics
– Switching Characteristics		
AC to DC CONVERTERS		9 Hours
Diode Rectifiers - Single phase Bridge - R, RL - Thyri	stor Converter – Single phase	e bridge – RL
- schemes of DC motor speed control - Single phase se	parately excited drive.	-
INVERTERS		9 Hours
Single-phase VSI – Half-bridge – Centre tapped inverter	r – Full bridge inverter -Three	e-phase VSI
- Square-wave-Control of induction motor by voltage	source inverter.	
PWM TECHNIQUES		9 Hours
PWM Inverter - fundamental concepts of PWM - na	turally sampled PWM - PW	M analysis by duty
cycle variation		
DC- DC CONVERTER		9 Hours
DC Chopper - Step Down Converter - Step Up Conve	erter -Buck Boost Converter	– Introduction - Fly
Back converter-speed control of PMDC motor.		
Theory: 45 Tutorial: 0 Practical:30	Project: 0 Total: 75	Hours
REFERENCES:		

1	Distribute D.C. (Descent Flashers, 27 Tate McCourse Hill, 2012)						
1.	1. Bimbhra P S, "Power Electronics" Tata McGraw Hill, 2012						
2.	Rashid M H, "Power Electronics – Circuits Devices and Application", 4 th Edition	on,					
	Prentice Hall International, New Delhi, 2013.						
3.	Dubey G K., Doradia S R., Joshi A. and Singh, R.M., "Thyristorised Power Co	ntrollers",					
	2 nd Edition, Wiley Eastern Limited, 2010.						
4.	Joseph Vithayathil, "Power Electronics - Principle and Applications", Tata Mc	Graw-Hill					
	Inc, New Delhi, 2010.						
5.	Bimal K Bose "Modern power electronics and AC Drives" Prentice Hall Intern	ational,					
	New Delhi, 2001.						
6.	6. D. Grahame Holmes, Thomas A. Lipo "Pulse Width Modulation for Power Converters:						
	Principles and Practice", John Wiley & Sons, 2003.						
LIST O	F EXPERIMENTS	30 Hours					
Voltage-O	Current characteristics of SCR						
Voltage-O	Current characteristics of IGBT/MOSFET						
AC-DC u	ncontrolled converter						
AC-DC c	onverter for half wave controlled using phase control method						
Speed con	ntrol of PMDC motor using three phase fully controlled converter						
DC Volta	ge control using DC – DC Converter						
Buck – be	post converters						
Single ph	ase IGBT based PWM inverter						
Speed con	ntrol of three phase induction motor using AC to AC voltage control						
Speed con	ntrol of BLDC motor						
Theory:	45 Tutorial: 0 Practical: 30 Project: 0 Total: 75 Hours						

U17MC15202	PROGRAMMABLE LOGIC	L	Т	Р	J	С
01/MCI5202	CONTROLLERS	3	0	2	0	4

After successful completion of this course, the students should be able to					
CO1:	Outline the importance of PLC, DCS, SCADA in industrial automation	K2			
CO2:	Describe the architecture of PLCs with the analogy of relay logic components	K2			

Ł

90 | P a g e

Signature of BOS chairman, MCE

 \leq ...

CO3:	Develop ladder logic program for applications	K3
CO4:	Integrate PLCs with electro-mechanical systems	K3
CO5:	Classify the communication protocols	K2
CO1:	Design SCADA system for industrial applications	K3

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 **CO1:** S **CO2:** М CO3: Μ S S S Μ М М **CO4:** Μ Μ Μ S Μ Μ CO5; М S **CO6:** Μ S S S М М М

Course Assessment methods:

DIRECT	INDIRE	CT
1. Continuous Assessment Test I, II		
2. Assignment; Journal paper review, Group	0	
Presentation, Project report, Poster preparation	, 1. Course end survey	
Prototype or Product Demonstration etc. (a:	S	
applicable)		
5. End Semester Examination		
		6 Hours
Role of automation in industries, Benefits of automation	ation –Introduction to automa	tion tools: Low cost
automation, PLC, DCS, SCADA - Automation strate	gy evolution.	
PLC HARWARE MODULES AND PROGRAMM	AING	6 Hours
CPU - processor function - processor operating mod	es - PLC system memory and	application memory
- input modules - output modules - module selection	n – PLC internal operation and	d signal processing –
input and output processing		
PROGRAMMING OF PLC SYSTEM		11 Hours
Introduction to IEC 61131 - System functions - sequence of	control – ladder logic – programn	ning sequences –
limitation of ladder programming - logic instruction sets -	standard PLC functions - specia	l function relays –
data handling instructions – arithmetic instructions – data r	nanipulation – program subroutir	nes –
programming examples.		
INDUSTRIAL COMMUNICATION PROTOCOLS		11 Hours
Definition of protocol, Introduction to Open Syste	m Interconnection (OSI) mo	del, Communication
standard (RS232, RS485), Modbus (ASCII & RTU)), Introduction to third party	interface, concept of
OPC (Object linking and embedding for Proce	ess Control), Foundation Fi	ieldbus (H1&HSC).
Comparison of Foundation Fieldbus, Modbus, Device	enet, Profibus, Industrial Ether	net.
SCADA SYSTEMS		11 Hours
Concept of SCADA systems, Programming technic	ques for: Creation of pages, S	equencing of pages,
creating graphics & animation, Dynamos programmin	ng with variables, Trending, H	istorical data storage
& Reporting, Alarm management, reporting of events	s and parameters, Comparison	of different SCADA
packages, Interfacing PLC and \$CADA using comn	nunication links, Developmen	t stages involved for
91 P a g e		
Signature of BOS of	hairman, MCE	

PLC based at	utomation systems, A	pplication Developme	nt using SCAI	DA system				
Theory: 45	Tutorial: 0	Practical: 30	Project: 0	Total: 75 Hou	irs			
REFEREN	CES:							
1. John V	1. John W Webb and Ronald A Reis, "Programmable logic controllers: Principles							
and A	pplications", 5 th Editi	on, Prentice Hall India	a, 2002.					
2. Micha	el P Lukas, "Distribu	ted Control systems",	Van Nostrand	Reinfold Company	, 1995.			
3. Frank	D Petruzella, "Progra	ammable Logic Contro	ollers", 5 th editi	on, McGraw-Hill				
Comp	anies, March 2017.							
4. Ian C	B Warnock, "Progr	ammable Controllers	Operation a	nd Application",	Prentice Hall			
Intern	ational, UK, 1992							
5. Krishr	ia kant, "Computer B	ased Industrial Contro	l", 2 nd revised of	edition, Prentice Ha	all of			
India,	2011.							
LIST OF E	XPERIMENTS				30 Hours			
1. Constr	ruct a circuit to contro	ol a simple process usi	ng Relay and T	Fimer module.				
2. Design	n a T-junction traffic	light controller using l	PLC					
3. Design	n a PLC Program for	automating bottle filli	ng systems					
4. Devel	op a PLC system to c	ontrol a simple convey	or system					
5. Study	of industrial process	automation and comm	unication netw	ork architecture				
6. Devel	op an HMI design for	r a simple pump tank s	ystem.					
7. Devel	op a simple SCADA	application using Dyn	amos.					
8. Devel	op a SCADA panel to	o control a PLC based	system.					
9. Desig	n a PLC ladder logic	program to control the	Speed of a mo	otor				
10. Desig	n a PLC ladder logic	program to control the	Position of a s	servomotor				
Theory: 45	Tutorial: 0 Prac	ctical: 30 Projec	t: 0 7	Cotal: 75 Hours				

U17MCT5003 DESI	DESIGN OF MACHINE EI EMENTS	L	Т	Р	J	С
	DESIGN OF MACHINE ELEMENTS	3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to					
CO1:	Recognize the design process and the factors influencing it and design the simple	K3			
	components for static loading				

<

CO2:	Apply the basic concepts of design to Estimate the life of the components subjected to varying loads	K3
CO3:	Design the circular shafts based on strength and rigidity, keys and couplings for power transmission	K3
CO4:	Apply the basics of power transmission to select the belts	K3
CO5;	Design the welded joints, threaded joints and springs subjected to static and dynamic loads	K3
CO6:	Select the rolling contact bearings for static and cyclic loads	К3

- 1. U17MCT3102 Mechanics of solids
- 2. U17MCT4103 Theory of Machines

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progra	mme O	utcome	es(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	S		М		Μ								М	W
CO2	S				М								М	
CO3	S												М	
CO4	М												W	
CO5	S												М	
CO6	М												W	

Course Assessment methods:

DIRECT			INDIRE	CT
 Continuous Assessment Test Open book test; Coopera Assignment; Journal pap Presentation, Project repor Prototype or Product De applicable) 	t I, II tive learning report, per review, Group t, Poster preparation, monstration etc. (as	1. Course en	d survey	
3. End Semester Examination				[
DESIGN PROCESS AND D		9 Hours		
Machine Design – Design Process	s - Factors influencing	design - Calo	culation of stres	ses for
various load combinations - theor	ries of failure – Factor	of safety – De	sign of curved b	eams – Crane hook
and 'C' frame – Design of levers.				
IGN OF FLUCTUATING L	OAD			8 Hours
Stress concentration – causes &	& remedies – fluctuat	ing stresses	– fatigue failu	res – S-N curve –
endurance limit – notch sensitiv	vity – endurance strei	ngth modifyii	ng factors – de	esign for finite and
infinite life – cumulative damage	e in fatigue failure – So	derberg, Gerl	ber, Goodman, I	Modified Goodman
diagrams – Fatigue design of con	nponents under combir	ned stresses		
DESIGN OF POWER TRAN	SMITTING ELEM	IENTS		8 Hours
Shaft design on the basis of streng	th, torsional rigidity a	nd lateral rigio	lity and A.S.M.	E. code –
Design of keys and splines – Des	sign of flange coupling	and flexible	bushed pin cou	pling – Belt drives:
Selection of Flat belts, V-belts an	d ribbed belts.	0	1	
93 P a r.e		1		
1 1 4 5 0	Signature of BOS cha	irman, MCE		

DESIGN OF JOINTS AND SPRINGS	10 Hours				
Threaded fasteners - Bolts of uniform strength - Bolts under tension - Eccentric	cally loaded bolted				
joints Welded joints - Welding symbols - Stresses in butt and fillet welds, Design of Welded Joints for					
static loads - Axially loaded unsymmetrical welded joints, Eccentric load in the	plane of welds –				
theory of bonded joints					
Design of springs					
Types - applications and materials for springs - Stress and deflection equ	ations for helical				
compression springs - Style of ends - Design of helical compression and tension sprin	ngs – Springs				
in series and parallel - Introduction to Concentric helical springs, Helical torsion	Spring, Multi- leaf				
springs – Surge in springs					
ROLLING CONTACT AND SLIDING CONTACT BEARINGS	10 Hours				
Types of rolling contact Bearings - Static and dynamic load carrying capacities, Stri	beck's Equation,				
Equivalent bearing load - Load-life relationship - Selection of rolling contact bearin	gs				
- Design for cyclic loads and speed - mounting of bearings - Types of failur	e in rolling contact				
bearings – causes and remedies.	_				
Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 4	5 Hours				
REFERENCES:					
1. Bhandari V B., "Design of Machine Elements", 4th edition, Tata McGraw Hi	ll Publication Co.				
Ltd., 2016.Principles and Applications", 5th Edition, Prentice Hall India, 200	2.				
2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 8 th edition	n, McGraw Hill				
International, 2008.					
3. Prabhu T J, "Fundamentals of Machine Design", Bharat Institute of Science a	and technology,1999				
4. Alfred Hall, Alfred Holowenko, Herman Laughlin and Somani S, "Machine	design", Tata				
McGraw Hill, 2007.					
5. Krishna kant, "Computer Based Industrial Control", 2 nd revised edition, Prent	ice Hall of India,				
2011					

111714075004	CONTROL ENGINEEDING	L	Т	P	J	С
U1/MC15004	CONTROL ENGINEERING	3	0	0	0	3
0						

After s	successful completion of this course, the students should be able to	
CO1:	Know the significance to control engineering and the basic construction of control systems	K2

Sul

CO2:	Develop mathematical equations for model mechanical, electrical systems and canable to	K3
	compute transfer function using block diagram and signal flow graph methods	
CO3.	Analyze the 1st and 2nd order systems in time domain for various test signals and Calculate	K3
CO3.	steady state errors and derive generalized error series in the time domain analysis	
CO4:	Analyze the 1st and 2nd order systems in frequency domain using Bode and Polar plots.	K3
CO5;	Calculate the stability of the system using Routh Hurwitz, Nyquist and Root Locus techniques.	K3
CO6.	Explain about PID control and tuning, time delay responses and also discuss sequence	K2
000.	control in process industry	

Pre-requisite Nil

Г

						CO /I	PO Ma	pping						
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progra	amme (Dutcom	es(POs))				
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S													Μ
CO3	S		М											М
CO4	S			М										
CO5			М	М										
CO6	S				Μ									

Course Assessment methods:

DIRECT			INDIREC	Г	
 Continuous Assessment Test I, Assignment; Journal paper revise Presentation, Project report, Poprototype or Product Demonstra applicable). End Semester Examination 	II ew, Group oster preparation, ration etc.(as	1. Course en	d survey		
INTRODUCTION				12 Hours	
Open loop and closed loop systems - Examples - Elements of closed loop systems - Transfer function of elements - Modeling of physical systems - Mechanical systems - Translational and Rotational systems - Electrical networks - Block diagram – Signal flow graph - Mason's gain formula. Transfer					
TIME DOMAIN ANALYSIS)			12 Hours	
Standard Test signals – Time re criteria - Types of systems - Stead	sponse of second ord ly state error constants	er system - T s - Generalized	Time domain resp d error series	ponse Performance	
FREQUENCY RESPONSE	OF SYSTEMS			12 Hours	
Frequency domain specifications - systems-Bode plots- Assessment and Lead lag compensation using	- correlation between t of stability - Gain M Bode Plot. Tutorials :	ime and frequ argin and phat Bode plot an	ency response fo ase Margin Asses d polar plot using	r second order ssment – Lead, lag g MATLAB.	
STABILITY OF CONTROL	SYSTEMS	•		12 Hours	
Characteristic equation - Routh criterion - Assessment of relative procedure - Root Locus constru- systems using MATLAB	Hurwitz criterion of stability – Gain and action - Root contour	stability - N Phase Margin rs- Tutorials :	Nyquist stability I. Root Locus con Stability analys	- Nyquist stability ncept - Root Locus is of higher order	

AUTC	AUTOMATIC CONTROL 12 Hours							
Intro	luction to Automatic Control	I -P-I-D Control - P	ID Control Tunin	g - Feed forward Control Ratio				
Contr	ol - Time Delay Systems and	I Inverse Response S	ystems - Special (Control Structures - Introduction				
to Sec	uence Control, PLC, RLL.							
Theor	y: 60 Tutorial: 0	Practical: 0	Project: 0	Total: 60 Hours				
REF	ERENCES:							
1.	Nagrath I J. and Gopal M.,	"Control Systems Eng	gineering", 5 th edi	ition, Prentice Hall of India,				
	New Delhi, 2009.Co. Ltd., 2	2016.						
2.	Principles and Applications	', 5th Edition, Prentice	e Hall India, 2002	·				
3.	Katsuhiko Ogata, "Modern	Control Engineering'	', 5 th edition, Pren	tice Hall India, 2011Hill				
	International, 2008.							
4.	R.C Dorf and R.H. Bishop,	"Modern Control sys	tems", 12th editio	n, Pearson India, 2014				
5.	Curtis D Johnson, "Process	control Instrumentati	on technology", I	Prentice Hall India, 2013.				

		L	Т	Р	J	С
0171115000	ENGINEEKING CLINIC - III	0	0	4	2	3
Course Outcomes						

Outcomes	
(Outcomes

Course objectives							
To help the students look into the functioning of simple to complex devices and systems							
To enable the students to design a	nd build simple systems on their own						
0 (1)	Saul						

96 | P a g e

To help experiment with innovative ideas in design and team work					
To create an engaging and challenging environment in the engineering lab					
To help the students look into the functioning of simple to complex devices and systems					
After successful completion of this course, the students should be able to					
CO1: Identify a practical problem and find a solution					
CO2: Understand the project management techniques					
CO3: Demonstrate their technical report writing and presentation skills					

Nil

					(CO/PO	Mapp	ing						
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S	S	Μ
CO2											S		S	Μ
CO3	S									S			S	М

Course Assessment methods:

	DIRECT	INDIRECT
1.	Project reviews 50%	1. Course Exit Survey
2.	Workbook report 10%	
3.	Demonstration & Viva- voce 40%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the fifth semester students will focus primarily on design project combining concepts learnt in engineering Clinic I and II

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total: 90 Hours

97 | Page

1117VED5505	SOCIAL VALUES	L	Т	Р	J	С	
017 VEF 5505	(Mandatory)	0	0	2	0	0	
Course Outcomes							
After successful completion of this course, the students should be able to							

Understand the transformation from self to society CO1:

98 | P a g e

Signature of BOS chairman, MCE

 \leq

CO2:	Acquire knowledge about disparity among Human Beings
CO3:	Realize the new ethics in creating a more sustainable Society
CO4:	Develop skills to manage challenges in social issues.
CO5;	Acquire the skills for Management of Social work & Holistic Society
CO6:	Validate the social liabilities at dissimilar situations

- 1. U17VEP1501 / PERSONAL VALUES
- 2. U17VEP2502 / INTERPERSONAL VALUES
- 3. U17VEP3503 / FAMILY VALUES
- 4. U17VEP4504 / PROFESSIONAL VALUES

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	umme C	Outcom	es(POs	5)				
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						S								
CO2							S							
CO3								Μ						
CO4											S			
CO5												S		
CO6									М					

Course Assessment methods:

	DIRECT	INDIRECT
1.	Group Activity / Individual performance and	Mini project on values / Goodwill Recognition
	assignment	
2.	Assessment on Value work sheet / Test	
Valu	es through Practical activities:	

- **1. Self and Society:** Relation between self and society Different forms of society Elements of Social structures – Realization of Duties and Responsibilities of Individual in the Society
- **2.** Social Values: Tolerance Responsibility Sacrifice Sympathy Service peace- nonviolence right conduct- Unity forgive dedication Honest
- **3.** Social issues :Disparity among Human beings- Poverty-Sanitation -corruption- un employmentsuperstition – religious intolerance & castes – terrorism.
- **4. Emerging Ethics for Sustainable Society:** Unison of Men in Society Positive Social Ethics Cause and Effect Ensuring an Equitable Society- Effect of Social Media in society development of Education and Science in the Society
- **5. Social Welfare**: Social welfare Organization Programme by Government and NGO's Benefits of Social Service Balancing the Family and Social Life Development of

Holistic Society systems - Electrical networks - Block diagram - Signal flow graph - Mason's gain formula. Transfer function - Transfer function of DC servomotor, AC servomotor

Workshop mode

REFERENCES:

- 1. SOCIAL PROBLEMS IN INDIA ForumIAS.com PDF
- discuss.forumias.com/uploads/File upload/.../711b18f321d406be9c79980b179932.pd...
- 2. INVESTING IN CULTURAL DIVERSITY AND INTERCULTURAL DIALOGUE: UNESCO ...

	www.un.org	/en/events/cultu	raldiversity	/day/pdf/Inve	sting_in_cultur	al_dive1	sity.pdf		
3.	INDIAN	SOCIETY	AND	SOCIAL	CHANGE	-	University	of	Calicut
	www.univer	sityofcalicut.inf	o/SDE/BA	_sociology_ir	ndian_society.p	df			
4.	CULTURE	E, SOCIE	ETY	AND	THE 1	MEDIA	· -	E-	class
	www.eclass	.uoa.gr//MED	[A164//%	5BTony_Ben	nett, James C	urran,_N	Michael_G		
5.	SOCIAL W	VELFARE AD	MINISTR	ATION - IG	NOU				
	www.ignou	i.ac.in/upload/I	Bswe-0039	620Block-2-	UNIT-6-smal	1%20si	<u>ze.pdf</u>		

	CONSTITUTION OF INDIA	L	Т	Р	J	С
U171N15000	(Mandatory course)	2	0	0	0	2

After s	After successful completion of this course, the students should be able to									
CO1:	Gain Knowledge about the Constitutional Law of India									
CO2:	Understand the Fundamental Rights and Duties of a citizen									
CO3:	Apply the concept of Federal structure of Indian Government									
10015		Sal								

100 | P a g e

CO4:	Analyze the Amendments and Emergency provisions in the Constitution.
CO5;	Develop a holistic approach in their life as a Citizen of India

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO8 PO10 PO11 PO12 PO7 PO9 PSO1 PSO2 W **CO1** М S **CO2** S S Μ **CO3** S W М **CO4** W М М CO5 S Μ Μ М **CO6**

Course Assessment methods:

DIRECT	INDIRE	СТ						
1. Group Activity / Quiz/ Debate / Case studies	1. Group Activity / Quiz/ Debate / Case studies Surveys							
2. Class test / Assignment								
THEORY COMPONENT:								
Module.1: Introduction to Indian Constitution :		4Hours						
Meaning of the constitution law and constitutionalism	n - Historical perspective of	of the Constitution -						
Salient features and characteristics of the Constitution o	f India							
Module.2: Fundamental Rights		8 Hours						
Scheme of the fundamental rights - Right to Equality -	Fundamental Right under A	Article 19 - Scope of						
the Right to Life and Liberty - Fundamental Duties and	d its legal status - Directive	e Principles of State						
Policy – Its importance and implementation								
Module.3: Federal Structure		8 Hours						
Federal structure and distribution of legislative and finan	ncial powers between the Ur	ion and the State						
- Parliamentary Form of Government in India - The con	stitutional powers and statu	s of the President of						
India								
Module.4: Amendment to Constitution		6 hours						
Amendment of the Constitutional Powers and Procedu	re - The historical perspectiv	ves of the						
constitutional amendments in India								
Module.5: Emergency Provisions 4 hours								
National Emergency, President Rule, Financial Emergency Local Self Government - Constitutional								
Scheme in India								
Theory: 30Tutorial: 0Practical: 0	Project: 0 Total: 3	30 Hours						
REFERENCES:								

 \leq

- 1. <u>Constitution of India Ministry of Law & ustice</u> PDF format awmin.nic.in/coi/coiason29july08.pdf
- 2. Introduction to the Constitution of India by Durgadas Basu
- 3. The Constitution of India Google free material –
- 4. <u>Parliament of India</u> PDF format download.nos.org/srsec317newE/317EL11.pdf
- 5. The Role of the President of India By Prof. Balkrishna .
- 6. Local Government in India E Book Pradeep Sachdeva

SEMESTER VI

 \leq

U17MCI6201

ROBOTICS ENGINEERING

 L
 T
 P
 J
 C

 3
 0
 2
 0
 4

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Explain the robotic terminologies for various configurations							
CO2:	Select an appropriate gripper for a given application and use a gripper for pick and place application	К3						
CO3:	: Calculate the forward kinematics, inverse kinematics and Jacobian for a serial robot							
CO4:	Apply Lagrangian and Newton-Euler methods to analyze dynamic characteristics of a robot .	K3						
CO5;	Describe various control strategies and software interfaces used in robot	K3						
CO6:	Explain and practice various programming techniques used inindustrial robots	K2,K3						

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S			W					М	Μ				
CO3	S	Μ	Μ		М				М	Μ				
CO4	S	Μ	Μ											
CO5	М													
CO6					S				М	Μ				

Course Assessment methods:

DIRECT		INDIRECT				
1. Continuous Assessment Test I, I	Ι	1. Course en	d survey			
2. Assignment; Journal paper	review, Group		-			
Presentation, Project report, P	Poster preparation,					
Prototype or Product Demon	nstration etc. (as					
applicable)						
3. End Semester Examination						
INTRODUCTION	6 Hours					
Brief History, Types of robots, Overv	view of robot subsys	stems, resolut	ion, repeatabilit	ty and		
accuracy, Degrees of freedom of rob	oots, Robot configu	rations and c	oncept of work	space, Mechanisms		
and transmission - Applications.						
KINEMATICS OF ROBOTS				9 Hours		
Introduction - Matrix Representation	- Homogeneous tra	nsformation 1	matrices – Forw	ard and		
Inverse kinematics Equations: Position	on and Orientation -	Denavit- Har	denberg Repres	entation of forward		
kinematics equations of robots- Degeneracy and Dexterity						
	Sau	1				
104 P a g e	ignature of BOS cha	irman, MCE				

DYNAMICS OF ROBOTS	11 Hours						
Introduction- Differential motions of a frame – Jacobian – Singularities – Lagrangia	and Newton-Euler						
formulations – Basics of Trajectory Planning.							
MOTION CONTROL AND SOFTWARE INTERFACES	11 Hours						
Introduction to Laplace transform and transfer functions - Independent joint control,	PD and						
PID controllers- Software interfaces: Low level interfaces, IO digital signals,	Fieldbuses – Data						
protocols and connections							
END EFFECTORS	4 Hours						
End effectors and Different types of grippers, vacuum and other methods of gripp	oing - Grippers force						
analysis-Gripper Design-Simple problems							
ROBOT PROGRAMMING	4 Hours						
Robot programming: Introduction; On-line programming: Manual input, lead the	rough programming,						
teach pendant programming; Off-line programming languages, Simulation.							
Theory: 45Tutorial: 0Practical: 30Project: 0Total: 7	75 Hours						
REFERENCES:							
1. Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of Ind	ia, 2010.						
2. Mikell P Groover, "Industrial Robots - Technology, Programming and Ap	plications",						
McGraw Hill, New York, 2008.							
3. Norberto Pires, 'Industrial Robots programming: Building Applications for	or the Factories of						
the Future', 1 st edition, Springer, 2012							
4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill, 2003.							
5. Spong and Vidhyasagar, "Robot Dynamics and Control", John Wiley and	sons, 2008						
6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and	Intelligence",						
McGraw Hill International, 1987	2 00 <i>c</i>						
7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York	k, 2006						
LIST OF EXPERIMENTS	30 Hours						
1. Study of different types of robots based on configuration and application.							
2. Study of different type of robotics simulation software.							
3. Modeling Forward and inverse kinematics for robotic arm using Mathematic	al Software						
4. Offline programming of an Industrial robot using a Robotics simulation Soft	ware						
5. Setup and program a robot with object profile tracking using a Robotics simu	llation Software						
6. Develop a trajectory planning for a robot using a simulation software.							
7. Setup and program an industrial Robot with a pheumatic vacuum gripper for	a simple pick and						
8 Writing and verifying a Program for point to point operations							
9 Obstacle Avoidance of a robot using provimity Sensor							
10 Speech recognition and object recognition algorithm in a robot							
Theory: 45 Tutorial: 0 Practical: 30 Project: 0 Total: 75 Hor	urs						

^	

L	Т	Р	J	С
2	0	2	0	3

After successful completion of this course, the students should be able to				
CO1:	Compare various cores of embedded systems	K2		
CO2:	Develop applications on 8051 micro controller	K3		
CO3:	Describe the features of ARM Cortex-M4 controller	K2		
CO4:	Interface the peripherals of ARM Cortex-M4 controller	K3		
CO5;	Develop embedded systems through hardware and software integration	K3		
CO6:	Explain the concepts of real time operating systems	K2		

Pre-requisite

U17MCT4004 Digital Electronics and Microprocessor

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	mme O	utcome	es(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										М	Μ
CO2	М		S	М	S								S	S
CO3	W		М										М	Μ
CO4	М		S		S								S	S
CO5	W	Μ	S		S								S	S
CO6	S	S	М	M									М	M

Course Assessment methods:

DIRECT			INDIRECT					
1. (
2.								
	Assignment; Journal paper review, Group 1. Course end survey							
]	Presentation, Project repor	t, Poster preparation,	5					
]	Prototype or Product De	emonstration etc. (as						
:	applicable)							
3. End Semester Examination								
INTR (ODUCTION				3 Hours			
Embedd	ded system overview and	applications, features -	Brief introdu	ction to embed	lded microcontroller			
cores: C	CISC, RISC, ARM and DS	SP.						
THE N	<i>MICROCONTROLLE</i>	R ARCHITECTUR	E		9 Hours			
Introduc	Introduction to 8051 Microcontroller: Architecture, Pin configuration, Memory organization, Input							
/Output Ports, Counter and Timers, Serial communication and Interrupts, Instruction set, Addressing								
modes, Simple programming								
INTRODUCTION TO TIVA ARM Cortex M4 9 Hours								
Key Features – Functional Block Diagram - Pin Configuration –I/O pin multiplexing, pull up/down								
registers, GPIO control, Memory Mapped Peripherals, programming System registers, Watchdog								
Timer, need of low power for embedded systems, System Clocks and control, Hibernation Module on								
		\subset						

Tiva, Active vs Standby current consumption. Introduction to Interrupts, Interrupt v programming.	ector table, interrupt					
PERIPHERALS OF TIVA ARM Cortex	9 Hours					
Timer, Basic Timer, Real Time Clock (RTC), Timing generation and measurements	Analog interfacing					
and data acquisition: ADC. Analog Comparators, DMA, Motion Control Peripherals: PWM Module &						
Quadrature Encoder Interface (QEI).						
HARDWARE/SOFTWARE INTEGRATION	6 Hours					
Host and Target Machines. Getting Embedded Software into Target System: Pro	grammers, Display,					
Keyboard, Relay, Stepper and DC Motor Interfacing						
REAL TIME OPERATING SYSTEMS	9 Hours					
Survey of Software Architectures, Tasks and Task States, Tasks and Data, Sem	aphores and Shared					
Data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memor	y Management and					
Interrupt Routines in RTOS Environment. Study of embedded product design with	h real time concepts					
using RTOS						
Theory: 45Tutorial: 0Practical: 30Project: 0Total: 7	5 Hours					
REFERENCES:						
1. Kenneth J Ayala and Dhananjay V Gadre, "The 8051 Microcontroller &						
Embedded Systems using Assembly and C" Cengage Learning (India edition),					
2010Applications", 5 th Edition, Prentice Hall India, 2002.						
2. Jonathan W Valvano, "Introduction to Arm Cortex -M Microcontrollers", 20	12					
3. Steve Furber, "ARM System-on-Chip Architecture", Pearson Education, 200	9 D 11 · 2000					
4. David E Simon, "An Embedded Software Primer", Pearson Education Asia, I	New Delhi, 2009					
5. Rajkamal, "Embedded Systems: Architecture, Programming and Design",	Tata McGraw- Hill,					
New Delli, 2008 6 Mazidi M A Mazidi LG and McKinlay P D "The 8051 Microcontrollar &	Embaddad systems"					
2 nd Edition Pearson 2008	Enlocaded systems,					
7 Shibu K V "Introduction to Embedded Systems" McGraw Hill 2009						
8. Andrew N Sloss, Dominic Symes and Chris Wright, "ARM system developed	er's guide". Elsevier.					
2010.						
LIST OF EXPERIMENTS	30 Hours					
8051 Assembly language program & interfacing						
1. Basic programming using 8051 ALP (addition, subtraction, multiplication, as	cending, descending					
2 8051 peripheral programming (ADC counter timer interrupts etc.)						
2. 3001 peripheral programming (ADC, counter, interrupts etc.) 3 Motor control using 8051(DC motor and stepper motor)						
 A Puild and test aircuits with switches LEDs resistors notantismaters and liquid switch displays 						
4. Durid and test circuits with switches, LEDS, resistors, potentionneters, and inquid crystal displays 5. Synchronizing hardware and software input/output with switches, lights, sound, sensors, motors						
3. Synchronizing hardware and software input/output with switches, lights, sour	iu, sensors, motors,					
6 Implementation of combination lock with Capsense						
7 Motor control using PWM						
8 Development of hypothetical Switch Protocol using GPIO and timer using ARM7 and PSoC						
9. Utilization of capacitive sensing (CanSense) module of PSoC board for simple applications						
10 Study of E vantra board	apprications					
Theory: 45 Tutorial: 0 Practical: 30 Project: 0 Total: 75 Hor	irs					

P Sau
U17MCI6203

COMPUTER AIDED MANUFACTURING

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to									
CO1:	Describe the fundamentals of Computer Aided Design.	K2								
CO2:	Describe the basic and constructional features of CNC machines	K2								
CO3:	Develop a CNC Part programming for the basic turning and milling operations	K3								
CO4:	Explain the importance of group technology and Computer Aided process plan	K2								
CO5;	Generate CNC programs for a given components to work in CNC machines	К3								
CO6:	Draft, Model and assemble a given dimensional engineering components	K3								

Pre-requisite

Ú17MCT2001 – Manufacturing Technology

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S									W				
CO2	М												W	
CO3	М	М	Μ		Μ								Μ	
CO4	М		W											
CO5	М				S									
CO6	S				S					Μ			S	

Course Assessment methods:

DIRECT	INDIRECT					
1. Continuous Assessment Test I, II						
2. Open book test; Cooperative learning report,						
Assignment; Journal paper review, Group	1. Course end survey					
Presentation, Project report, Poster preparation,	, i i i i i i i i i i i i i i i i i i i					
Prototype or Product Demonstration etc. (as						
applicable)						
3. End Semester Examination						
FUNDAMENTALS OF COMPUTER GRAPHIC	CS 9 Hours					
Product Cycle- Design Process- Sequential And Concurr	ent Engineering- Computer Aided Design					
IVO r ag e						

- CAD System Architecture- Computer Graphics - Co-Ordinate Systems- 2D And	3D Transformations-
Homogeneous Coordinates – Line Drawing -Clipping- Viewing Transformation	
INTRODUCTION TO CNC	8 Hours
History - Classification, Comparison between conventional and non-conventional	machining process -
Introduction to Computer Numerical Control, Features of CNC Machines - Diff	erent types of CNC
machines – Advantages and disadvantages of CNC machines DNC and Adaptive c	ontrol - Maintenance
features of CNC Machines.	
COMPONENTS OF CNC MACHINES AND TOOLING	10 Hours
Description of CNC components: Structure, Drive Mechanism, gearbox, Main drive	, feed drive,
Spindle Motors, Axes motors - Spindle bearing - Slide ways – Re circulating ball scre	ws–Backlash
measurement and compensation, linear motion guide ways - Tool magazines, ATC,	APC, Chip
conveyors - Types of measuring systems in CNC machines –Magnetic Sensors for S	pindle
Orientation. Qualified and pre-set tooling – Principles of location – Principles of cla	mping – Work
holding devices. Retrofitting of Conventional Machine Tools.	
CNC PART PROGRAMMING AND MAINTENANCE	11 Hours
Part Program Terminology- G and M Codes - Types of interpolation Meth	ods of CNC part
programming - Manual part programming: Fixed cycle, canned cycle - Comp	uter Assisted part
programming – APT language – CNC part programming using CAD/CAM-Introdu	ction to Computer
Automated Part Programming.	
Factors influencing selection of CNC Machines - Practical aspects of introducin	g CNC machines in
industries.	
Group Technology and CAPP	7 Hours
Introduction, part families, part classification and coding systems: OPITZ, PFA, FI	⁷ A, Cell design, rank
order clustering, composite part concepts, Benefits of group technology. App	proaches to Process
Planning, Different CAPP system, application and benefits	
Theory: 45 Tutorial: 0 Practical: 30 Project: 0 Total: 7	75 Hours
REFERENCES:	
1. Radhakrishnan P., "Computer Numerical Control Machines", New Central Bo	ook
Agency, 2011.Ltd., 2016.Principles and Applications", 5 th Edition, Prentice 1	Hall
India, 2002.	
2. Groover M P., "Automation, Production Systems and Computer Integra	ated Manufacturing",
Prentice Hall, 2007International, 2008.	
3. YoremKoren, "Computer Control of Manufacturing Systems", Pitman, Lond	ion, 1987
4. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice	e and Manufacturing
management "Second Edition, Pearson Education, 1999	
5. Ibrahim Zeid, Sivasubramanian R, "CAD/CAM: Theory & Practice" 2 nd e	dition, McGraw Hill,
Singapore, 2009.	
LIST OF EXPERIMENTS	30 Hours
1. Drafting	
2. Modeling	
5. Assembly 4. Part Programming CNC Machining Contra (Turning)	
4. Fait Flogramming - CNC Machining Centre (Turning) 5. Dort Programming - CNC Machining Contra (Milling)	
5. rait Programming - UNC Machining Centre (Mining) Theory 45 Tytoriol: 0 Proceedings 20 Projects 0 Tatals 75 Use	
Ineory: 45 Intorial: 0 Practical: 30 Project: 0 Total: 75 Ho	urs

Saul

11 7INI 6600	ENCINEEDING CLINIC IV	L	L T P J 0 0 4 2	С		
0171110000	ENGINEERING CLINIC - IV	0	0	4	2	3

Course objectives

To help the students look into the functioning of simple to complex devices and systems

To enable the students to design and build simple systems on their own

To help experiment with innovative ideas in design and team work

To create an engaging and challenging environment in the engineering lab.

Course Outcomes

After s	After successful completion of this course, the students should be able to								
CO1:	Identify a practical problem and find a solution								
CO2:	Understand the project management techniques								
CO3:	Demonstrate their technical report writing and presentation skills								
-									

Pre-requisite

Nil

CO/PO Mapping														
		(S/M/V	V indica	ates stre	ngth o	f correl	ation)	S-S	trong,	M-Mec	lium, V	V-Weak		
COs						Program	mme O	utcome	es(POs)				
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	
2. Workbook report 10%	1. Course end survey
3. Demonstration & Viva-voce 40%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of

110 | P a g e

reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the sixthh semester, students will focus primarily on reverse engineering project to improve performance of a product

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

11777606506	NATIONAL VALUES	L	Т	Р	J	С
U17VEF0500	(Mandatory)	0	0	2	0	0

Course Outcomes

After s	successful completion of this course, the students should be able to
CO1:	Acquire knowledge on the Essence of Indian Knowledge Tradition
CO2:	Know the great Indian personalities and follow their trail
CO3:	Understand the specialty of democracy
CO4:	Disseminate our Nation and its values to propagate peace
CO5:	Contribute with their energy and effort for a prosperous India
CO6:	Propagate the youth and the contribution for development of our Nation

Pre-requisite

- 1. U17VEP1501 / PERSONAL VALUES
- 2. U17VEP2502 / INTERPERSONAL VALUES
- 3. U17VEP3503 / FAMILY VALUES
- 4. U17VEP4504 / PROFESSIONAL VALUES
- 5. U17VEP5505 / SOCIAL VALUES

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						S								
CO2									М					
CO3							М							
CO4								S						
CO5											S			
CO6												М		

Course Assessment methods:

DIRECT

INDIRECT

112 | P a g e

Signature of BOS chairman, MCE

 \leq

- 1. Group Activity / Individual performance and assignment
- 2. Assessment on Value work sheet / Test

Values through Practical activities:

Essence of Indian Knowledge Tradition

Basic structure of Indian Knowledge System - Modern Science and Indian Knowledge System - Yoga and Holistic Health care - Case studies - Philosophical Tradition - Indian Linguistic Tradition - Indian Artistic Tradition

Great Indian Leaders

Ancient rulers - Freedom fighters - Social reformers - Religious and Spiritual leaders - Noble laureates - Scientists - Statesman

Largest Democracy

Socialist -Secular - Democratic and Republic – special features of Indian constitution – Three pillar of Indian democracy - Fundamental rights – Duties of a citizen – centre state relationship.

India's Contribution to World peace

Nonaligned Nation – Principle of PanchaSheela– Mutual respect, non-aggression, non-interference, Equality and cooperation – Role of India in UNO -Yoga India's gift to the world.

Emerging India

World's largest young work force - Stable Economic development - Labor market & Achievement in space technology – Value based Social structure. Emerging economic superpower.

Workshop mode

REFERENCES:

- 1. KNOWLEDGE TRADITIONS AND PRACTICES OF INDIA, **CBSE** Publication _cbseacademic.nic.in/web_material/Circulars/2012/68_KTPI/Module_6_2.pdf
- 2. CULTURAL HERITAGE OF INDIA SCERT Kerala www.scert.kerala.gov.in/images/2014/HSC.../35_Gandhian_Stud ies_unit-01.pdf
- 3. LEARNING TO DO: VALUES FOR LEARNING AND WORKING TOGETHER UNESCO www.unesdoc.unesco.org/images/0014/001480/148021e.pdf
- 4. INDIA AFTER GANDHI.pdf Ramachandra Guha University of Warwick www2.warwick.ac.uk/fac/arts/history/students/modules/hi297 /.../week1.pdf
- 5. INDIA'S CONTRIBUTION TO THE REST OF THE WORLD You Sigma www.yousigma.com/interesting facts/indiasgifttotheworld.pdf
- 6. INDIA AS AN EMERGING POWER International Studies Association web.isanet.org/Web/Conferences/.../11353cac-9e9b- 434f-a25b-a2b51dc4af78.pdf

1. Mini project on values / Goodwill Recognition

SEMESTER VII

 \leq

114 | P a g e

U17MBT7001

ENGINEERING ECONOMICS AND FINANCIAL MANAGEMENT

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Evaluate the economic theories, Cost concepts and pricing policies	K2
CO2:	Analyze the market structures and integration concepts	K2
CO3:	Apply the concepts of national income and understand the functions of banks and concepts of globalization	K2
CO4:	Apply the concepts of financial management for project appraisal and working capital management	K2
CO5:	Understand accounting systems	K2
CO6:	Analyze financial statements using ratio analysis	K2

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PSO PO10 PSO 2 1 CO1 Μ Μ М L **CO2** М L **CO3** Μ Μ М **CO4** S CO5 S М **CO6** Μ Μ S

Course Assessment methods:

DIRECT		INDIRECT				
Internal Tests		• Coi	rse End Survey			
115 P a g e	Signature of BOS cha	irman, MCE				

• Assignments	
• Presentation	
End Semester Exam	
ECONOMICS, COST AND PRICING CONCEPTS	9 Hours
Economic theories – Demand analysis – Determinants of demand – Demand forecasti	ng-Supply
 Actual Cost and opportunity Cost – Incremental Cost and sunk Cost – Fixed and v Marginal Costing – Total Cost – Elements of Cost – Cost curves – Breakeven point chart – Limitations of break even chart – Interpretation of break evenchart – Contribu- ratio profit volume ratio or relationship. Price fixation – Pricing policies – Pricing policies 	variable Cost – and breakeven ation – P/V-
CONCEPTS ON FIRMS AND MANUFACTURING PRACTICES	0 Hours
Eirm Industry Market Market structure Diversification Vertical integration	9 Hours
Finn – industry – Market – Market structure – Diversification – Vertical integration –	wierger
– Horizontal integration.	
NATIONAL INCOME, MONEY AND BANKING, ECONOMIC	9 Hours
ENVIRONMENT	
National income concepts – GNP – NNP – Methods of measuring national income – In	Inflation
- Deflation - Kinds of money - Value of money - Functions of bank - Types of bank -	– Economic
liberalization – Privatization – Globalization	
CONCEPTS OF FINANCIAL MANAGEMENT	9 Hours
Financial management – Scope – Objectives – Time value of money – Methods of apprai	sing project
profitability – Sources of finance – Working capital and management of working capital	al
ACCOUNTING SYSTEM, STATEMENT AND FINANCIAL ANALYSIS	9 Hours
Accounting system – Systems of book-keeping – Journal – Ledger – Trail balance – Fi	nancial
statements – Ratio analysis – Types of ratios – Significance – Limitations	
Theory: 45 Tutorial: 0 Total: 45 Periods	
REFERENCES:	
1. Prasanna Chandra, "Financial Management (Theory & Practice), "TMH	
2. Weston & Brigham, "Essentials of Managerial Finance"	
3. Pandey, I. M., "Financial Management"	
4. Fundamentals of Financial Management- James C. Van Horne.	· ·
5. Bhaskar S. "Engineering Economics and Financial Accounting", (2003) Anuradha Chennai	Agencies,
6. Financial Management & Policy -James C. Van Horne	
7. Management Accounting & Financial Management- M. Y. Khan & P. K. Jain	
8. Management Accounting Principles & Practice - P.Saravanavel	
9. Ramachandra Aryasri. A., and Ramana Murthy V.V., "Engineering Economics & F	inancial
Accounting"-Tata McGraw Hill, New Delhi, 2006.	a
10. Varshney R.L., and Maheswari K.L., "Managerial Economics" – Sultan Chand &	Sons, New
Delni, 2001	
11 Comprehension and Nordheirig 77 L'ean ann an 77 'Pate Mad Provid Lill Name De US (2000)	

P Sau

11714077001	AUTONOMOUS VEHICLE	L	Τ	Р	J	С
U17MIC17001	AUTONOMOUS VEHICLE	3	0	0	0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Explain different types of mobile robot locomotion	K2
CO2:	Apply mobile robot kinematics and constraints	K2
CO3:	Choose sensors for the perception of mobile robots.	K2
CO4:	Implement robotlocalization techniques	K3
CO5:	Explain planning and navigation in robotics	K2
CO6:	Apply obstacle avoidance techniques in mobile robots	K3

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COa	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO1	S													Μ
CO2	S	Μ	Μ		Μ									S
CO3	S				М								М	S
CO4	S				Μ									S
CO5	S												М	S
CO6	S													Μ

Course Assessment methods:

DIRECT		INDIRECT				
 Continuous Assessment Tes Assignment: Group Presenta 	st I, II ation	1. Course er	nd survey			
3. End Semester Examination		L				
	Signature of BOS cha	irman MCE				

LOCOMOTION	9 Hours
Introduction to Robotics – key issues in robot locomotion – Types of Locomotion -	-legged robots –
wheeled mobile robots – aerial mobile robots – stability - robot maneuverability – o	controllability
MOBILE ROBOT KINEMATICS	9 Hours
Forward and inverse kinematics, holonomic and nonholonomic constraints, kinema	tic models of
simple car and legged robots, simulation of mobile robots	
ROBOT PERCEPTION	9 Hours
Proprioceptive/Exteroceptive and passive/active sensors, performance measures of	of sensors, sensors
for mobile robots like global positioning system (GPS), Doppler effect-based sen	isors, vision-based
sensors, uncertainty in sensing, filtering;	
MOBILE ROBOT LOCALIZATION	9 Hours
Introduction to localization – challenges in localization – localization and navigation	on – belief
representation –	
map representation – probabilistic map-based localization – Markov localization, K	Kalman localization.
PATH PLANNING AND NAVIGATION	9 Hours
Introduction to planning and navigation – planning and reacting – path planning alg	gorithms based on
A-star, Dijkstra, Voronoi diagrams – obstacle avoidance techniques	
Theory: 45 Total: 45 Periods	
REFERENCES:	
1. Roland Seigwart, Illah Reza Nourbakhsh, and Davide Scaramuzza, "Introduction to autono	omous
mobile robots", Second Edition, MIT Press, 2011.	
2. Howie Choset, Kevin M. Lynch , Seth Hutchinson , George A. Kantor , Wolfram Burgard	, Lydia E.
Kavraki, Sebastian Thrun, "Principles of Robot Motion: Theory, Algorithms, and Imple	ementations", A
Bradford Book, 2005.	
3. Gregory Dudek and Michael Jenkin, "Computational Principles of Mobile Robotics", Seco	ond Edition,
Cambridge University Press, 2010.	
4. Peter Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Spring	
Advanced Dehotics 2011	ger Tracts in

P Sau

U17MCT7002

IMAGE PROCESSING AND **COMPUTER VISION**

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Summarize the fundamentals of digital image processing	K2
CO2:	Apply image enhancement techniques in spatial and frequency domain.	K3
CO3:	Apply image segmentation and clustering techniques	K3
CO4:	Describe 3D vision concepts	K2
CO5:	Choose appropriate techniques for different applications	K4

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
CO	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO1	S	W											S	
CO2	М	Μ	S		S								W	Μ
CO3	Μ	Μ	S		S								W	Μ
CO4	М	Μ		S									Μ	S
CO5	S	S	S	S	S								S	S

Course Assessment methods:

DIRECT		INDIRECT				
Internal test I			Course end survey			
Internal test II						
End semester Examination						
Assignment						
119 P a g e	Signature of BOS cha	1 irman, MCE				

FUNDAMENTALS OF IMAGE PROCESSING	7 Hours						
Introduction to Image processing and Computer Vision; Digital image represent	ntation; elements of						
digital image processing systems; Structure of the human eye; a simple image	e model; brightness						
adaptation and discrimination; Electromagnetic Spectrum. Image Sensing and Acquisition. Some							
Basic Relationships Between Pixels.							
IMAGE ENHANCEMENT	10 Hours						
Basic gray level transformations-histogram equalization- Arithmetic/logic Operat	ions-Basics of spatial						
filtering-comparison between smoothing and sharpening spatial filters.2D	Fourier transform -						
Smoothing & sharpening Frequency domain filters (Ideal, Butterworth, Gaussian)							
SEGMENTATION AND CLUSTERING	10 Hours						
Segmentation – Thresholding, Edge detection and Region growing, watershed, Bir	nary Morphology and						
grey morphology operations. boundary descriptors-chain codes -Fourier	descriptors -region						
descriptors, moments Clustering: K-means Clustering. Pattern recognition.							
3D VISION GEOMETRY	9 Hours						
3D vision tasks. Basics of projective geometry. A single perspective camera.	Scene reconstruction						
from multiple views. Two cameras stereopsis. Three cameras and trifocal tens	or. 3D model-based						
vision 2D view based representations of a 3D scene							
vision, 2D view based representations of a 3D scene							
vision, 2D view based representations of a 3D scene APPLICATIONS	9 Hours						
Vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection. Object detection: Gesture Recognition	9 Hours n: Finger print						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition	9 Hours n; Finger print						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control	9 Hours n; Finger print						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods	9 Hours n; Finger print						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES:	9 Hours n; Finger print						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1 Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th Image Processing", 6 th Image Processing	9 Hours n; Finger print						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th Impearson Education Asia/Addison Wesley publishing company, 2017	9 Hours n; Finger print ndian Reprint,						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th Impearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt "Digital Image Processing" 2 nd addition Wiley Inter Science	9 Hours n; Finger print adian Reprint,						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2 nd edition, Wiley-Inter Science 3. Milon Sonka, Vaclay Hlavaa and Pagar Pagas.	9 Hours n; Finger print dian Reprint, ce Publication, 1991.						
vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2 nd edition, Wiley-Inter Science 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis Vision" Processing, Cole, Singapore 2009	9 Hours n; Finger print adian Reprint, ce Publication, 1991. c, and Machine						
 Vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2nd edition, Wiley-Inter Science 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis Vision", Brooks/Cole, Singapore,2008. 	9 Hours n; Finger print adian Reprint, ee Publication, 1991. a, and Machine						
 Vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2nd edition, Wiley-Inter Science 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis Vision", Brooks/Cole, Singapore,2008. 4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012. 	9 Hours n; Finger print adian Reprint, ee Publication, 1991. a, and Machine						
 Vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2nd edition, Wiley-Inter Science 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis Vision", Brooks/Cole, Singapore,2008. 4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012. 5. Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 201 	9 Hours n; Finger print dian Reprint, Publication, 1991. a, and Machine 1.						
 Vision, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2nd edition, Wiley-Inter Science 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis Vision", Brooks/Cole, Singapore,2008. 4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012. 5. Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 2016 6. Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", C. 	9 Hours n; Finger print ndian Reprint, e Publication, 1991. and Machine 1. cambridge University						
 VISION, 2D VIEW based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2nd edition, Wiley-Inter Science 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis Vision", Brooks/Cole, Singapore,2008. 4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012. 5. Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 201 6. Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", C Press, 2012 	9 Hours n; Finger print adian Reprint, e Publication, 1991. and Machine						
 VISION, 2D view based representations of a 3D scene APPLICATIONS Industrial automation and quality inspection, Object detection; Gesture Recognition recognition, Vision for robot control Theory: 45 Total: 45 Periods REFERENCES: 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th Im Pearson Education Asia/Addison Wesley publishing company, 2017. 2. William K Pratt, "Digital Image Processing", 2nd edition, Wiley-Inter Science 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis Vision", Brooks/Cole, Singapore,2008. 4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012. 5. Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 201 6. Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", C Press, 2012 7. 7. Rafael C. Gonzalez, Richard Eugene Woods, Steven L. Eddins "Digital Image Procession", 2004 	9 Hours n; Finger print adian Reprint, e Publication, 1991. and Machine						

U17VEP7507	GLOBAL VALUES (Common to all branches of Engineering and	L	Т	Р	J	С
	Technology)	1	1	0	1	1

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Understand importance of ecology and its preservations							
CO2:	Understand the various global issues and their causes and solutions.							
CO3:	Approach any problem holistically as against giving a reductionist solution							
CO4:	Learn impact of globalization on various factors such as environment, local population							
CO5:	Learn to integrate and understand how an Individual peace impacts world peace							

Pre-requisite Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
00						Program	mme O	utcome	s(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO1		W					М	Μ	Μ	М		Μ		
CO2		W				М	S	S	Μ	М		Μ		
CO3		W	W		W	М	М	Μ	W	W		Μ		
CO4		W				S	М	Μ	W	W		Μ		
CO5						W	W	W				S		

Course Assessment methods:

DIRECT

INDIRECT

121 | P a g e

 \leq

1.In	dividual Assign	nment								
2.G	roup Assignme	nt								
3.P1	resentation									
4.Su	arprise Test									
5.Pı	actical Assessr	nent		Course end	survey					
6.E	nd Semester As	ssessment		Course end	survey					
Intro	duction to Glob	oal Values				1 Hours				
Intro	duction to Syst	ems Thinking				1 Hours				
Ecology, ecological imbalances and its solution						3 Hours				
Globalization Vs Localization – an economic and Spiritual Perspective						3 Hours				
Glob	al Issues & Sol	utions				3 Hours				
Adva	nced Contemp	lative Practices				4 Hours				
					ŗ	Fotal Hours: 15				
T	neory: 45	Tutorial: 0Practical: 0	Proje	ect: 0	Total: 45 Period	ls				
RE	FERENCES:									
1. Vethathiri's Maharishi's, "World peace" The World Community Service Centre, Vethathiri										
Publications, 1957.										
2. Fritz Schumacher, "Small is Beautiful", The Blond & Briggs, Published 1973.										
3.	Noam Choms	ky, "Profit over People", Seve	en Storie	s Press, Publ	ished 1999.					
1	4 Vethothini's Mahamishi's "Atomia Daison" The Would Community Service Centre Vethothini									

4. Vethathiri's Maharishi's, "Atomic Poison" The World Community Service Centre, Vethathiri Publications, 1983

 \leq

U17MCP7701	PROJECT PHASE I	L	Т	Р	J	С
		0	0	0	6	3

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Design, analyze, realize / simulate a physical system by using the technology they learnt							
	during the program.							
CO2:	Integrate various systems into one Mechatronics product.							
CO3:	Work in a team with confined time duration.							
CO4:	Disseminate his work both in oral and written format.							

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
CO -						Program	mme O	utcome	s(POs)					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO1	S	S	S	S	S		Μ	Μ				S	S	S
CO2	S	S	S	S	S	Μ	Μ	Μ				S	S	S
CO3									S					
CO4										S	S			

Course Assessment methods:

123 | P a g e

Signature of BOS chairman, MCE

 \leq

DIRECT	INDIRECT				
Interdisciplinary work Publication	Course end survey				
Working model/ simulation result Innovation					
Report with good referencing					
End Semester Viva Voice					
Students in the form of group, not exceeding 4 members	in a group to carry out their main project.				
It should be a Mechatronics project. However, special considerations can be given for interdisciplina					
measurement and computer-based simulation projects. This exception should be recorded and					
approved by the department committee. Management related projects will not be allowed					
interdisciplinary projects will carry more weightage.					

Saul

SEMESTER VIII

 \leq

PROJECT PHASE II / INTERNSHIP

L	Т	Р	J	С		
0	0	0	24	12		

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Design, analyze, realize / simulate a physical system by using the technology they learnt							
	during the program.							
CO2:	Integrate various systems into one Mechatronics product.							
CO3:	Work in a team with confined time duration.							
CO4:	Disseminate his work both in oral and written format.							

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progra	amme C	Jutcom	es(PO	s)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO 12	PSO1	PSO2
CO1	S	S	S	S	S		Μ	Μ				S	S	S
CO2	S	S	S	S	S	Μ	Μ	Μ				S	S	S
CO3									S					
CO4										S	S			

Course Assessment methods:

DIRECT	INDIRECT					
1. Inter disciplinary work						
2. Innovation						
3. Working model/ simulation result						
4. Report with good referencing						
5. End Semester Viva Voice	1.Course end survey					
Students in the form of group, not exceeding 4 members in a group to carry out their main project. It						

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer based simulation projects. This exception should be recorded and approved by the department committee. Management related projects will not be allowed. The interdisciplinary projects will carry more weightage.

PROGRAMME ELECTIVES

 \leq

127 | P a g e

U17MCE0001

AUTOMOTIVE ELECTRONICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Explain the basics concepts of automobile engines	K2					
CO2:	Describe the components of Engine Control system	K2					
CO3:	State the working principle of automotive sensors.	K2					
CO4:	Describe the principle of vehicle network protocols	K3					
CO5:	Explain the working of various comfort system embedded in automobile	K2					
CO6:	Describe the working principle of automobile safety systems	K2					

Pre-requisite

U17MCI4202 - Sensors and Instrumentation

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S						Μ					W		
CO2	S					W	W	Μ					М	М
CO3	S	М											W	М
CO4	S	М	М	W		W		W					S	М
CO5	S		М		Μ	W	Μ					W		М
CO6	S		М		М	М	М	W				W	S	S

Course Assessment methods:

DIRECT	INDIREC	CT				
1. Internal test I						
2. Internal test II						
3. End semester Examination	1 Course end survey					
4. Assignment	1.Course end survey					
INTRODUCTION		9 Hours				
Automobile physical configuration - Evolution of electron	ctronics in automobiles - Ope	erating principles of				
IC engine – Two stroke – Four stroke - Major engir	ne arrangements -working of	f simple carburetor-				
Ignition system – terms						
ENGINE CONTROL SYSTEM		9 Hours				
Motivation For Electronic Engine Control - Electronic	c Engine Control System - En	gine Functions And				
Control - Electronic Fuel Control System- Engine M	apping- Effect of Air/Fuel F	Ratio, Spark Timing				
on Performance, Exhaust Gas Recirculation on Per	formance- Electronic Ignitic	on. Digital Engine				
Control System - Engine Crank (Start) - Engine Warm-Up - Open-Loop Control - Closed-Loop						
Control - Hard Acceleration - Deceleration and Idle						
	<u>^</u>					

Signature of BOS chairman, MCE

AUT	COMOTIVE SENSORS AND COCK PIT ELECTRONICS	9 Hours							
Role	Role of sensors and actuators in automotive control- construction and working principle of Mass air								
flow	flow (MAF) rate sensor - Exhaust gas oxygen sensor - Throttle plate angular position sensor -								
Cran	kshaft angular position/RPM sensor - Coolant temperature - Intake air tem	perature sensor -							
Man	ifold absolute pressure (MAP) sensor - Differential exhaust gas pressure sens	sor - Vehicle speed							
senso	ors- Introduction to Cockpit Electronics – Visual displays.								
VE	HICLE NETWORKS	9 Hours							
Vehi	cle Tracking System GPS, Vehicle networks CAN, CAN FD, LIN, Flex Ray- I/	O Modules –							
Feat	ures- Advantages- Protocol formats – on board diagnostics systems.								
CON	MFORT AND SAFETY SYSTEMS	9 Hours							
Trac	tion control system – Cruise control system– electronic control of automatic tran	nsmission antilock							
brak	ing system – electronic suspension system –airbag systems – centralized door lo	ocking system –							
Navi	gation systems - climate control of cars- Maintenance and charging of batteries								
	Theory: 45 Hrs Total Hours: 45								
REF	ERENCES:								
1.	David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, wiley, 2	2015							
2.	Tom Denton, "Automobile Electrical and Electronics Systems", 2 nd edition Ed	ward Arnold							
	Publishers, 2013.								
3.	William B Ribbens, "Understanding Automotive Electronics", 5th edition, New	vnes Publishing,							
	2003	-							
4.	Robert Bosch GmbH, "BOSCH Automotive Handbook", 9th edition, Bentley p	oublishers, 2014.							
5.	Barry Hollembeak, "Automotive Electricity, Electronics and Computer Control	ols", 3 rd edition,							
	Delmar Publishers, 2001.								
6.	Warren M Farnell, "Fuel System and Emission controls", 1st edition Check Ch	nart Publication,							
	2000.								
7.	H.H. Braess, "Handbook of Automotive Engineering", Ulrich Seiffert, 1st edit	ion, SAE							
	International, 2005								

P Sau

Course Outcomes

After successful completion of this course, the students should be able to							
CO1:	Recognize the types of failures and maintenance strategies	K2					
CO2:	Illustrate the fundamental principles of machinery vibration	K2					
CO3:	Explain signal analysis, fundamentals of FFT and signal conditioning	K2					
CO4:	Explain the vibration and noise based condition monitoring techniques	K3					
CO5:	Explain the thermography and wear analysis for condition monitoring	K2					
CO6:	Identify and explain the appropriate condition monitoring technique for a	K3					
	given application						

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	W												W	
CO2	W												W	
CO3	М				S								Μ	
CO4	М												Μ	
CO5	М												М	
CO6	S	S							W		W	W	S	

Course Assessment methods:

DIRECT	INDIREC	CT			
1. Continuous Assessment Test I, II					
2. Assignment; Journal paper review, Group					
Presentation, Project report, Poster preparation,					
Prototype or Product Demonstration etc. (as					
applicable)	1 Course end survey				
3. End Semester Examination	1.course end survey				
FAILURES AND PRINCIPLES OF MAINTENANC	CE	07 Hours			
System failure and component failure, Types of failure, Causes of failure, Failure investigation principles, Human factors in failure incidents, Maintenance strategies: Preventive Maintenance,					

Predictive Maintenance, Bath Tub Curve, Failure Modes Effects and Criticality Analysis

FUNDAMENTALS OF MACHINERY VIBRATION

10 Hours

Simple harmonic motion and vibration, Vibration and Spring Mass system, Degrees of freedom, Free vibration and Natural frequency, Forced vibration and Vibration isolation, Single Degree-of- Freedom Motion, Forced Vibration Response, Base Excitation, Force Transmissibility and Vibration Isolation,

130 | Page

Tuned Vibration Absorber, Unbalanced Response, Characteristics of Vibrating Systems, Vibration of Continuous Systems, Mode Shapes and Operational Deflection Shapes

DIGITAL SIGNAL PROCESSING

10 Hours

Classification of Signals, Signal Analysis, Frequency Domain Signal Analysis, Fundamentals of Fast Fourier Transform, Computer-Aided Data Acquisition, Signal Conditioning, Signal Demodulation, Cepstrum Analysis, Illustrative examples: Representation of signals in the

frequency domain, Compressor Vibration and Engine Vibration

VIBRATION AND NOISE MONITORING

06 Hours

06 Hours

06 Hours

Principles of Vibration Monitoring, Misalignment Detection, Eccentricity Detection, Cracked Shaft, Bowed and Bent Shaft, Unbalanced Shaft, Looseness, Rub, Bearing Defects, Faults in Fluid Machines, Acoustical Terminology, Noise Sources, Sound Fields, Noise Measurements, Noise Source Identification

THERMOGRAPHY

Thermal Imaging Devices, Use of IR Camera, Industrial Applications of Thermography in

Condition Monitoring

WEAR DEBRIS ANALYSIS

Mechanisms of Wear, Detection of Wear Particles, Oil Sampling Technique, Oil Analysis, Limits of Oil Analysis

Theory:45Hours Total Hours:45

REFERENCES:

Amiya R. Mohanty, "Machinery Condition Monitoring: Principles and Practices", CRC Press, 2015
 R.A. Collacott, "Mechanical Fault Diagnosis and Condition Monitoring", Springer, 2012.

 W.T.Becker, R.J.Shipley, "ASM Handbook: Volume 11: Failure Analysis and Prevention", ASM International, 2002.

4. V.P. Singh, "Mechanical Vibrations", Dhanpat Rai & Co., 2014.

MICRO ELECTRO MECHANICAL SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Explain the evolution of micro and smart system.	K2					
CO2:	Illustrate about various sensors and actuating system.	K2					
CO3:	Classify the Micro machining techniques in MEMS.	K2					
CO4:	Evaluate a proper scaling method.	K2					
CO5:	Determine packaging techniques in MEMS and smart system.	K2					
CO6:	Discuss various applications of MEMS.	K2					

Pre-requisite

U17MCI4202 - Sensors and Instrumentation

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	mme O	utcome	es(POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	Μ													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М

Course Assessment methods:

DIDECT			INDIRE	T			
DIRECT			II (DIREC				
1. Continuous Assessment Tes	t I, II						
2. Assignment; Journal pap	ber review, Group						
Presentation, Project report	t, Poster preparation,	1. Course e	nd survey				
Prototype or Product De	monstration etc (as						
applicable)							
3. End Semester Examination							
INTRODUCTION 9 Hours							
Overview - Microsystems and microelectronics - definition-MEMS materials-scaling laws scaling in							
geometry-scaling in rigid body	dynamics- scaling in el	lectrostatic for	rces- scaling in	electricity- scaling			
in fluid mechanics- scaling in h	eat transfer.		_				
MICRO SENSORS AND A	CTUATORS			9 Hours			
Working principle of Microsyst	tems - micro actuation	techniques - n	nicro sensors-ty	pes –Micro			
		-	_				
actuators – types – micro pump – micro motors – micro – valves – micro grippers – micro							
Accelerometers		^	0 11				
	Sau	1					
132 P a g e	Signature of BOS abo	irman MCE					
	signature of BOS cha	irman, NICE					

FABRICATION PROCESS	9 Hours			
Substrates-single crystal silicon wafer formation-Photolithography-Ion implantation	n-Diffusion –			
Oxidation-CVD-Physical vapor deposition-Deposition by epitaxy-etching process.				
MICRO SYSTEM MANUFACTURING	9 Hours			
Bulk Micro manufacturing- surface micro machining - LIGA - SLIGA - Micro sys	tem packaging-			
materials - die level-device level-system level-packaging techniques - die preparation	on - surface			
bonding -wire bonding - sealing.				
MICRO SYSTEM DESIGN	9 Hours			
Design considerations-process design-mask layout design- mechanical design-appli	cations of micro			
systems in automotive industry, bio medical, aero space and telecommunications				
Theory:45 Hours Total Hours:45				
REFERENCES:				
1. Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGi	raw-Hill, 2017.			
2. Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005.				
3. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Micro sensors	s MEMS and			
Smart Devices", John Wily and sons Ltd., 2001.				
4. Fatikow S, Rembold U, "Micro system Technology and Micro robotics", Springer-Verlag				
Berlin Heidelberg, 1997.				
5. Francis E H Tay and W O Choong, "Micro fludics and Bio MEMS Applicatio	ns", Springer,			
2002				

P Sau

U17MCE0004

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to														
CO1	Expre	ss the b	asic con	ncepts o	of Artifi	cial In	elligenco	e						K2
CO2	Demo	nstrate	the usa	ge of pla	anning	and de	cision m	aking.						K3
CO3	Interpret the ideas of machine learning by supervised and unsupervised learning methods										K3			
CO4	Apply	Linear	Regres	sion and	d Logis	tic Reg	gression	machin	e learni	ng meth	nods.			K3
CO5	Sum	narize	the con	cepts c	of Artifi	icial No	eural Net	tworks						K2
CO6	Desci	ribe va	rious A	rtificial	Neural	Netwo	orks met	hodolog	gy					K2
Pre-1	requis	ite											L	
	Data W	arehous	sing and	l Data N	lining									
						0	CO/PO	Mappi	ng					
				diantan	-	hafa)	C Chao		Madin	··· · · · · · ·	Vech	
COs		(3/10	1/ VV 1110	licales	streng	Progra	mme O)II) Utcom	$\frac{S-SIIO}{es(POs)}$	$\frac{10}{10}$	Mediu	III, vv - v	veak	
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	М		S	S			S	М		М	М	М
CO2	S	М	М							М		М	W	М
CO3	S	S	М		М					М		М	W	М
CO4	S	S	М		М					М		М	W	М
CO5	S	S	М		S	S			S	Μ		Μ	S	Μ
CO6	S	S	М		S	S		W	S	Μ		Μ	S	S
Course	Assess	ment	metho	ls:										
		Ι	Direct							Indi	rect			
1. In	ternal	Fest I												
2. In	ternal 1	l'est II												
3. A	ssignm	ent	ion				1.Cours	se end s	survey					
4. G	d some	esental	.1011 om											
INTRO	DDUC	TION	$\mathbf{N} \mathbf{TO} \mathbf{A}$	ARTIF	TCIA	L IN	TELLI	GENO	CE				9 F	Iours
Definin	g Artifi	cial Int	elligen	ce. Inte	lligent	Agents	5. Solvin	g Probl	lems by	searchi	ng-Prol	olem-so	lving	
agents- Example problems – Searching for Solutions-Uninformed search strategies – Informed search														
strategies – Heuristic functions.														
KNOWLEDGE REPRESENTATION AND PREDICATE LOGIC10 H							Iours							
Knowled	Knowledge Representation and Mappings, Approaches to knowledge representation													
_				. ~	_				_					
Represe	nting si	mple fa	cts in lo	ogic, Co	mputat	ole func	tions an	d predi	cates, P	rocedur	al vs Do	eclarativ	ve know	/ledge,
Logic Programming, Forward vs backward reasoning. Classical Planning, Making simple Decisions														

Signature of BOS chairman, MCE

<

IDEA OF MACHINE LEARNING	9 Hours
Idea of Machine learning from data, Supervised Learning : Learning a Class from Examples-N	Noise-
Learning Multiple Classes- Regression-Model Selection and Generalization, Unsupervised learning	rning-
Introduction, k-Means Algorithm, Optimization objective, Random Initialization, Choosing	number of
clusters.	
LINEAR REGRESSION AND LOGISTIC REGRESSION	9 Hours
Linear Regression -Model representation for single variable, Single variable Cost Function, M function, Gradient Decent for Linear Regression, Multivariable model representation, Logis Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced Opti classification (One vs All), Problem of Over fitting, Regularization	ultivariable cost tic Regression - mization, Multi-
APPLICATIONS	9 Hours
Applications of AI- Natural Language Processing – Machine Translation – Robot – Gaming. Int Artificial Neural Networks and Convolution Neural networks – Applications Use of Tensor flo	roduction to
Theory: 45 Total Hours: 45Hours	
REFERENCES:	
 Stuart Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", 3rd Edition Education / Prentice Hall of India,2015. 	, Pearson
 Elaine Rich, Kevin Knight, Shivashankar. B.Nair, "Artificial Intelligence", Tata McGraw Edition, 2009 	Hill,Third
3. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.	
4. George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex Problems Pearson Education / PHI,2002	Solving",
 David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computation Cambridge University Press, 2010. 	nal Agents",
6. EthemAlpaydin, "Introduction to Machine Learning", Second Edition, MIT Press, 2013	
7. Tom M. Mitchell, -Machine Learning, McGraw-Hill Education (India) Private Limited,	2013
8. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.	
9. Y. S. Abu-Mostafa, M. Magdon-Ismail, and HT. Lin, "Learning from Data", AML Boo 2012	k Publishers,
10. K. P. Murphy, "Machine Learning: A probabilistic perspective", MIT Press, 2012.	
11. M. Mohri, A. Rostamizadeh, and A. Talwalkar, "Foundations of Machine Learnin Press,2012.	ıg", MIT

Sul

Course Outcomes

After successful completion of this course, the students should be able to						
CO1:	Understand the functional components of DBMS and Relational Model.	K2				
CO2:	Devise queries using SQL to develop database application	K2				
CO3:	Describe the database design approaches.	K2				
CO4:	Understand data storage and retrieval techniques.	K2				
CO5:	Explore concepts for transaction processing, concurrency control and NOSQL.	K2				
CO6:	Illustrate the concepts of NOSQL	K2				

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO11 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO12 PSO1 PSO2 CO1 S S М Μ Μ **CO2** М S М Μ S М М **CO3** Μ Μ Μ **CO4** Μ S S **CO5** S М S М Μ Μ Μ **CO6** М

Course Assessment methods:

DIRECT		INDIREC	T		
1. Internal Test I					
2. Internal Test II					
3. Assignment: Group Presentation		1.Course en	nd survey		
4. End semester exam					
INTRODUCTION TO DATABAS	SE AND RELA	TIONAL N	IODEL	9 Hours	
Introduction: Database applications, Purpose, Accessing and modifying databases, Architecture of DBMS.					
Relational Databases: Relational model, Da	atabase schema, K	eys, Formal Re	elational Query L	anguages	
DATABASE APPLICATION DE	VELOPMENT			9 Hours	
Guidelines for Database Design. SQL:	Data definition,	Basic SQL o	juery structure,	Specifying integrity	
constraints in SQL, Set operations, Nested subqueries, Aggregation, Join expressions, Views. Functions,					
Procedures and Triggers. Accessing Databases from Programs using JDBC, Building Web Applications using					
PHP & MySQL. Case Study: Open Source	Relational DBMS	^			
136 P a g e		1			

DA	TABASE DESIGN	9 Hours				
Data	abase Design: E-R model, E-R diagram, Reduction to relational schema, E-R desi	gn issues,				
Rela	ational Database Design: features of good design, Functional Dependency theory,	decomposition				
usin	g functional dependency, Normal forms. (Optional: multi-valued dependency and	l 4th normal form).				
ST	ORAGE AND INDEXING	7 Hours				
Stor	age and File structure: File Organization, RAID. Indexing: Concepts, Clustered and Non	-clustered Indices,				
B- ti	ee and B+-tree. Basics of Hashing (Static, Dynamic). Overview of Query processing.					
TR	TRANSACTION MANAGEMENT 11 Hours					
Trar	sactions: Concept and purpose, ACID properties and their necessity, transactions i	n SQL .Transaction				
Sche	edules: Conflicts and Aborts, Serializability, Recoverability. Concurrency Control: lock	-based protocols, 2-				
phas	e locking, Timestamp based protocols. Deadlock handling. Case Study: NoSQL: CAP T	heorem and BASE				
Prop	perties, Types of NoSQL Systems.					
	Theory: 45 Hrs Total Hours: 45					
RE	FERENCES:					
1.	Abraham Silberschatz, Henry Korth, and S. Sudarshan, "Database System Concepts", S	Sixth Edition,				
	McGraw- Hill.2016.					
2.	2. R. Elmasri and S. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education, 2011					
3.	Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 3nd Edition, McGraw Hill,2003.					
4.	4. Thomas M. Connolly and Carolyn E. Begg, "Database Systems - A Practical Approach toDesign,					
-	Implementation and Management", Fifth edition, Pearson Education, 2010					
5.	C.J.Date, A.Kannan and S.Swamynathan, "An Introduction to Database Systems", Eigl	nth Edition, Pearson				
	Education, 2006.					

P Sam

U17MCE0006

SOFT COMPUTING

L	Т	Р	J	С	
3	0	0	0	3	

Course Outcomes

After successful completion of this course, the students should be able to						
CO1:	CO1: Identify and describe soft computing techniques and their roles in building intelligent					
	Machines					
CO2:	Recognize the feasibility of applying a soft computing methodology for a particular problem	K2				
CO3:	Identify and select a suitable classification/clustering algorithm to solve the problem	K2				
CO4:	Apply evolutionary algorithms and Fuzzy logic to solve the problem	K2				
CO5:	Discuss the soft computing systems by hybrid soft computing techniques	K2				
CO6:	Describe the various optimization techniques used in soft computing	K2				

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO9 PO10 PO11 PO5 PO6 PO7 PO8 PO12 PSO1 PSO2 S Μ S S S **CO1** S CO₂ Μ М S S S S Μ S **CO3** S S S S S S S **CO4** Μ Μ S S S **CO5** S S S W W **CO6**

Course Assessment methods:

DIRECT	INDIRECT		
1. Internal Test I			
2. Internal Test II			
3. Assignment: Group Presentation	1.Course end survey		
4. End semester exam			
INTRODUCTION TO FUZZY SETS AND FUZ	ZY LOGIC SYSTEMS 9 Hours		

Fuzzy sets and Fuzzy logic systems- Classical Sets and Fuzzy Sets and Fuzzy relations- Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions: Features of membership functions, standard forms and boundaries, different fuzzification methods Fuzzy to Crisp conversions: Lambda Cuts for fuzzy sets, fuzzy Relations, Defuzzification methods.

FUZZY RULE BASED SYSTEMS

9 Hours

138 | P a g e

Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication- Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Rules, Fuzzy Inference System- Mamdani Fuzzy Models – Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting

INTRODUCTION TO NEURAL NETWORKS

Advent of Modern Neuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline and Madaline networks; single layer network; Backpropagation and multi-layer networks. Competitive learning networks: Kohonen self-organizing networks, Hebbian learning; Hopfield Networks.

GENETIC ALGORITHMS

Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA) Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based clustering Algorithm, Image processing and pattern Recognition.

HYBRID SOFT COMPUTING TECHNIQUES

Introduction - Neuro-Fuzzy Modelling-Applications of Neural Networks- Pattern Recognition and classification Genetic-Neuro Hybrid System, Genetic-Fuzzy Hybrid System, Fuzzy-Genetic Hybrid System, Simplified Fuzzy ARTMAP, Application of Soft Computing, CASE Study. Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle Swarm Optimization (PSO).

Theory: 45 Hrs Total Hours: 45

REFERENCES:

- 1. Samir Roy, Udit Chakroborthy, —Introduction to soft computing neuro-fuzzy and genetic algorithm, Person Education, 2013
- 2. Timothy J.Ross, —Fuzzy Logic with Engineering applications^{II}, Tata McGraw Hill New York, Third edition, 2010
- 3. David E. Goldberg,—GeneticAlgorithmsinSearchOptimizationandMachineLearningl,PearsonEducation, 2007.
- 4. J.-S.R Jang., C.-T Sun., & E. Mizutani, —Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligencel, Prentice-Hall of India Pvt. Ltd., 2005.

9 Hours

9 Hours

9 Hours

U17MCE00014

UNDER WATER ROBOTICS

L	TP		J	С	
3	0	0	0	3	

Course Outcomes

After successful completion of this course, the students should be able to				
CO1:	Express the basic concepts of underwater vehicle and Manipulator Systems	K2		
CO2:	Describe the rigid body kinematics of Autonomous Underwater vehicle and	K2		
	Manipulators			
CO3:	Summarize the dynamics of Autonomous Underwater vehicle and manipulators.	K2		
CO4:	Apply controllers for dynamic control of Autonomous Underwater vehicles.	K2		
CO5:	Discuss the concepts of kinematic control of Underwater manipulator systems.	K2		
CO6:	Describe various dynamic control theories of Underwater manipulator systems.	K2		

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 **CO1** S W S **CO2** М CO3 S М М М S **CO4** S W W М S S S **CO5** Μ W Μ W W S W Μ Μ Μ Μ **CO6**

Course Assessment methods:

DIRECT		INDIREC	Т			
1. Internal Test I						
2. Internal Test II						
3. Assignment		1.Course er	nd survey			
4. Group Presentation						
5. End semester exam						
MODELLING OF UNDER WATER ROBOTS 9 Hours						
Introduction to Underwater Vehi	cles -Sensorial System	s, Actuation,	Localization, Au	itonomous		
Underwater Vehicles (AUV) Con	ntrol Fault Detection/T	olerance for U	JUVs, Underwa	ter Vehicle		
Manipulator Systems (UVMS) C	Coordinated Control, Fu	uture Perspect	ives.			
MODELLING OF UNDER	MODELLING OF UNDER WATER ROBOTS 10 Hours					
Rigid Body's Kinematics-Attitude Representation by Euler Angles, Attitude Representation by						
Quaternion, AttitudeErrorRepresentation, 6-DOFsKinematics, RigidBody's Dynamics-Rigid						
Body's Dynamics in Matrix For	n. 🦳	P				
140 P a g e		1				
-	Signature of BOS cha	irman MCE				

DVNAMIC CONTROL OF ALWS	0 Hours				
DINAMIC CONTROL OF AUVS	9 11001 S				
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, Non model Based					
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/Vehi	cle				
Fixed Frame Based Controller					
KINEMATIC CONTROL OF UVMS					
Kinematic Control, The Drag Minimization Algorithm, The Joint Limits					
Constraints, Singularity-Robust Task Priority, Fuzzy Inverse Kinematics.					
DYNAMIC CONTROL OF UVMS					
Feed forward Decoupling Control, Feedback Linearization, Non-regressor-Based					
Adaptive Control,					
Sliding Mode Control, Adaptive Control, Output Feedback Control.					
Total Ho	ours: 45				
REFERENCES:					
1. Gianluca Antonelli, Underwater Robots: Motion and Force Control of Vehicle-M	anipulator				
Systems, Springer Berlin Heidelberg, Second Edition 2010					
2. C. Vasudevan, K. Ganesan, Underwater Robots, Springer, Third Edition, 2015.					
3. Frank Kirchner, Sirko Straube, Daniel Kühn, AI Technology for Underwater Robots, First					
Edition 2019.					
4. Steven W. Moore, Harry Bohm, Vickie Jensen, Underwater Robotics: Science, D	esign &				
Fabrication, Marine Advanced Technology Education (MATE) Center, 2010.					

Daniel R. Faust, Underwater Robots, The Rosen Publishing Group, Inc , First Edition, 2016.

 \leq

U17MCE0007

SMART MANUFACTURING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to					
CO1:	Explain the basic principles of smart manufacturing.	K2			
CO2:	Illustrate the importance of IoT in smart manufacturing	K2			
CO3:	Describe the functions of internet of things (IoT).	K2			
CO4:	Explain the key elements of Industrial internet of things (IIoT).	K2			
CO5:	Explain the functions of big data analytics.	K2			
CO6:	Discuss various applications of Industrial IoT.	K2			

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	mme O	utcome	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	Μ													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	M										S	M

Course Assessment methods:

DIRECT	INDIRECT				
1. Continuous Assessment Test I,II					
2. Assignment: Group Presentation, Project					
report, Poster preparation, Prototype or					
Product Demonstration etc (as applicable)					
3. End Semester Examination	1. Course end survey				
INTRODUCTION	9 Hours				
Globalization and Emerging Issues, The Fourth Revolution,	LEAN Production Systems, Smart and				
Connected Business Perspective, Smart Factories					
IoT COMPONENTS	9 Hours				
Cyber Physical Systems and Next Generation Sensor	s, Collaborative Platform and Product				
LifecycleManagement,AugmentedRealityandVirtuall	Reality, ArtificialIntelligence, BigData				
And Advanced Analysis, Cyber security inIndustry4.0,BasicsofIndustrialIoT,IndustrialSensing &					
Actuation, Industrial Internet Systems	0				
Signature of BOS c	hairman, MCE				

INDUSTRIAL IoT	9 Hours				
Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Model	dels, IIoT Reference				
Architecture, Industrial IoT- Layers: IIoT Sensing, IIoT Processing, IIoT Communication, II	оТ				
Communication, IIoT Networking.					
INDUSTRIAL IOT: BIG DATA ANALYTICS	9 Hours				
IIoT Analytics - Introduction, Machine Learning and Data Science, IoT Platforms, Dat	a Management tool,				
Software-Defined Networking, Data Center Network	s, Cloud Computing				
INDUSTRIAL IOT- APPLICATION	9 Hours				
Power Plants, Oil, chemical and pharmaceutical industry, Inventory Management & Qu	ality Control, Plant				
Safety and Security (Including AR and VR safety applications), Facility Management.					
Theory:45Hours T	otal Hours: 45				
REFERENCES:					
1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2016.					
2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Industrial Internet of					
Things: Cybermanufacturing Systems", Springer, 2017.					
3. Andrew Minteer, "Analytics for the Internet of Things (IoT): Intelligent analytics for your					
intelligent devices", Packt Publishing, 2017.					
4. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of					
M2M Communications", Willy Publications, 2013.					
5. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Internet of Things",					
Springer, 2011.					

P Sau
STATISTICAL QUALITY CONTROL

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to								
CO1:	Define the concept of probability and quality control	K2						
CO2:	Explain various sampling method to measure quality and the attributes of quality.	K2						
CO3:	Summarize the process behavior based on various control charts for variables.	K2						
CO4:	Summarize the process behavior based on various control charts for attributes	K2						
CO5:	Select the appropriate samples for the study.	K2						
CO6:	Apply various techniques to improve the overall quality.	K2						

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
008	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S		Μ					S					
CO2	S			Μ					S					
CO3	S	Μ		S										
CO4	S				S	Μ				S				
CO5														
CO6														

Course Assessment methods:

DIRECT	INDIREC	Т
1. Internal Test I		
2. Internal Test II		
3. Assignment: Group Presentation	1.Course end survey	
4. End semester exam		
INTRODUCTION		9 Hours
Probability concepts, Review of distribution: No	ormal, Poison's, and Binomial, Proble	ems, Measuring of
quality and control, Value and quality, Quality c	costs, Quality assurance	
CONTROL CHARTS FOR VARIABLES		9 Hours
Chance and assignable causes of quality variation	on, Control charts for variables, X-ba	r, R, and s-
charts, Warning and modified control limits, Pro-	ocess capability study, Ranges, Movin	ng Averages,
and Six s- limits, multivariate charts.		
CONTROL CHARTS FOR ATTRIBUTE	ES	9 Hours
Limitation of variable chart, p-chart, problems v	vith variable sample size, np-chart, c-	chart, u-chart, and
144 P a g e Signature of E	Sourch BOS chairman, MCE	

ku-chart, Demerits per unit control chart.	
ACCEPTANCE SAMPLING	9 Hours
Economics of sampling, Lot formation, OC-Curve-Producer's and Consumer's risk,	Single and double
sampling plans, AOQ, AOQL, ATI, ASN, Sequential sampling plan, MIL – STD –	1050 tables, MIL –
STD – 414 tables, IS 2500 Standard.	
QUALITY IMPROVEMENT	9 Hours
Zero defects program, Quality circle, Fishbone diagram, scatter diagram, Pareto Analy	ysis, Deming cycle,
Introduction to Reliability function, System reliability of series, parallel, and combir	ned configurations,
Reliability improvement techniques.	
Theory: 45Hours Tot	al Hours:45
REFERENCES:	
1. Grant E.L. and Leavenworth, "Statistical Quality Control", Tata McGraw-Hill Publishi	ng Company, 5th
edition 2002.	
2. Douglas C. Montgomery, "Statistical Quality Control", John Wiley and Sons, 2001.	
3. Fiegenbaum, A.V., "Total Quality Control", McGraw-Hill Inc., 1991.	
4. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, New De	elhi, 1998

5. Srinath L.S "Reliability Engineering", Affiliated East west Press, 1998.

Saul

COMPOSITE AND SMART MATERIALS

С L Т P J 3 0 0 3 0

Course Outcomes

After	After successful completion of this course, the students should be able to								
CO1:	Recognize the need and characteristics of the composite materials	K2							
CO2:	Explain the manufacturing processes of composite materials	K2							
CO3:	Explain the applications of composites and its sustainability	K2							
CO4:	Give the classifications on the various smart materials	K2							
CO5:	Explain the various smart actuators along with their working principle	K2							
CO6:	Understand the concept behind smart composites	K2							

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2													М	
CO3							М							
CO4	S												М	
CO5													М	
CO6	М													

Course Assessment methods:

DIRECT	INDIREC	CT						
1. Internal test I								
 Internal test II End Semester Examination Assignment 								
INTRODUCTION TO COMPOSITE MATERIALS 9 H								
Need and general characteristics of composi	ite materials	- mechanical advantages and	limitations					
Characteristics of fibers and matrixes - class	sification of	composites – Prepregs – Lar	nina,					
Laminate and sandwich construction.								
MANUFACTURING AND QUALITY IN	SPECTIO	N	9 Hours					
146 P a g e	_S_	L						

11 g

Fundamentals of curing – Bag molding process – compression and vacuum molding – filament winding – Quality inspection methods for raw materials – cure cycle monitoring – cured composite parts.

pures.							
APPLICATIONS OF COMPOSITES AND SUS	TAINABILITY	9 Hours					
Applications of composites - Natural fibers needs an	nd its significance - Recycling of	composites					
PIEZOELECTRIC AND MAGNETOSTRICTIVE MATERIALS 9 Hours							
Introduction to Smart Materials, Principles of P	iezoelectricty, Perovskyte Piezo	oceramic Materials,					
Single Crystals vs Polycrystalline Systems, Piezoel	lectric Polymers, Modelling Piez	coelectric Actuators,					
Amplified Piezo Actuation – Internal and External	Amplifications. Principles of Ma	gnetostriction, Rare					
earth Magnetostrictive materials, Giant Ma	agnetostriction and Magneto	-resistance effect.					
Magnetostrictive Actuation, Joule Effect, Wiedema	nn Effect, Magneto volume Effe	ct, Magnetostrictive					
Mini Actuators.							
ELECTRO ACTIVE MATERIALS AND SHAPE MEMORY ALLOYS 9 Hours							
Introduction to Electro-active Materials, Electronic	c Materials, Electro-active Polyn	ners, Ionic Polymer					
Matrix Composite (IPMC), Shape Memory Effect	, Shape Memory Alloys, Shape	Memory Polymers,					
Electro-rheological Fluids, Magneto Rhelological	l Fluids. IPMC and Polymeric	c Actuators, Shape					
Memory Actuators							
Theory:45Hours		Total: 45 Hours					
REFERENCES:							
1. Mallick P K., "Fiber Reinforced Composites: N	Materials, Manufacturing and Des	sign", 3rdEdition,					
Maneel Dekker Inc, 2008.	-	-					
2. Brian Culshaw, Smart Structures and Materials	s, Artech House,2000						
3. Gauenzi, P., Smart Structures, Wiley, 2009							

4. Cady, W. G., Piezoelectricity, Dover Publication

T 1 1 7	ГЛ	10
$\mathbf{U}\mathbf{I}$	EUU	110

ADDITIVE MANUFACTURING

 L
 T
 P
 J
 C

 3
 0
 0
 0
 3

Course Outcomes

After successful completion of this course, the students should be able to									
CO1:	Recognize the development of AM technology and how AM technology propagated into	K2							
	various businesses and developing opportunities.								
CO2:	Acquire knowledge on process of transforming a concept into the final product in AM	K2							
	Technology.								
CO3:	Elaborate the vat polymerization and material extrusion processes and its applications.	K2							
CO4:	Acquire knowledge on powder bed fusion processes and its applications.	K2							
CO5:	Acquire knowledge on direct energy deposition processes and its applications.	K2							
CO6:	Evaluate the advantages, limitations, applications of binder jetting, material jetting and	K3							
	laminated object manufacturing processes.								

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													М
CO2	S		М										М	М
CO3	S		М										М	М
CO4	S		М										М	М
CO5	S		М										М	М
CO6	S		М										М	М

Course Assessment methods:

DIRECT			INDIREC	CT					
1. Continuous Assessment Tes	t I, II								
2. Assignment; Journal pap	2. Assignment; Journal paper review, Group								
Presentation, Project report,	, Poster preparation,								
Prototype or Product Den									
applicable)		1.Course en	nd survey						
3. End Semester Examination									
INTRODUCTION				9 Hours					
Overview - Need - Development	nt of Additive Manufa	cturing (AM)) Technology: 1	Rapid Prototyping-					
Rapid Tooling – Rapid Manufac	turing – Additive Man	ufacturing. A	M Process Cha	in- Classification –					
148 Dage		L							

Benefits. Applications: Building Printing-Bio Printing- Food Printing-Printing Electronics. Business								
Opportunities and Future Directions - Intellectual Property.								
DESIGN FOR ADDITIVE MANUFACTURING (DFAM)	9 Hours							
Concepts and Objectives- AM Unique Capabilities: Part Consolidation-Topol-	ogy Optimization-							
Lightweight Structure - DFAM for Part Quality Improvement. Data Processin	ng - CAD Model							
Preparation –Part Orientation and Support Structure Generation -Model Slicing - Too	ol Path							
Generation-Customized Design and Fabrication for Medical Applications- Case Stud	ies.							
VAT POLYMERIZATION AND MATERIAL EXTRUSION	9 Hours							
Photo polymerization: Stereolithography Apparatus (SLA) - Materials -Prod	cess -Advantages-							
Limitations-Applications. Digital Light Processing (DLP) - Materials - Proces	ss - Advantages -							
Applications. Extrusion Based System: Fused Deposition Modeling (FDM) - Process	-Materials -							
Applications and Limitations.								
POWDER BED FUSION AND DIRECT ENERGY DEPOSITION	9 Hours							
Powder Bed Fusion: Selective Laser Sintering (SLS): Process – Powder Fusion Me	echanism – Process							
Parameters – Typical Materials and Application. Selective Laser Melting (SLM) a	and Electron Beam							
Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposit	tion Process: Laser							
Engineered Net Shaping (LENS) - Process -Material Delivery - Process Parameters -	Materials -							
Benefits -Applications.								
OTHER ADDITIVE MANUFACTURING PROCESSES	9 Hours							
Binder Jetting: Three Dimensional Printing - Materials -Process - Benefits and Limita	ations. Material							
Jetting: Multijet Modeling- Materials- Process- Benefits. SheetLamination Process:Laminated								
Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bor	nding – Thermal							
Bonding- Materials-Application and Limitation.								
Theory:45Hours Te	otal Hours: 45							
REFERENCES:								
1. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing f	or Prototyping and							
Manufacturing", Hanser publications, United States, 2015.	•••••							
2. Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol	ogies: Rapid							
2. Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United Stat	ogies: Rapid es, 2015,							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United Stat Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, 	ogies: Rapid es, 2015, CRC Press.,							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United Stat Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, 	ogies: Rapid es, 2015, CRC Press.,							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United Stat Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Pro 	ogies: Rapid es, 2015, CRC Press., ptotyping, Rapid							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United State Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Pro Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011,. 	ogies: Rapid es, 2015, CRC Press., ototyping, Rapid							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United State Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Pro Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011,. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer 	ogies: Rapid es, 2015, CRC Press., Dtotyping, Rapid							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United State Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Pro Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011,. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer 2011, 	ogies: Rapid es, 2015, CRC Press., ototyping, Rapid c., United States,							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United State Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Pro Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011,. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer 2011, Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A to 	ogies: Rapid es, 2015, CRC Press., ototyping, Rapid c., United States, tool box for							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United State Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Pro Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011,. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer 2011, Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A t prototype development", CRC Press., United States, 2011, 	ogies: Rapid es, 2015, CRC Press., ototyping, Rapid c., United States, tool box for							
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technol Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United State Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, United States, 2015, Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Pro Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011,. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer 2011, Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A t prototype development", CRC Press., United States, 2011, Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technology and States a	ogies: Rapid es, 2015, CRC Press., Dototyping, Rapid c., United States, tool box for echnologies, and							

P Sau

DESIGN OF MATERIAL HANDLING SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to								
CO1:	Recognize the need and types of the Material Handling Equipments	K2							
CO2:	Calculate the power requirements for a given belt conveyor	K3							
CO3:	Select the components for the belt conveyors	K3							
CO4:	Select and design the conveyors for the particular application	K3							
CO5:	Differentiate the conveyors and elevators and design the bucket and cage elevators	K3							
CO6:	Explain the various elements of the hoists	K2							

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ													
CO2	Μ													
CO3	Μ		Μ										Μ	
CO4	Μ	W	S			W							Μ	W
CO5	Μ	W	Μ										Μ	
CO6	М		М										М	

Course Assessment methods:

DIRECT	INDIRECT											
1. Internal test I												
2. Internal test II	Internal test II											
3. End semester Examination	1.Course end survey											
4. Assignment												
MATERIAL HANDLING EQUIPMENTS (MH	E)	4 Hours										
Materials and Bulk materials – Types of material handling equipments – selection and applications of												
MHE. Automation in material handling system.												
BELT CONVEYORS	10											
		Hours										
General components of belt conveyors - Selection of be	elt speed and belt width – Driv	ve unit design:										
Power requirement – coupling types and selection – Sp	eed reduction: gearbox types	and selection –										
Shaft and Pulley design – selection of Idlers and Idlers	spacing - Safety devises for b	belt conveyors										
DESIGN OF OTHER CONVEYORS	~	10 Hours										
150 LD a a a	1											
Signature of BOS cha	irman, MCE											

Apron conveyors, Screw conveyors, Cleat conveyors and Pneumatic conveyors								
ELEVATORS	11 Hours							
Conveyors and Elevators – Bucket elevators: centrifugal type and continuous type but	ucket elevators-							
Design of bucket elevators – Safety devices for bucket elevators Cage elevators: Shaft way, guides,								
counter weights – safety devises								
HOIST	10 Hours							
Design of Hoisting elements: Welded and roller chains – Hemp wire and ropes – Des	sign of ropes –							
Pulley – sprockets and drums								
Load handling attachments – Forged and Eye hooks – crane grabs – lifting magnets -	– Grabbing							
attachments – arresting gears and brakes								
Theory:45Hours Total Hours: 45								
REFERENCES:								
1. Rudenko N., "Materials handling equipment", ELnvee Publishers, 1970.								
2. Fenner & Dunlop, "Conveyor Handbook"								
3. DavidVHutton"FundamentalsofFiniteElementAnalysis",McGraw-HillInternation	ionalEdition,							
2004.								
4. Alexandrov M, Materials Handling Equipments, MIR Publishers, 1981.								
5. Conveyors and Related Equipment, <u>A. Spivakovsky</u> (Author), <u>V. Dyachkov</u> (A	Author), <u>D.</u>							
Danemanis (Translator) 1966.								

P Same

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Explain the design principles for manufacturability and factors influencing it	K2						
CO2:	List and explain the factors influencing form design.	K2						
CO3:	Explain the design considerations for cast steel and casting process	K2						
CO4:	Explain the design considerations various machining process.	K2						
CO5:	Explain the use of computer in DFMA.	K2						
CO6:	Describe the Design considerations and Guidelines for assembly.	K3						

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 Μ Μ **CO2** CO3 Μ Μ Μ **CO4** Μ W S Μ W CO5 Μ W Μ W Μ CO6 Μ Μ Μ

Course Assessment methods:

DIRECT		INDIRECT									
1. Internal test I											
2. Internal test II	2. Internal test II										
3. End semester Examination	emester Examination 1.Course end survey										
4. Assignment			-								
INTRODUCTION				9 Hours							
General design principles for manu	ufacturability -Factors in	nfluencing des	ign-Types of pro	oblems to be solved-							
evaluation of customer's requirement	nts-Systematic working p	lan for the des	igner-Types of pr	roblems to be solved-							
Possible Solutions-Evaluation metho	od- Process capability - F	eature toleranc	es -Geometric tol	erances							
- Assembly limits -Datum features -	Tolerance stacks-Interch	angeable part	manufacture and	selective assembly.							
FACTORS INFLUENCING	FORM DESIGN			9 Hours							
Materials choice - Influence of ba	asic design, mechanical	l loading, mat	erial, production	n method, size and							
weight on form design- form design-	ign of welded members	s and forgings	-case studies								
COMPONENT DESIGN – C	CASTING CONSIDI	ERATION		9 Hours							
Form design of grey iron, steel,	malleable iron and alu	minium castin	ngs. Redesign o	f castings based on							
parting line considerations - Min	imizing core requirem	ents, machine	d holes, redesig	gn of cast members							
to obviate cores-case studies	(P									
152 P a g e											
	Signature of BOS cha	irman, MCE									

COMPONENT DESIGN - MACHINING CONSIDERATION	9 Hours							
Design features to facilitate machining - drills - milling cutters - keyways - Doweling procedures,								
counter sunk screws - Reduction of machined area- simplification by separation	- simplification by							
amalgamation - Design for machinability - Design for economy - Design for clampa	ability - Design for							
accessibility - Design for assembly. Identification of uneconomical design - Mod	ifying the design -							
Computer Applications for DFMA- case studies								
DESIGN FOR ASSEMBLY	9 Hours							
Design for assembly (DFA) - The assembly process - Economic production quantitie	s - Design							
considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - M	etal stitching							
- Fits - press-fits - snap-fits. Weldments - Characteristics and applications of arc weld	dments - Economic							
Production Quantities - Design Recommendations.								
Theory:45Hours T	otal Hours: 45							
REFERENCES:								
1. Geoffrey Boothroyd, G, , Assembly Automation and Product Design.NewYo	ork, Marcel							
Dekker,2011								
2. Bralla, Design for Manufacture handbook, McGraw hill, 1999.								

3. Kevien Otto and Kristin Wood, Product Design. Pearson Publication, 2004.

 \leq

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Describe different types of Unconventional Machining processes and principle of	K2
	mechanical energy based unconventional machining processes.	
CO2:	Explain the working principle of electrical energy based unconventional	K2
	machining processes.	
CO3:	Explain the working principle of chemical energy based unconventional	K2
	machining processes.	
CO4:	Explain the working principle of electro chemical energy based unconventional	K2
	machining processes.	
CO5:	Explain the working principle of thermal energy based unconventional machining	K2
	processes.	
CO6:	Describe the working principle of super finishing process.	K2

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	mme O	utcome	es(POs)				
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	W												
CO2	М	М												
CO3	М	М											М	
CO4	М	М				W							М	W
CO5	М	М											М	
CO6	М	М											М	

Course Assessment methods:

DIRECT	INDIRECT				
1. Continuous Assessment Test I, II					
2. Assignment: Group Presentation, Project					
report, Poster preparation, Prototype or Product	1.Course end survey				
Demonstration etc. (as applicable).					
3. End Semester Examination					
MECHANICAL ENERGY BASED PROCESSE	9 Hours				
Introduction Unconventional Machining Process, Need, Classification, Brief overview of all techniques,					
Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining- Ultrasonic Machining (AJM,					
WJM, AWJM, USM). Working Principles – equipment used – Process parameters – MRR –					
Applications.					
ELECTRICAL ENERGY BASED PROCESSE	9 Hours				

154 | P a g e

Electric Discharge Machining (EDM) - working Principles-equipment-Process Parameters-MRR-					
electrodes Used – Power Circuits – Dielectric – Flushing – Applications, Wire Cut EDM Applications.					
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED	9 Hours				
PROCESSES					
Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchants -	Maskant-				
techniques of applying maskants - Process Parameters - Surface finish and	MRR-Applications.				
Principles of ECM- equipments – MRR -Process Parameters- ECG and ECH - Appl	ications.				
THERMAL ENERGY BASED PROCESSES	9 Hours				
Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Beam Machining					
(EBM), Principles-Equipment – MRR - Process Parameters - Applications.					
SUPER FINISHING PROCESS	9 Hours				
Super finishing process – Honing - honing machines, Process parameter, MRR – Lapping –					
characteristics, Types of lapping, lapping machines, and Super finishing – Burnishing, Magnetic					
float polishing, Magnetic field assisted polishing, Electro polishing					
Theory:45Hours T	otal Hours: 45				
REFERENCES:					
1. Vijay K Jain "Advanced Machining Processes", first edition, Allied Publishers Pvt. Ltd., New					
Delhi, 2007.					
2. Benedict G F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York,					
1987					
3. Pandey P C and Shan H S. "Modern Machining Processes", Tata McGraw-Hill, New Delhi,					
1980.					
4. Hassan Abdel-Gawad El-Hofy "Advanced Machining Processes: Nontraditional and Hybrid					
Machining Processes" Tata McGraw-Hill New Delhi 2005					

Sal

OPERATION RESEARCH

Т Р J С L 3 0 0 0 3

Course Outcomes

After successful completion of this course, the students should be able to					
CO1:	Apply linear programming model and assignment model to domain specific situations.	K2			
CO2:	Analyze the various methods under transportation model and apply the model for testing the closeness of their results to optimal results	K2			
CO3:	Apply the concepts of PERT and CPM for decision making and optimally managing projects	K2			
CO4:	Analyze the various replacement and sequencing models and apply them for arriving at optimal decisions.	K2			
CO5:	Analyze and apply appropriate inventory techniques in domain specific situations.	K2			
CO6:	Analyze and apply appropriate queuing theories in domain specific situations.	K2			

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs		Programme Outcomes(POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S		S									W	
CO2	S	S		S									W	
CO3	S	S		S						S			W	
CO4	S	S		S									W	
CO5	S	S		S									W	
CO6	S	S		S									W	

Course Assessment methods:

DIRECT	INDIRECT			
1. Internal Test I				
2. Internal Test II				
3. Assignment	1.Course end survey			
4. End semester Examination				
LINEAR MODEL		9 Hours		
The phases of OR study – formation of an L.P model – graphical solution – simplex algorithm –				
artificial variables technique (Big M method, two phase method), duality in simplex.				
TRANSPORTATION AND ASSIGNMENT PR	9 Hours			

TRANSPORTATION AND ASSIGNMENT PROBLEM

Transportation model – Initial solution by North West corner method – least cost method – VAM. Sam

156 | P a g e

Optimality test – MODI method and stepping stone method. Assignment model – formulation –					
balanced and unbalanced assignment problems. Traveling salesman problem					
9 Hours					
Basic terminologies – Constructing a project network – Scheduling computations – PERT - CPM –					
9 Hours					
Replacement policies - Replacement of items that deteriorate with time (value of money not changing					
with time) – Replacement of items that deteriorate with time (Value of money changing with time) –					
Replacement of items that fail suddenly (individual and group replacement policies).					
nachines, Traveling					
9 Hours					
Variables in inventory problems, EOQ, deterministic inventory models, order quantity with price					
break, techniques in inventory management. Queuing system and its structure – Kendall's notation –					
Common queuing models - M/M/1: FCFS/ ∞/∞ - M/M/1: FCFS/n/ ∞ - M/M/C: FCFS/ ∞/∞ - M/M/1:					
FCFS/n/m					
Fotal Hours: 45					
2. Hira and Gupta "Introduction to Operations Research", S.Chand and Co.2002					
3. Hira and Gupta "Problems in Operations Research", S.Chand and Co.2008					

P Sau