KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

COIMBATORE - 641049

REGULATIONS 2018

(2019 Batch)

SYLLABUS

1st to 8thSemesters

BE MECHATRONICS ENGINEERING

	- D-
	m
Signature of BOS	Schairman, MCE

DEPARTMENT OF MECHATRONICS ENGINEERING

VISION

To achieve excel in academic and industrial automation research and innovative product development driven by mechatronics systems."

MISSION

- Impart the right blend of knowledge and skills to students and enable them to apply it in real life situations.
- Motivate the students towards interdisciplinary research to cater to the local and global needs.
- Achieve innovation in developing industrial products with social responsibility.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of Mechatronics Engineering Undergraduate Program are to prepare the students:

- **I.** To develop innovative and sustainable products with multidisciplinary Engineering expertise.
- **II.** Solve intricate engineering problems by identifying the crux from the mechatronics engineering fundamentals and engage in lifelong learning in their profession.
- **III.** To work or pursue higher education in multicultural, multilingual and multinational environment with competent oral and written communication.
- **IV.** To lead and contribute in a team entrusted with professional, social and ethical responsibilities.

PROGRAM OUTCOMES (POs)

Graduates of the Mechatronics Engineering Undergraduate Program should have the ability to:

PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

	- D-
Signature of BO	S chairman, MCE

PO3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates of the Mechatronics Engineering Undergraduate Program will have the ability to:

PSO1. Design and develop Mechatronics systems to solve the complex engineering problem by integrating electronics, mechanical and computing systems.

PSO2. To analyze and provide solution for the real time engineering problems related to instrumentation, control, automation, and robotics.

-	D
5-	
Signature of BOS of	chairman, MCE

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE – 641 049

REGULATIONS 2018

B.E. MECHATRONICS ENGINEERING

CURRICULUM

	Semester I									
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MAI1202	Linear Algebra and Calculus	Embedded - Theory & Lab	BS	3	0	2	0	4	-
2	U18CHI1202	Engineering Chemistry	Embedded - Theory & Lab	BS	3	0	2	0	4	-
3	U18ENI1202	Fundamentals of Communication- I	Embedded - Theory & Lab	HS	2	0	2	0	3	-
4	U18MEI1201	Engineering Graphics	Embedded - Theory & Lab	ES	2	0	2	0	3	-
5	U18CSI1202	Problem solving and Programming using C	Embedded - Theory & Lab	ES	2	0	2	0	3	-
6	U18INI1600	Engineering Clinic I	Practical and Project	ES	0	0	4	2	3	-
7	U18VEP1501	Personal Values	Workshop	HS						
					To	tal	Cre	edits	20	
			Total (Conta	ct H	Iou	rs/v	veek	28	

	A
5.	nel.
Signature of BOS	chairman MCE

		Sen	nester II							D
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MAI2201	Advanced Calculus and Laplace Transforms	Embedded - Theory & Lab	BS	3	0	2	0	4	U18MAI12 01
2	U18PHI2202	Engineering Physics	Embedded - Theory & Lab	BS	3	0	2	0	4	-
3	U18ENI2202	Fundamentals of Communication-II	Embedded - Theory & Lab	HS	2	0	2	0	3	-
4	U18MET2003	Engineering Mechanics	Theory	ES	3	0	0	0	3	-
5	U18CSI2201	Python Programming	Embedded - Theory & Lab	ES	2	0	2	0	3	-
6	U18INI2600	Engineering Clinic II	Practical and Project	ES	0	0	4	2	3	-
7	U18VEP2502	Interpersonal Values	Workshop	HS						
							Cre		20	
			Total (Conta	ct E	Iou	rs/w	veek	27	

		Semeste	er III							_
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre- requisite
1	U18MAT3101	Partial Differential Equations and Transforms	Theory	BS	3	1	0	0	4	-
2	U18MCI3201	Electronic Devices and Circuits	Embedded - Theory & Lab	ES	3	0	2	0	4	-
3	U18MCI3202	Electrical Machines	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT3103	Mechanics of solids	Theory	ES	3	1	0	0	4	-
5	U18MCT3104	Fluid Mechanics and Thermal Sciences	Theory	ES	3	1	0	0	4	-
6	U18INI3600	Engineering Clinic III	Practical and Project	ES	0	0	4	2	3	-
7	U18VEP3503	Family Values	Workshop	HS						
								dits	23	
			Total (Conta	ct H	lou	rs/w	veek	28	

Sa Signature of BOS chairman, MCE

		Semest	er IV							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MAT4101	Numerical Methods and Probability	Theory	BS	3	1	0	0	4	-
2	U18MCI4201	Hydraulics and Pneumatics	Embedded - Theory & Lab	PC	3	0	2	0	4	-
3	U18MCI4202	Sensors and Instrumentation	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT4103	Digital Electronics and Microprocessor	Theory	PC	3	1	0	0	4	U18MCI32 01
5	U18MCT4104	Theory of Machines	Theory	PC	3	1	0	0	4	-
6	U18INI4600	Engineering Clinic IV	Practical and Project	ES	0	0	4	2	3	-
7	U18CHT4000	Environmental Science and Engineering	Theory	MC						
8	U18VEP4504	Professional Values	Workshop	HS						
		•	· J	-				dits	23	
	Total Contact Hours/week 2									

			-0
<	5-	-	1

	Semester V									
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MCI5201	Industrial Electronics and drives	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI3202
2	U18MCI5202	Manufacturing Technology	Embedded - Theory & Lab	PC	2	0	2	0	3	-
3	U18MCI5203	Programmable logic controller	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT5004	Control Engineering	Theory	PC	3	0	0	0	3	-
5	U18MCT5105	Design of Machine Elements	Theory	PC	3	1	0	0	4	U18MCT3103
6	U18MC00**	Open Elective I	Theory	OE	3	0	0	0	3	-
7	U18INI5600	Engineering Clinic V	Practical and Project	ES	0	0	4	2	3	-
8	U18VEP5505	Social Values	Workshop	HS						
								dits	24	
	Total Contact Hours/week								30	

		0	
<	5-	·	
Cinnatura	FROS	airman, MC	-

	Semester VI									
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MCI6201	Computer aided Manufacturing	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI5202
2	U18MCI6202	Robotics Engineering	Embedded - Theory & Lab	PC	3	0	2	0	4	-
3	U18MCI6203	Microcontroller and Embedded Systems	Embedded - Theory & Lab	PC	3	0	2	0	3	U18MCT4103
4	U18MCE00**	Professional Elective I	Theory	PE	3	0	0	0	3	-
5	U18MCE00**	Professional Elective II	Theory	HS	3	0	0	0	3	-
6	U18MCO0***	Open Elective II	Theory	OE	3	0	0	0	3	-
7	U18VEP6506	National Values	Workshop	HS						
8	U18INT6000	Constitution of India	Theory	MC						
	1				To	tal	Cre	dits	20	
			Total	Conta	ct H	Iou	rs/w	veek	23	

Semester VII										
S.No	Course code	odeCourse TitleCourse ModeCTLTPJ		С	Pre-requisite					
1	U18MBT7001	Engineering Economics and Financial Management	Theory	HS	3	0	0	0	3	-
2	U18MCT7001Mobile RoboticsTheoryPC300		3	-						
3	U18MCT7002Image Processing and Computer VisionTheoryPC300		0	3	-					
4	U18MCE00** Professional Elective III Theory PE		3	0	0	0	3	-		
5	U18MCE00**	Professional Elective IV	Theory	PE	3	0	0	0	3	-
6	U18MCP7701	Project – Phase I	Project	PW	0	0	0	6	3	-
7	U18VEP7507	Global Values	Workshop	HS						
	Total Credits								18	
	Total Contact Hours/week								21	

		A
<	Sau	1
	BOS chairm	- HOF

Semester VIII										
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	
1	U18MCP8701	Project – Phase II	Project	PW	0	0	0	24	12	
	Total Credits									
	Total Contact Hours/week									
	Total Credits 16									

		Programme Ele	ctives								
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С		
	Mechatronics Systems										
1.	U18MCE0001	Automotive Electronics	Theory	PE	3	0	0	0	3		
2.	U18MCE0002	Condition Monitoring Theory		PE	3	0	0	0	3		
3.	U18MCE0003	Micro Electro Mechanical Systems	Theory	PE	3	0	0	0	3		
Computational Intelligence											
4.	U18MCE0004	Artificial Intelligence and Machine Learning Theo		PE	3	0	0	0	3		
5.	U18MCE0005	Database Management System	nent Theory		3	0	0	0	3		
6.	U18MCE0006	Soft Computing			3	0	0	0	3		
7.	U18MCE0014	Underwater Robotics	Theory	PE	3	0	0	0	3		
Design and Manufacturing											
8.	U18MCE0007	Industrial IOT	Theory	PE	3	0	0	0	3		
9.	U18MCE0008	Statistical Quality Control	Theory	PE	3	0	0	0	3		
10.	U18MCE0009	Composite and Smart Materials	Theory	PE	3	0	0	0	3		
11.	U18MCE0010	Additive Manufacturing	Theory	PE	3	0	0	0	3		
12.	U18MCE0016	Finite Element Analysis	Theory	PE	3	0	0	0	3		
I		Automation	1								
13.	U18MCE0011	Design of material handling systems	Theory	PE	3	0	0	0	3		
14.	U18MCE0012	Design for manufacturing and Assembly	Theory	PE	3	0	0	0	3		
15.	U18MCE0013	Precision manufacturing	Theory	PE	3	0	0	0	3		
16.	U18MCE0015	Operation Research	Theory	PE	3	0	0	0	3		
17.	U18MCE0017	Maintenance Engineering	Theory	PE	3	0	0	0	3		
18.	U18MCE0018	Medical Mechatronics	Theory	PE	3	0	0	0	3		

	-		P
Signat	ure of BOS	Schairma	an MCE

	Open Electives										
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С		
1.	U18MCO0001	Robotics for Engineers	Theory	OE	3	0	0	0	3		
2.	U18MCO0002	Automation in Agriculture	Theory	OE	2	0	1	0	3		
3.	U18MCO0004	Nature Inspired Optimization Techniques	Theory	OE	3	0	0	0	3		
4.	U18MCO0005	Mechanics in Cricket	Theory	OE	3	0	0	0	3		
5.	U18MCO0006	Low Cost Automation	Theory	OE	3	0	0	0	3		
6.	U18MCO0007	Magics and Mechanics	Theory	OE	2	0	1	0	3		

	INDUSTRY OFFERING ELECTIVE										
1	U18MCE0019	Product Design and Development	Theory	PE	2	0	2	0	3		
2	U18MCE0020	Product Lifecycle Management	Theory	PE	3	0	0	0	3		
3	U18ECE0057	Introduction to HMI	Theory	PE	3	0	0	0	3		
4.	U18ECE0058	Advanced HMI	Theory	PE	2	0	2	0	3		

MINOR SPECIALISATION CURRICULUM

	Minor specialization									
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MCR0001	Fundamentals of 3D printing	Embedded - Theory & Lab	ES	3	0	2	0	4	-
2	U18MCR0002	Additive manufacturing processes	Theory	ES	3	0	0	0	3	U18MCR0001
3	U18MCR0003	Mechatronics in 3D Printing	Embedded - Theory & Lab	ES	3	0	2	0	4	U18MCR0002
4	U18MCR0004	3D Printing laboratory	Laboratory	ES	0	0	2	0	1	U18MCR0002
5	U18MCR0005	Project	Project	PW	0	0	0	6	3	-
	•	Total Cr	edits			•			15	

	~	-		-0-
	5	>~	-	1
Sign	nature of	BOS ch	nairman	, MCE

SEMESTER I

		0
C	-	P
>	are	
Signature of BO	C abaim	NAR MOR

U18MAI1202
U101/1A11202

LINEAR ALGEBRA AND CALCULUS

(Common to All branches- 2019 batch onwards)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Identify eigenvalues and eigenvectors, apply Cayley Hamilton theorem to Matrix Manipulation
	and apply orthogonal diagonalization to convert quadratic form to canonical form.
CO2:	Apply suitable techniques of differentiation and integration to various functions and identify the
	maxima and minima of functions of one variable.
CO3:	Solve first order ordinary differential equations and apply them to certain physical situations
CO4 :	Solve higher order ordinary differential equations arising in real world situations.
CO5:	Evaluate the total derivative of a function, expand the given function as series and locate the
	maximum and minimum for multivariate functions.
CO6:	Determine Rank, Inverse, Eigenvalues, Eigenvectors of the given matrix, solve Differential equations
	and locate Maxima-Minima of the function using MATLAB

Pre-requisite

Nil

CO/PO Mapping S-Strong, M-Medium, W-Weak (S/M/W indicates strength of correlation) Programme Outcomes(POs) COs PO9 PO10 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO11 PO12 PSO 1 PSO2 S S Μ Μ Μ Μ Μ Μ **CO1** S S Μ Μ Μ Μ **CO2** Μ Μ S S CO3 Μ Μ Μ Μ Μ Μ S S **CO4** Μ Μ Μ Μ Μ Μ S S Μ Μ Μ Μ **CO5** Μ Μ S **CO6** S Μ Μ Μ Μ Μ Μ

0 Signature of BOS chairman, MCE

Course Assessment methods:

DIRECT	INDIREC	СТ
 Report, Assignment; Journal Paper Review, Group Presentation, Project Report, Poster Preparation, Prototype or Product Demonstration etc (asapplicable) (Theory component) Pre/Post - Experiment Test/Viva; Experimental Report for each Experiment (lab Component) Model Examination (lab component) End Semester Examination (Theory and lab components) THEORY COMPONENT 	1. Course-end survey	
MATRICES		11 Hours
Rank of a matrix – Consistency of a system of linear equa linearequations-Linearlydependentandindependentvectors – Properties of eigenvalues and eigenvectors – Cayle matrices – Orthogonal transformation of a symmetric mat canonical form by orthogonal transformation	s–EigenvaluesandEigenvectorso y Hamilton theorem (excluding	ution of a system of farealmatrix g proof) -Orthogonal
DIFFERENTIAL AND INTEGRAL CALCULUS		9 Hours
Representation of functions -Limit of a function-Con Maxima and Minima of functions of one variable - Integration: Substitution rule, Integration by par substitutions, Integration of rational functions by par	Definite and Indefinite integr parts, Trigonometric integr tial fraction.	rals - Techniques of als, Trigonometric
FIRST ORDER ORDINARY DIFFERENTIAL EQU		6 Hours
Leibnitz's equation – Bernoulli's equation – Applicat Circuits.	nons: Ormogonal trajectories	
HIGHER ORDER LINEAR DIFFERENTIAL EQUA	TIONS	9 Hours
Linear equations of second and higher order with con- linear equations – Method of variation of parameters constant coefficients – Applications: Electric Circuit	nstant coefficients – Euler's a – First order Simultaneous li	nd Legendre's
FUNCTIONS OF SEVERAL VARIABLES		10 Hours
Total derivative – Taylor's series expansion – Maxima an maxima and minima: Lagrange's multiplier method with		ariables– Constrained
REFERENCES:		
1. GrewalB.S., "HigherEngineeringMathematics", k 2011.	KhannaPublishers,NewDelhi,4	11stEdition,
2. RamanaB.V., "HigherEngineeringMathematics", Reprint, 2010.	TataMcGrawHillCo.Ltd.,New	wDelhi,11th
3. KreyzigE., "AdvancedEngineeringMathematics"	,TenthEdition,JohnWileyands	sons,2011.
4. VeerarajanT.,EngineeringMathematics(forFirstY Delhi, Revised Edition, 2007		

	0	-	1	2
Sianat	ure of B	OS chair	man. M	CE

- 5. KandasamyP.,ThilagavathyK.,andGunavathyK.,"EngineeringMathematics",S.Chand& Co., New Delhi, (Reprint) 2008
- 6. VenkataramanM.K., "EngineeringMathematics", TheNationalPub.Co., Chennai, 2003
- 7. Weir, MD, Hass J, Giordano FR: Thomas' Calculus, Pearson education 12th Edition, 2015
- 8. G.B.Thomas and R.L.Finney, Calculus and Analytical Geometry, 11th Edition,Pearson Education, (2006)
- 9. James Stewart, Calculus: Early Transcendentals, Cengage Learning, 7th Edition, New Delhi, 2015.

WEBSITES

https://www.khanacademy.org/tag/maxima-and-minimamathhttps://www.khanacademy.org/math/differentialcalculus

https://www.khanacademy.org/math/integral-calculus

LAB COMPONENT

List of MATLAB Programmes:

- 1. Introduction toMATLAB.
- 2. Matrix Operations Addition, Multiplication, Transpose, Inverse
- 3. Rank of a matrix and solution of a system of linear equations
- 4. Characteristic equation of a Matrix and Cayley-HamiltonTheorem.
- 5. Eigenvalues and Eigenvectors of Higher Order Matrices
- 6. Curve tracing
- 7. Differentiation and Integration
- 8. Solving first and second order ordinary differential equations.
- 9. Determining Maxima and Minima of a function of one variable.
- 10. Determining Maxima and Minima of a function of two variables.

Theory:45Tutorial:0Practical:30Project:0Total: 75Hours

30 Hours

	\subset	-	P
Signat	ure of BO	S chairma	an, MCE

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Apply the basic principles of chemistry at the atomic and molecular level.
CO2:	Analyze the impact of engineering solutions from the point of view of chemical principles
CO3:	Apply the chemical properties to categorize the engineering materials and their uses
CO4:	Integrate the chemical principles in the projects undertaken in field of engineering and
	technology
CO5:	Develop analytical proficiency through lab skill sets to demonstrate in professional practice.

Pre-requisite

	CO/PO Mapping													
	(S/M/	W ind	icates	streng	gth of	correl	ation)	S-	Strong	g, I	M-Med	ium, W	-Weak	
COs						Prog	gramm	e Out	comes	(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S	М		М										
CO3	S	М		S										
CO4	S	М		S										
CO5	М	S		S										
Course	Assessm	nent n	netho	ds:										
		D	TDDO								TATAT	TOT		

DIRECT	INDIRECT
1. Continuous Assessment TestI	
2. Continuous Assessment TestII	
3. Assignment	1. Course-end survey
4. End Semester Examination	-

		-	-A-
	5	an	1
Signa	ture of BO	Schairm	an, MCE

ELECTROCHEMISTRY AND CORROSION	9 Hours
Electrodes - Calomel and Glass electrode (Construction and working prin	nciples) - Electrode
Potential – Nernst equation and problems - Electrochemical Series and its a	pplications.
Corrosion: Mechanism of chemical and electrochemical corrosion - T	Types of corrosion
(Metallurgically Influenced Corrosion, Mechanically Assisted Degradation a	
Induced Cracking – overview) - Factors influencing corrosion.	
Corrosion control: Inhibitors - Cathodic protection (Sacrificial anodic pro	otection, Impressed
current cathodic protection) - Electroplating (Cu) and Electroless plating (I	Ni).
SURFACE CHEMISTRY AND CATALYSIS	8 Hours
Adsorption: Types and factors affecting adsorption - Adsorption isoth	erms: Freundlich's
adsorption isotherm – Langmuir's adsorption isotherm – Applications of adso	
abatement.	
Surface catalysis: Power law and Eley Rideal model and Langmuir-Hinshe	lwood mechanism.
Catalysis: Catalyst - catalytic poisoning and catalytic promoters - autocat	alysis acid base
catalysis – enzyme catalysis. Applications of catalysis in industries.	
ENGINEERING MATERIALS	8 Hours
Polymers: Introduction - Degree of polymerisation - Functionality - Prep	paration, Properties
and Applications of PET, PVC and conducting polymers (Polyactylene and	Polythiophene).
Composites: Constituents of Composites and applications - Polymer Comp	oosites (PC) -
Metal Matrix Composites (MMC) - Ceramic Matrix Composites (CMC)	
Lubricants: Classification (liquid, solid and semi solid) - Functions - Pr	operties (viscosity
index, flash and fire point, oiliness, carbon residue, aniline point, cloud po	int and pour point)
– Synthetic lubricants.	
CHEMICAL BONDING	7 Hours
Introduction - Types of bonding: Ionic, covalent, co-ordinate and metalli	ic bonds - Van der
Waal's forces of attraction and its types (dipole - dipole, dipole - induced dip	pole, induced dipole
- induced dipole) - hydrophobic interaction - hybridization in organic mole	ecules
(sp, sp ² , sp ³) - hydrogen bonding and its characteristics.	
THERMODYNAMICS	7 Hours
Introduction - Thermodynamic process - Internal energy - Enthalp	y – First law of
thermodynamics - Second law of thermodynamics - Entropy - Free Energy	y – Helmoltz Work
Function - Gibbs Helmholtz equation - Problems - Clausius-Clapeyron equ	uation – Maxwell's
relations - Third law of thermodynamics – Zeroth law.	
WATER TECHNOLOGY	6 Hours
Introduction - Hardness of water - Disadvantages of hard water in boilers	s: scale and sludge,
priming and foaming, caustic embrittlement and boiler corrosion - Softer	ning of hard water:
External treatment (Demineralisation process) - Internal treatment (co	olloidal, carbonate,
phosphate and calgon conditioning) - Desalination (Reverse osmosis, Elec	ctrodialysis) –
Domestic water treatment.	
Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total	: 45 Hours

	0	-		P
_		>~	-	1
Signa	ture of	BOS ch	nairman,	MCE

REFERENCES

- 1. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, Reprint 2017.
- Puri B.R., Sharma L.R., Pathania, M.S. Principles of physical chemistry, Vishal Publishing Co., 2017
- 3. Atkins, P. and de Paula, J., Atkin's Physical Chemistry, 9th ed., Oxford Univ. Press, 2009.
- 4. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East West Press Private Limited, 2007.
- 5. Samir Sarkar., Fuels and Combustion, 3rd Edition, Orient Longman, India, 2009.
- 6. Dara S.S. and Umare S.S., A text book of Engineering Chemistry, S.Chand and Company Limited, New Delhi, 2014.
- 7. Engineering Chemistry, Wiley India Editorial Team, Wiley, 2018.

LABORATORY COMPONENT

LIST OF EXPERIMENTS (Any 10 - Branch specific)

- 1. Preparation of Standard solutions
- 2. Conductometric estimation of mixture of acids vs strong base
- 3. Estimation of extent of corrosion of Iron pieces by Potentiometry
- 4. Estimation of the extent of dissolution of Copper / Ferrous ions byspectrophotometry.
- 5. Estimation of acids by pH metry.
- 6. Determination of total, temporary and permanent hardness by EDTA method.
- 7. Estimation of DO by Winkler's method
- 8. Estimation of Alkalinity by Indicator method.
- 9. Estimation of Chloride by Argentometric method
- 10. Estimation of Sodium and Potassium in water by Flame photometry.
- 11. Determination of Flash and Fire point of lubricating oil
- 12. Determination of Cloud and Pour point of lubricating oil
- 13. Determination of relative and kinematic viscosities of lubricating oil at different temperatures
- 14. Determination of corrosion rate on mild steel by Weight loss method
- 15. Morphological studies of corrosion on mild steel by microscopic techniques

Theory: 0 Tutorial: 0Practical: 30 Project: 0 Total: 30 Hours

REFERENCES

- 1. Jeffery G.H., Bassett J., Mendham J. and Denny R.C., Vogel's Text Book of Quantitative Chemical Analysis, Oxford, ELBS, London,2012.
- 2. Shoemaker D.P. and C.W. Garland., Experiments in Physical Chemistry, Tata McGraw-Hill Pub. Co., Ltd., London, 2003.

	A
5.	
Signature of BOS	chairman MCE

U18ENI1202

FUNDAMENTALS OF COMMUNICATION-I (Common to all Branches of I Semester B.E/B/Tech Programmes)

L	Т	Р	J	С
2	0	2	0	3

Course Objectives:

- 1. To communicate effectively by using appropriate grammar and technical parlance in a range of academic scenarios.
- 2. To interpret and critically evaluate discourses related to functional English.
- 3. To disseminate professional information through appropriate means of communication.
- 4. Use appropriate vocabulary and grammar and deliver a successful oral communication.
- 5. Discuss and respond to context of written text through the efficient use of the sub-skillsof reading

Course Outcomes

Course									
After s	After successful completion of this course, the students should be able to								
Co1	Demonstrate their ability to write effectively with the optimum use of formats and writing								
	strategies of appropriate grammar and vocabulary.								
Co2	Develop active listening strategies to enhance language skills.								
Co3	Speak fluently with effective delivery strategies								
Pre-ree	quisite								

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progr	amme	Outco	omes(l	POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1									S	S		S		
CO2									S	S		S		
CO3									S	S		S		

	0
	Cl
-	Saul
	Signature of BOS chairman, MCE

Course Assessment methods:		
DIRECT	INDIRECT	
1. Continuous Assessment of Skills		
2. Assignment	1.Course-end survey	
3. Written Test		
4. End Semester Examination		
UNIT - 1		12 Hours
Glimpses of Essential English for Engineers	(General Overview) - Word Classifi	cation - Articles
- Word Formation (Prefixes & Suffixes) - Di	fferent grammatical forms of the sar	ne word
-Phrasal Verbs - Nominal Compounds.		
Listening: Listening to Weather Forecast - 1	Listening for Specific Information,	Numbers,
Time, Duration		
Speaking: Self-Introduction with goal setting	g and SWOT	
UNIT - 2		12 Hours
Sentences and its kinds (Framing Questions)	1	1
andFunction Expressions - Subject Verb Ag		ther
Tongue Influence in relation to Pronunciatio	•	
Listening: Listening to Social & Cultural Co	ontexts - Listening to Facts & Opini	ons
Speaking: Proverbs with prompts and cues.		10.11
UNIT - 3		12 Hours
Skimming & Scanning - Reading Passages, I		-
- Cloze test, Note-making - Summary Writin		Complaint
&Clarification, Invitation, Acceptance, Reje		
Listening: Listening to Scientific Inventions		
Speaking: Pair Activity (Negotiation / Pitch UNIT - 4	ing opinion)	12 Hours
	Crarbinal representation Creating	
Tenses – Voice - Reading Advertisement & Email Etiquettes, Structure, Writing and Res		auverusements -
Listening: Listening to News Story	sponding to Emans	
Speaking: Formal Presentation		
UNIT - 5		12 Hours
	l Itinanamy Danagnanh Whiting (Dag	
Discourse Markers - Preparing Checklist and		
Compare & Contrast, Narrative) - Blog Writ grammar)	ing - Floor Reading (Spennig, punc	iuail011,
Listening: Listening to Documentary		
Speaking: Integrated Speaking (Listening, V	Video & Reading)	
Speaking, integrated Speaking (Eistelling, V	nuco ex reaunig)	
	L: 60 T: 0 Total :60 Pe	riods

		-
<	5	P
and the second second	BOS chairman	1

REFERENCES	
1. Basic Communication Skills for Technology, by Andrea J Rutherfoord, Pear	son Publishers.
2. English Language Skills by Aruna Koneru, Tata Mc Graw Hills Publications	•
3 Word Power Made Easy by Norman Lewis Simon and Schuster	

- Word Power Made Easy, by Norman Lewis, Simon and Schuster.
 Effective Technical Communication, by Ashraf Rizvi, Tata Mc Graw Hills Publications.
- English Grammar in Use, by Murphy, Raymond Ernst Klett Sprachen,
 Oxford Guide to Effective Writing & Speaking by John Seely, Oxford University Press
 British Council Learn English Teens Website https://learnenglishteens.britishcouncil.org/

Saul		0
	<	S
Signature of BOS chairman MCE	Signature of	BOS chairman, MCE

ENGINEERING GRAPHICS

(Common to AE, AUE, CE, MCE, ME, EIE and EEE)

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Construct various plane curves.
CO2:	Construct projection of points and projection of lines.
CO3:	Develop projection of surfaces and solids.
CO4:	Solve problems in sections of solids and development of surfaces.
CO5:	Apply free hand sketching and concepts of isometric in engineering practice.
CO6:	Draw engineering drawing in AutoCAD with dimensions.

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W	v indicate	indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S	S									W			
CO3	S	S									М			
CO4	S	S												
CO5	S	S												
CO6	S													

Course Assessment methods:

DIRECT	INDIRECT
1.Continuous Assessment I	
2. Continuous Assessment II	
3.Assignment	
4.End semester	
PLANE CURVES, PROJECTION OF POINTS	LINES AND PLANES 10 Hours

Importance of graphics in design process, visualization, communication, documentation and drafting tools, Construction of curves - ellipse, parabola, and hyperbola by eccentricity method only. Orthographic projection of points. Projections of straight lines located in first quadrant - determination of true length and true inclinations. Projections of plane surfaces - polygonal lamina and circular lamina, located in first quadrant and inclined to one reference plane.

~	-	-0-
-	Dan	1
Signature of	of BOS chairman	n, MCE

PROJECTION AND SECTION OF SOLIDS	10 Hours						
Projection of simple solids - prism, pyramid, cylinder and cone. Drawing views when the axis							
of the solid is inclined to one reference plane. Sectioning of simple solids - prisms, pyramids, cylinder							
and cone. Obtaining sectional views and true shape when the axis of the solid is v	ertical and cutting						
plane							
inclined to one reference plane.							
DEVELOPMENT OF SURFACES, ISOMETRIC PROJECTIONS AND	10 Hours						
FREE-HAND SKETCHING							
Development of lateral surfaces of truncated prisms, pyramids,	cylinders and						
cones.Isometricprojection,Isometricscale,Isometricviewsofsimplesolids,truncatedpri	15						
cylinders and cones. Free hand sketching techniques, sketching of orthographic	views from given						
pictorial views of objects, including free-hand dimensioning. INTRODUCTION TO AUTOCAD	15 Hours						
Introduction to Drafting Software (AutoCAD) & its Basic Commands. Introduction							
systems, object selection methods, selection of units and precession. sketching – line							
polygon, rectangle and ellipse. Working with object snaps, layers and object proper							
theobjects-copy,move,trim,extend,working with object shaps, highers and object proper theobjects-copy,move,trim,extend,working with arrays,mirror,scale,hatch,filletandcha	Ū.						
ISOMETRIC VIEWS WITH AUTOCAD	15 Hours						
Building drawings – Single and double bed room house (sectional Top view only). I	ntroduction to						
Motion path animation. Isometric views of simple solid blocks.	Total (OII anna						
Theory:30Tutorial: 0Practical:30Project:0REFERENCES:	Total : 60Hours						
1. Basant Agrawal and CM Agrawal, Engineering Drawing, McGraw-Hill, New Del	Ihi, First Edition,						
2008. 2. Venugenel K. and Brokhy Beig V. Engineering Crembins, New Accounterrational	(D) Limited New						
2. Venugopal K. and Prabhu Raja V., Engineering Graphics, New Age International Delhi,2008.	(P) Linned, New						
 3. Nataraajan K.V., Engineering Drawing and Graphics, Dhanalakshmi Publisher, C 	bennai 2005						
4. Warren J. Luzadder and Jon. M. Duff, Fundamentals of Engineering Drawing, Pro-							
India Pvt. Ltd., New Delhi, Eleventh Edition, 2005.							
5. Gopalakirishna K.R., Engineering Drawing (Vol. I & II), Subhas Publications,200	01.						
 James Leach, AutoCAD 2017 Instructor, SDC Publications, 2016. 							

				A
	\leq	>~	-	Ł_
Signa	ture of	BOS ch	airman, I	MCE

1119	BCSI 1	1202

PROBLEM SOLVING AND PROGRAMMING USING C

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Acquire knowledge on different problem-solving techniques.
CO2:	Use appropriate data types and control structures for solving a given problem.
CO3:	Execute different array and string operations.
CO4:	Experiment with the usage of pointers and functions.
CO5:	Organize data using structures and unions.

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	M							W					
CO2	S	M							W	W				
CO3	S	W			W	W			W	W		W		
CO4	М	W	М	W	W	W			W	W		М		
CO5	М	W	М	W	W	W			W	W		М		
Cours	se Asses	sment n	nethods	5:										

DIRECTINDIRECT1. Continuous Assessment Test I, II
(Theory Component)INDIRECT2. Assignment (Theory Component)1.Course-end survey3. Group Presentation (Theory Component)1.Course-end survey4. Pre/Post - experiment Test/Viva; Experimental Report
for each experiment (lab component)1.Course-end survey5. Model examination (lab component)6. End Semester Examination (Theory and
lab component)1.Course-end survey

		0
	Sau	1
Signatur	e of BOS chairm	nan, MCE

STRUCTURED PROGRAMMING	6 Hours
Algorithms, building blocks of algorithms (instructions/statements, state, control flow, fu	
code, flow chart, programming language), algorithmic problem solving, simple strategies	1 0 0
(iteration). Introduction to C Programming – Operators and Expressions – Data Input and	l Output – Control
Statements	
ARRAYS AND STRINGS	6 Hours
Defining an array – Processing an array –Multidimensional Arrays Character Arit	hmetic – Defining a string
– Initialization of Strings – Reading and Writing Strings – Processing Strings –	Searching and Sorting
of Strings	
FUNCTIONS, STORAGE CLASSES	6 Hours
Definingafunction-Accessingafunction-Functionprototypes-Passingargumentstoa	afunction– Passin
functions – Function with string - Recursion – Storage classes	
POINTERS	7 Hours
Pointer Fundamentals – Pointer Declaration – Passing Pointers to a Function – Po	inters and one-
dimensional arrays – operations on pointers– Dynamic memory allocation.	
STRUCTURES AND UNIONS	5 Hours
STRUCTURES AND UNIONS	
STRUCTURES AND UNIONS Structures and Unions: Defining a Structure – Processing a Structure – User defin	

				0
	\leq	Sau	-	P.
Signa	ture of	BOS ch	airman.	MCE

	EFERENCES:						
1.	By ronSG ottfried and Jiten dar Kumar Chhabra, ``Programming with C``, Tata McGraw						
	Hill Publishing Company, Third Edition, New Delhi, 2011.						
2.		7					
	Press, 2011.						
3.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition,						
	Pearson Education,2006						
	Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.						
5.	Reema Thareja, "Programming in C", Second Edition, Oxford University Press, 2011.						
LA	AB COMPONENT CONTENTS						
LI	ST OF EXPERIMENTS	30 Hours					
1.	Writing algorithms, flowcharts and pseudo codes for simple problems.						
2.	Programs on expressions and conversions						
3.	Programs using if, if-else, switch and nested if statements						
4.	Programs using while, do-while, for loops						
5.	Programs on one dimensional arrays, passing arrays to functions and array operations						
6.	Programs using two dimensional arrays, passing 2D arrays to functions						
7.	Programs using String functions						
8.	Programs using function calls, recursion, call by value						
9.	Programs on pointer operators, call by reference, pointers with arrays						
10.	6 6						
	Theory: 0Tutorial: 0Practical:30Project: 0Total: 30He	ours					
RE	CFERENCES						
1.	Byron S Gottfried and Jitendar Kumar Chhabra, "Programming with C", Tata McGrav	vHill					
	Publishing Company, Third Edition, New Delhi, 2011.						
2.	PradipDeyand ManasGhosh, "ProgramminginC", SecondEdition,OxfordUniversityPre						
3.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pe	earson					
	Education,2006						
4.	Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.						

0	- P
Signature of BC	OS chairman, MCE

L	Т	Р	J	С	
0	0	4	2	3	

Course Objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and teamwork
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

CO1: Identify a practical problem and find a solution

CO2: Understand the project management techniques

CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
000	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1. Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce40%	
CONTENT:	·

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide thestudentswithampleopportunitytobeinnovativeindesigningandbuildingarangeofproducts from toys to robots and flying machines. In the First semester, students will focus primarily on IOT with C programming using Arduino.

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific task, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

6.	The progress of the course is evaluated based or	n reviews and final demonstration of prototype.
		Total 90 Hours

	0
\langle	P
Signature of BOS ch	airman MCE

U18VEP1501	PERSONAL VALUES	L	Т	Р	J	
U16VEF1501	(Mandatory)	0	0	2	0	

С

0

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Acquire and express Gratitude, Truthfulness, Punctuality, Cleanliness & fitness.						
CO2:	Practice simple physical exercise and breathing techniques						
CO3:	Practice Yoga asana which will enhance the quality of life.						
CO4:	Practice Meditation and get benefited.						
CO5:	Procure Self-Healing techniques for propagating healthy society						

Pre-requisite Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01												М		
CO2										S				
CO3						М								
CO4						S			М					
CO5										М				
CO6								W				S		

Course Assessment methods:

	-	0
Signatu	re of BOS ch	airman, MCE

	DIRECT	INDIRECT							
1.	Group Activity / Individual performance								
	and assignment	1.Mini project on values / Goodwill							
2.	Assessment on Value work sheet /Test	Recognition							
VAL	UES THROUGH PRACTICAL ACT	IVITIES:							
Know	ing the self: Introduction to value education	n - Need & importance of Value education –							
Know	ing the self - realization of human life - an	imal instinct vs sixth sense							
Menta	l Health: Evolution of senses - function	ning steps of human mind - Body and Mind							
coordi	ination - Analysis of thoughts – moralization	n of desires- autosuggestions - power of positive							
	ations. – Meditation and its benefits.								
Physic	cal Health: Physical body constitution- Ty	pes of food - effects of food on body and mind -							
health	y eating habits - food as medicine- self heat	aling techniques.							
		appiness - Optimistic - Enthusiasm - Simplicity-							
	ual-SelfControl-Cleanliness&personalhygi								
		llutation - Lung strengthening practices: Naadi							
	i pranayama – Silent sitting and listening to	nature – Meditation.							
	shop mode								
REFE	ERENCES								
1.		ELF — SOCRATES – PDF formatat							
	www.au.af.mil/au/awc/awcgate/army/rotc_self-	•							
	STEPS TO KNOWLEDGE: The Book of I	6							
	www.newmessage.org/wp-content/uploads/pdf								
	PROMOTING MENTAL HEALTH - Worl	-							
	www.who.int/mental health/evidence/MH Pro	·							
		NTEGRATED APPROACH TO VALUES-							
	UNESCO PDF format at <u>www.unesdoc.unesc</u>								
	PERSONALITY DEVELOPMENT By SW								
-	www.estudantedavedanta.net/Personality-Deve	<u>iopment.par</u>							

< ./	P
Signature of BOS chairman, I	MCE

SEMESTER II

Saul		0
Children and Children and Children	\leq	1
Signature of BOS chairman MCB	Signature of BOS chairma	MCE

U18MAI2201

ADVANCED CALCULUS AND LAPLACE TRANSFORMS

(Common to All branches)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Evaluate double and triple integrals in Cartesian coordinates and apply them to calculate area and volume.
CO2:	Apply various integral theorems for solving engineering problems involving cubes and rectangular parallelepipeds.
CO3:	Construct analytic functions of complex variables and transform functions from z-plane to w- plane and vice-versa, using conformal mappings.
CO4:	Apply the techniques of complex integration to evaluate real and complex integrals over suitable. closed paths or contours.
CO5:	Solve linear differential equations using Laplace transform technique.
CO6 :	Determine multiple integrals, vector differentials, vector integrals and Laplace transforms using. MATLAB.

Pre-requisite: U18MAI1201

						CO/F	PO Maj	pping						
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progra	mme O	utcom	es(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S			М				М	Μ		Μ	Μ	М
CO2	S	S			М				М	Μ		Μ	Μ	М
CO3	S	S			М				М	Μ		Μ	Μ	М
CO4	S	S			М				М	Μ		М	Μ	М
CO5	S	S			М				М	Μ		Μ	Μ	М
CO6	S	S			М				М	М		М		

Course Assessment methods:

	DIRECT	INDIRECT
1.	Continuous Assessment Test I, II	
	(Theory components)	
2.	Assignment; Group Presentation, Project report,	
	Poster preparation, Prototype or Product	
	Demonstration etc (as applicable)	
	(Theory component)	
3.	Pre/Post - experiment Test/Viva; Experimental	1.Course-end survey
	Report for each experiment (lab component)	
4.	Model examination (lab component)	
5.	End Semester Examination (Theory and	
	lab component)	

Signature of BOS chairman, MCE

MULTIPLE INTEGRALS	9 Hours				
Double integration – Cartesian coordinates – Change of order of integration - Triple Cartesian coordinates – Applications: Area as double integral and Volume as triple	0				
VECTOR CALCULUS	9 Hours				
Gradient, divergence and curl – Directional derivative – Irrotational and Solenoid vector fields -					
Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (exclu Verification of theorem and simple applications.	ding proofs) –				
ANALYTIC FUNCTIONS	9 Hours				
Functions of a complex variable - Analytic functions - Necessary conditions, Cauchy- Riemann					
equations in Cartesian coordinates and sufficient conditions (excluding proofs)-					
Properties of analytic function – Construction of analytic function by Milne Thomson method –					
Conformal mapping : $w = z + c$, cz , $1/z$ – Bilinear Transformation					
COMPLEX INTEGRATION	9 Hours				
Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's ser	ries – Singularities –				
Residues – Residue theorem – Application of residue theorem for evaluation of real	integrals – Contour				
Integration (excluding poles on the real axis).	-				
LAPLACE TRANSFORMS	9 Hours				
Definition - Properties: Superposition, Shift in t or Time Delay, Shift in s, Tim	e Derivatives,				
Time Integral-Initial Value Theorem - Final Value Theorem - Transform of periodi					
transforms-Convolution theorem-Applications: Solution of linear ordinary differen					
second order with constant coefficients.					
Theory: 30Tutorial: 0Practical: 0Project: 0	Total:30 Hours				

		_	D	
	<	Dan	1	
Signa	ture of E	BOS cha	irman, MC	E

REFERENCES:	
1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 4	1 st
Edition, 2011.	150
 Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New 	X 7
Delhi, 11th Reprint,2010.	v
3. Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill Pub. C	o I td New
Delhi, Revised Edition,2007.	0. Ltd., 110 w
 Kandasamy P., Thilagavathy K., and Gunavathy K., "Engineering Mathematics", S. 	Chand & Co
New Delhi, (Reprint)2008.	chand & co.,
 KreyzigE., "AdvancedEngineeringMathematics", TenthEdition, JohnWileyandsons, 2 	011
6. Venkataraman M.K., "Engineering Mathematics", The National Pub. Co., Chennai,	
7. Weir, MD, Hass J, Giordano FR: Thomas' Calculus Pearson education 12thED, 201	
List of MATLAB Programmes:	
LIST OF EXPERIMENTS	30 Hours
1. Evaluating double integral with constant and variable limits.	
2. Area as double integral	
3. Evaluating triple integral with constant and variable limits	
4. Volume as triple integral	
5. Evaluating gradient, divergence and curl	
6. Evaluating line integrals and work done	
7. Verifying Green's theorem in the plane	
8. EvaluatingLaplacetransformsandinverseLaplacetransformsoffunctionsincludingimpu	ılse.
9. Heaviside functions and applying convolution.	
10. Applying the technique of Laplace transform to solve differential equations.	
Theory:45Tutorial:0Practical:30Project:0Total: 75Hours	

		0
	-	P
 	chairmar	1-

U18PHI2202

ENGINEERING PHYSICS (Common to AU, ECE, CE, MEC, ME)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

	CO1: Enhance the fundamental knowledge in properties of matter and its real timeapplications relevant to various streams of Engineering and Technology
(CO2: Understand the phenomenon of heat and its transfer mechanism in engineering systems.
	CO3: Acquire essential knowledge in the concepts of quantum mechanics and itsimpact on electron microscopy.
	CO4: Analyse the concept of lasers, optical fibres, and their importance in diverse fields of engineering
	CO5: Apply the principles of acoustic and ultrasonic techniques for engineering practice
	CO6: Gain practical knowledge about the use of physics principles in a right way toimplement modern technology.

Pre-requisites:

High School Education

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs	Os Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S										М
CO2	S	М	М									S
CO3	S	М										
CO4	S	S	М	М								S
CO5	S			М								М
CO6	М	S							М			S

	0
5	ml
Signature of BOS	S chairman, MCE

Course Assessment methods

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Video presentation, Group activities, Project report, E-Poster preparation,
- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab component)

Indirect

1. Course-end survey

Theory Component content:

PROPERTIES OF MATTER	9 Hours				
Hooke's Law - Elastic moduli - Relation between elastic constants - Poisson's Ratio - Stress - Strain					
Diagram and its uses - factors affecting elastic modulus - Bending of beams -Expression for					
bending moment and depression - Cantilever - Depression of a cantilever - experimental					
determination of Young's modulus by Non uniform bending – I shape girders.					

9 Hours

THERMAL PHYSICS

Transfer of heat energy – conduction, convection and radiation – thermal expansion of solids and liquids – expansion joints – bimetallic strips – theory of heat conduction in solids – rectilinear flow of heat – determination of thermal conductivity of a bad conductor - Lee's & Charlton's disc method - Thermal Insulation – classification and properties – heat exchangers -applications – domestic refrigerator – microwave oven.

Signature of BOS chairman, MCE

MODERN PHYSICS

Planck's concept (hypothesis) - Compton effect - Expression for Compton shift (Theory and Experiment) - Concept of matter waves - Physical significance of wave function - Schrödinger's wave equation - Time independent and time dependent equation - Eigen values and Eigen function - Particle in a box (one dimension) - Scanning Electron Microscope (SEM) - Transmission Electron Microscope (TEM).

9 Hours **APPLIED OPTICS** LASERS: Absorption and emission - Spontaneous emission - Stimulated emission - Population inversion - Sources of excitation - Active medium - Resonant cavity - Einstein's theory of stimulated emission - Nd-YAG laser - CO₂ laser - Semiconductor lasers - Applications - holography, cutting, welding and drilling. FIBER OPTICS: Structure of optical fibre - principle and propagation of light in optical fibres -Numerical aperture and acceptance angle - Types of optical fibres (material, refractive index, mode) – Applications - fibre optic communication system, fibre endoscope. **ACOUSTICS AND ULTRASONICS** 9 Hours ACOUSTICS: Classification of sound - characteristics of musical sound -loudness -Weber-Fechner law -decibel - Reverberation - Reverberation time - Sabine's formula (Derivation) -Absorption coefficient and its determination - Factors affecting the acoustics of the buildings and their remedies. ULTRASONICS: Production of ultrasonic waves - Magneto-striction and Piezoelectric methods -Properties - Detection - Thermal and Kundt's tube methods, Determination of velocity of ultrasonic waves in liquids using acoustic grating – application - A, B, C- scan.

Theory: 45Tutorial: 0Practical: 0Project: 0Total: 45 Hours

Signature of BOS chairman, MCE

Lab component Contents:

LIST OF EXPERIMENTS

- 1. Non-uniform bending Determination of Young's modulus
- 2. Compound pendulum Determination of acceleration due to gravity
- 3. Spectrometer Determination of wavelength of mercury source using grating
- 4. Air wedge Determination of thickness of thin sheet

5. Semiconductor laser:

- a. Determination of wavelength of laser
- b. Determination acceptance angle and numerical aperture of an optical fibre.
- c. Determination of particle size
- 6. Melde's string Determination of frequency of a tuning fork
- 7. Determination of band gap of a semiconductor
- 8. Determination of efficiency of solar cell
- 9. Determination of thermal conductivity of a bad conductor Lee's Disc method
- 10. Determination of magnetic susceptibility of a solid material B-H curve apparatus.

Experiments for Demonstration:

- 1. Hall effect
- 2. Spin coating unit for thin film fabrication
- 3. Four probe experiment
- 4. Ultrasonic interferometer Determination of velocity of sound and compressibility of a liquid.

Theory: 0 Tutorial: 0 Practical: 30 Project: 0 Total: 30 Hours

Textbook:

1. A textbook of Engineering Physics, M N Avadhanulu, P.G. Kshirsagar and TVS Arun Murthy, S. Chand Publications 11th edition, 2018.

2. Concepts of Modern Physics, Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, 7th Edition, Mc-Graw Hill Education, New Delhi, 2017.

3. Engineering Physics, G. Senthil Kumar, VRB Publishers Ltd., Chennai. 2018.

		-	_	0
	5	>	-	Í.
Signat	ure of E	OS ch	airman,	MCE

Reference books:

- 1. Properties of matter, Brij Lal and Subrahmanyam, S. Chand & Co Ltd., New Delhi, 2014.
- Heat Thermodynamics and Statistical Physics, Brij Lal & Subrahmanyam, S. Chand & Co Ltd, New Delhi, 2012.
- 3. Quantum Mechanics, Satya Prakash, Pragati Prakashan Publishers, 2015.
- 4. Lasers: Fundamentals and Applications, Springer Science & Business Media, K. Thiagarajan, Ajoy Ghatak, 2010.
- 5. Introduction to Fibre Optics, K. Thyagarajan, Ajoy Ghatak, Second Edition, SpringerNew York Dordrecht Heidelberg London, 2010.
- Ultrasonics: Fundamentals, Technology, Applications, Second Editon, Marcel Dekker, New York, 1988.
- Practical Physics and Electronics, C. C. Ouseph, U. J. Rao, V. Vijayendran S. Viswanathan (Printers & Publishers), Pvt., Ltd. 2009
- 8. Laboratory Manual of Engineering Physics, Dr. Y. Aparna & Dr. K. Venkateswara Rao, V.G.S Publishers. 2015

				1
	<		-	P
		200	-	1
Signa	iture of	f BOS ch	airman,	MCE

U18ENI2202	FUNDAMENTALS OF COMMUNICATION II	L	Т	Р	J	С
U 18EN12202	(Common to all branches of Engineering and Technology)	2	0	2	0	3

Course Objectives:

- 1. To strengthen theory and practice of writing and speaking in academic context.
- 2. To hone written and spoken competencies leading to effective communication.
- 3. To comprehend, use and explain technical data and information.
- 4. To facilitate the application of advanced writing strategies in professional scenario.
- 5. To enhance the use of rhetorical strategies in professional situation.

Course Outcomes

After successful completion of this course, the students should be able to									
CO1	Read, listen, understand, and interpret material on technology								
CO2	Communicate knowledge and information through oral and written medium.								
CO3	Reflect on effective use of formats and tactics in writing and speaking.								

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	amme	Outco	omes(I	POs)				
008	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		М		М					S	S		S		
CO2		М		М					S	S		S		
CO3		М		М					S	S		S		

DIRECT	INDIRECT
1. Continuous Assessment of Skills	
2. Assignment	
3. Written Test	1. Course-end survey
4. End Semester Examination	

	0
5	- P
Signature of BOS of	hairman MCE

UNIT - 1	12 Hours
Describing a place, event - Preparing Brochures, Flyers, Handouts (Layout & Drafting a proposal for an event - Writing Circular, Agenda, Minutes of Meeting Listening to Presentation with Numerical Data - Listening to Presentation. Speak Connect (Narrating story).	g Listening:
UNIT - 2	12 Hours
Transcoding Graphics (Graphs, Charts, Tables, Process Writing) - Writing a Rep- Accident, College Event) - Drafting permission letter and report for Industrial Vi Training) Listening: Listening to Advertisement - Listening to Product Descriptions Speaking: Extempore	
	Hours
Reading Reviews - Review Writing (Movie, Product, Short Story, Article) - Writing a	Company Profile -
Cover Letter and Resume Writing, Creating Online Profile.	
Listening: Listening to Interviews	
Speaking: Situational Discussion (Pair Activity)	
UNIT - 4 12	Hours
Aptitude Questions Practice (Synonyms, Antonyms, Jumbled Sentences, Verbal Analogi	es) - General Interview
Questions (Goal setting, strength and weakness, contribution to society / nation, narra	ating transformation of
challenges into opportunities)	
Listening: Listening to Panel / Group Discussion	
Speaking: Event Management (Group Activity)	
UNIT - 5 12 He	ours
Persuasive and Argumentative Writing - Writing Picture perception - Problem Sc	olving
andCaselets / Case Studies	
Listening: Listening to TED / TECH Talks - Listening to Success Stories	
Speaking: Group Discussion (Interview Based)	
Reference Books:	

		1	N
-	L SUNS	1	,
	-	1	
OS ch	hairma	an,	M

ENGINEERING MECHANICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

U18MET2003

After s	After successful completion of this course, the students should be able to								
CO1:	Apply the fundamental concepts in determining the effect of forces on a particle.								
CO2:	Make use of various principles in the determination of effect of forces in a rigid body.								
CO3:	Determine the geometry dependent properties of solids and sections								
CO4:	Solve problems in static friction.								
CO5:	Identify motion and determine the velocity and acceleration of a particle.								
CO6:	Apply the principles of kinetics in solving problems in dynamics.								

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S						W						М	
CO2	S						W						М	
CO3	S						W						М	
CO4	М						W						М	
CO5	М						W						М	
CO6	М						W						М	

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	1.Course-end survey
2. Assignment	
3. End Semester Examination	

	0
\leq	P
Signature of BOS ch	airman MCE
Signature of BUS ch	airman, MCE

THEORY COMPONENT CONTENTS	
STATICS OF PARTICLES	9 Hours
Introduction - Laws of Mechanics, Parallelogram and triangular Laws of forces - G	Coplanar Forces -
Resolution and Composition of forces – Free body diagram - Equilibrium of a part	icle – Lami's
theorem – Equilibrium of a particle in space.	
STATICS OF RIGID BODIES	9 Hours
Principle of transmissibility – Moment of force about a point – Varignon's theorem	
couple – Equivalent couple – Moment of force about an axis – Coplanar non-concu	-
rigid bodies - Resultant and equilibrium - Resolution of a given force into for	orce couple system –
Equilibrium in three dimensions – Reactions and supports.	
GEOMETRY DEPENDANT PROPERTIES	9 Hours
Centre of gravity, Centre of mass and Centroid – Moment of Inertia of simple and comple formula – Radius of gyration – Polar moment of inertia – Product of inertia - Mass moment solids.	nt of Inertia of simple
FRICTION	6 Hours
Laws of friction – coefficient of friction – Dry friction – wedge friction – ladder fr	iction – rolling
resistance.	
KINEMATICS OF PARTICLES	6 Hours
Kinematics – Rectilinear and curvilinear motion – projectile motion	
KINETICS OF PARTICLES	6 Hours
Kinetics – Newton's second law – D'Alembert's Principle – Work Energy method	- Principle of
Impulse momentum – Impact of Elastic BodiesTheory: 45 Hours Tutorial: 0Practical: 0Project:0	Total:45
Theory: 45 Hours Tutorial: 0 Practical: 0 Project:0 Hours	10181:45
REFERENCES:	
1. Beer F P and Johnson E R, "Vector Mechanics for Engineers, Statics and Dynamics and Dynamic	nics", TataMc-Graw
Hill Publishing Co. Ltd., New Delhi, 2006.	
2. Hibbeller, R.C., Engineering Mechanics: Statics, and Engineering Mechanics: D)ynamics,
13th edition, Prentice Hall, 2013.	
3. J.L. Meriam & L.G. Karige, Engineering Mechanics: Statics (Volume I) and En	gineering
Mechanics: Dynamics (Volume II), 7th edition, Wiley student edition, 2013.	1
4. P. Boresi& J. Schmidt, Engineering Mechanics: Statics and Dynamics, 1/e, Cen	
5. Irving H. Shames, G. Krishna Mohana Rao, Engineering Mechanics - Statics an	d Dynamics, Fourth
Edition – PHI / Pearson Education Asia Pvt. Ltd., 2006.	Dunamias" Vilea
 Rajasekaran S and Sankarasubramanian G, "Engineering Mechanics-Statics and Publishing House Pvt. Ltd., New Delhi,2006 	Dynamics, vikas

		-0-	_
\leq		1	
 	chairma	1-	

PYTHON PROGRAMMING

(Common to All Branches)

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO1:	Classify and make use of python programming elements to solve and debug simple	K4				
	logical problems. (K4,S3)					
CO2:	Experiment with the various control statements in Python. (K3,S2)	K3				
CO3:	Develop Python programs using functions and strings.(K3,S2)	K3				
CO4:	Analyze a problem and use appropriate data structures to solve it. (K4,S3)	K4				
CO5:	Develop python programs to implement various file operations and exception	K3				
	handling. (K3,S2)					

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S			М					Μ		Μ		
CO2			Μ							Μ		Μ		
CO3			Μ							Μ		Μ	Μ	
CO4	S	S	Μ		Μ					Μ		Μ	Μ	
CO5			М							М		М		

	DIRECT	INDIRECT				
1.	Continuous Assessment Test I, II (Theory component)					
2.	Open Book Test, Assignment	1.Course-end survey				
3.	Viva, Experimental Report for each					
	Experiment (lab Component)					
4.	Model Examination (lab component)					
5.	End Semester Examination (Theory and lab					
	components)					
TH	EORY COMPONENT CONTENTS					
BA	BASICS OF PYTHON PROGRAMMING6 Hou					
	roduction-Python Interpreter-Interactive and scoressions, statements, precedence of operators,					

-	P
Signature of BC	OS chairman, MCE

CONTROL STATEMENTS AND FUNCTIONS IN PYTHON	6 Hours
Conditional (if), alternative (if-else), chained conditional (if-elif-else)-Iteration	on-while, for,
break, continue, pass - Functions - Introduction, inbuilt functions, user define	ed functions,
passing parameters, return values, recursion, Lambda functions.	
DATA STRUCTURES: STRINGS, LISTS and SETS	7 Hours
Strings-String slices, immutability, string methods and operations -Lists-creating list	s, list operations, list
methods, mutability, aliasing, cloning lists, list and strings, list and functions-list pro-	cessing-list
comprehension, searching and sorting, Sets-creating sets, set operations.	-
DATA STRUCTURES: TUPLES, DICTIONARIES	5 Hours
Tuples-Tuple assignment, Operations on Tuples, lists and tuples, Tuple as ret	urn value-
Dictionaries-operations and methods, Nested Dictionaries.	
FILES, MODULES, PACKAGES	6 Hours
Files and Exception-Text files, reading and writing files, format Operator-Mo	dules-Python
Modules-Creating own Python Modules-packages, Introduction to exception	<u> </u>
Theory: 30 Tutorial: 0 Practical:0 Project: Total: 30He	ours
REFERENCES:	
1. Ashok Namdev Kamthane, Amit Ashok Kamthane, "Programming and Prob	olem Solvingwith
Python", Mc-Graw HillEducation, 2018.	
Allen D. Deren er WThink Derthen Uters to Think I. Like a Commenter Coinstitut	
2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist	", Secondedition,
Updated for Python 3, Shroff / O'Reilly Publishers, 2016.	", Secondedition,
Updated for Python 3, Shroff / O'Reilly Publishers,2016.	
Updated for Python 3, Shroff / O'Reilly Publishers,2016.	nming inPython:
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd 	nming inPython: .,2016.
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd. Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pri 	nming inPython: .,2016. vate Ltd.,2015.
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd. Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pris. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012.
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pris. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012.
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pri Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG Charles Dierbach, "Introduction to Computer Science using Python: A Com Solving Focus", Wiley India Edition,2013. 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012.
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pri Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG Charles Dierbach, "Introduction to Computer Science using Python: A Com Solving Focus", Wiley India Edition,2013. E BOOKS AND ONLINE LEARNING MATERIALS 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012.
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pri Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG Charles Dierbach, "Introduction to Computer Science using Python: A Com Solving Focus", Wiley India Edition,2013. E BOOKS AND ONLINE LEARNING MATERIALS www.mhhe.com/kamthane/python 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012. putational Problem
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pri Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG Charles Dierbach, "Introduction to Computer Science using Python: A Com Solving Focus", Wiley India Edition,2013. E BOOKS AND ONLINE LEARNING MATERIALS www.mhhe.com/kamthane/python 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012. putational Problem , second edition,
 Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pri S. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG Charles Dierbach, "Introduction to Computer Science using Python: A Com Solving Focus", Wiley India Edition,2013. E BOOKS AND ONLINE LEARNING MATERIALS www.mhhe.com/kamthane/python Allen B. Downey, Think Python: How to Think Like a Computer Scientist 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012. putational Problem , second edition,
 Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Pri Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAG Charles Dierbach, "Introduction to Computer Science using Python: A Com Solving Focus", Wiley India Edition,2013. E BOOKS AND ONLINE LEARNING MATERIALS www.mhhe.com/kamthane/python Allen B. Downey, Think Python: How to Think Like a Computer Scientist Updated for Python 3, Shroff / O'Reilly Publishers, 2016(http://greenteapr 	nming inPython: .,2016. vate Ltd.,2015. E Learning,2012. putational Problem , second edition,

0			Y	
	>~	-	1	_
re of l	BOSC	hairma	an MCE	
	ure of	ure of BOS c	ure of BOS chairma	ure of BOS chairman, MCE

- 1. Implement simple python programs using interactive and scriptmode.
- 2. Develop python programs using id() and type()functions
- 3. Implement range() function inpython
- 4. Implement various control statements inpython.
- 5. Develop python programs to perform various string operations like concatenation, slicing, Indexing.
- 6. Demonstrate string functions using ython.
- 7. Implement user defined functions usingpython.
- 8. Develop python programs to perform operations onlist
- 9. Implement dictionary and set inpython
- 10. Develop programs to work with Tuples.
- 11. Create programs to solve problems using various data structures inpython.
- 12. Implement python program to perform fileoperations.
- 13. Implement python programs using modules and packages

Theory: 0	Tutorial: 0	Practical: 30	Project:0	Total: 30Hours			
ONLINE C	OURSES AND V	/IDEO LECTURES	•				
http://nptel.a	ic.in						
https://www.edx.org/course/introduction-to-python-fundamentals-1							
https://www	.edx.org/course/co	omputing-in-python-i	i-control-structur	res-0			
https://www	.edx.org/course?s	earch_query=Compu	ting+in+Python+	-III%3A+Data+Structures			

	0
5	-1
Signature of BOS ch	airman, MCE

U18INI2600		L	Т	P	J
U 1011N12000	ENGINEERING CLINIC - II	0	0	4	2

Course Objectives:

 \Box To help the students look into the functioning of simple to complex devices and systems

С

3

- \Box To enable the students to design and build simple systems on their own
- □ To help experiment with innovative ideas in design and teamwork
- \Box To create an engaging and challenging environment in the engineering lab

Course Outcomes

CO1	Identify a practical problem and find a solution
CO2	Understand the project management techniques
CO3	Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

1 11	-													
						CO/I	PO M	appin	g					
	(S/M	/W in	dicate	s stren	igth of	corre	lation) S	S-Stroi	ng, M-I	Mediun	n, W-W	/eak	
COs						Progra	amme	Outco	omes(l	POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1.Course Exit Survey
2. Workbook report10%	_
3. Demonstration & Viva-voce40%	
Content:	

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the Second semester, students will focus primarily on Raspberry pi-based controllers with Python programming

GUIDELINES:

1. Practical based learning carrying credits.

2. Multi-disciplinary/ Multi-focus group of 5-6students.

3. Groups can select to work on a specific tasks, or projects related to real world problems.

4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group

as well as individual students.

5. Students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

		_		4_
	\leq	>~	-1	60
Signa	ature of E	BOS cha	airman, M	CE

INTERPERSONAL VALUES

(Mandatory course)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After s	successful completion of this course, the students should be able to
CO1:	Develop a healthy relationship & harmony with others
CO2:	Practice respecting every human being
CO3:	Practice to eradicate negative temperaments
CO4:	Acquire Respect, Honesty, Empathy, Forgiveness and Equality
CO5:	Practice Exercises and Meditation to lead a healthy life
CO6:	Manage the cognitive abilities of an Individual

Pre-requisite

U18VEP1501 / PERSONAL VALUES

						CO/F	PO Ma	pping	Г Э					
	(S/N	A/W ir	ndicate	s strer	ngth of	correl	lation)	S-	Strong	g, M-M	edium,	W-Wea	k	
COs						Progra	amme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1										S				
CO2									S					
CO3											М	S		
CO4						М								
CO5												М		
CO6											М			

DIRECT	INDIRECT
1. Group Activity/Individual performance	1. Mini project on values / Good will
	Recognition
2. Assessment on Value work sheet /Test	
VALUES THROUGH PRACTICAL ACTIVIT	IES:
INTRODUCTION	
Introduction to interpersonal values – Developing	harmony with others – Healthy relationship –
Need&importanceofinterpersonalvaluesfordealing	withothersandteam-Effective
communication with others.	
MANEUVERING THE TEMPERAMENTS	
From Greed To Contentment - Anger To Toleranc	e - Miserliness To Charity – Ego To Equality -
Vengeance To Forgiveness.	

		A-
\leq	an	1
Signature of BC	OS chairm	an. MCE

CORE VALUE : TRUTHFULNESS	
Honesty –Helping–Friendship – Brotherhood – Toleran	nce – Caring & Sharing – Forgiveness – Charity –
Sympathy — Generosity – Brotherhood - Adaptability.	
PATHWAY TO BLISSFUL LIFE :	
Signs of anger – Root cause – Chain reaction – Evi worries – Techniques to eradicate worries.	il effects on Body and Mind – Analyzing roots of
THERAPEUTIC MEASURES:	
Spine strengthening exercises - Nero muscular breameditation.	athing exercises - Laughing therapy - Mindfulness.

Workshop mode

REFERENCES: INTERPERSONAL SKILLS Tutorial (PDF Version) - Tutorials Point www.tutorialspoint.com/interpersonal_skills/interpersonal_skills_tutorial.pdf INTERPERSONAL RELATIONSHIPS AT WORK - KI Open Archive – Karolinska www. publications.ki.se/xmlui/bitstream/handle/10616/39545/thesis.pdf?sequence=1 VALUES EDUCATION FOR PEACE, HUMAN RIGHTS, DEMOCRACY – UNESCO www.unesdoc.unesco.org/images/0011/001143/114357eo.pdf MANEUVERING OF SIX TEMPERAMENTS - Vethathiri Maharishi www.ijhssi.org/papers/v5(5)/F0505034036.pdf

5. THE BLISS OF INNER FIRE: HEART PRACTICE OF THE SIX ... - Wisdom Publications - www.wisdompubs.org/sites/.../Bliss%20of%20Inner%20Fire%20Book%20Preview.pd..

	A
\leq	Saul
Signature of B	OS chairman, MCE

SEMESTER III

	-	A
5	au	1
Signature of BC	S chairman.	MCE

PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS (Common to AE/AUE/CE/ME/MCE/EEE)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Develop a partial differential equation and solve certain types of partial differential equations.	K2
CO2:	Identify how to find the Fourier Series and half range Fourier Series of a function	K2
CO3:	Describe one dimensional wave equation, one dimensional heat equation in steady state using. Fourier series	K3
CO4:	Apply Fourier Series to solve the steady state equation of two-dimensional heat equation in Cartesian coordinates.	K2
CO5:	Apply the Fourier transform, Fourier sine and cosine transform to certain functions and use. Parseval's identity to evaluate integrals.	K3
CO6:	Evaluate Z – transform for certain functions. Estimate Inverse Z – transform of certain functions and to solve difference equations using them.	K2

Pre-requisite

Nil

CO/PO Mapping

(S/M/W	indica	tes strei	ngth of	correla	ation)	S-St	rong, N	1-Medi	um, W	-Weak				
COs						Progra	imme C	Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М			М				М	М		S	М	М
CO2	S	М		М									W	W
CO3	S	S	S		S				М	М		S	W	W
CO4	S	М	М									М	W	W
CO5	S	М	М		S								W	W
CO6	S	S			S				М	М		S		

< Signature of BOS chairman, MCE

DIRECT	INDIRECT	
1. Continuous Assessment Test I,II	1.Course end survey	
2. End Semester Examination		
3. Assignment		
PARTIAL DIFFERENTIAL EQUATIONS	I	9+3 Hours
Formation of partial differential equations by elimin		
Solution of PDE by variable separable method – Solu		
equations (excluding reducible to standard types) -		Homogeneous
partial differential equations of second and higher or	ler with constant coefficients.	
FOURIER SERIES		9+3 Hours
Dirichlet's conditions – General Fourier series – Odd range cosine series – Parseval's identity – Harmonic		eries – Half
BOUNDARY VALUE PROBLEMS – ONE DIME	ENSIONAL EQUATIONS	5+2 Hours
Classification of second order quasi linear partial diff	erential equations –Solution of one-dim	ensional wave
equation – One dimensional heat equation (excluding	insulated ends) – Fourier series solution	ns in Cartesian
coordinates.		
BOUNDARY VALUE PROBLEMS – TWO DIM		4+1 Hours
Steady state solution of two-dimensional heat equati	on (Insulated edges excluded) - Fourier	series
solutions in Cartesian coordinates.		1
FOURIER TRANSFORM		9+3Hours
Statement of Fourier integral theorem – Infinite Four		forms –
Properties – Transforms of simple functions – Conve	olution theorem – Parseval's identity.	
Z –TRANSFORM		9+3 Hours
Z-transform - Elementary properties - Convolution th		
fractions, residues and convolution theorem) – Soluti	on of difference equations using Z - tra	nsform.
Theory:45Hours Practical:15Hours	Total	Hours: 60
REFERENCES:		
1. Grewal B.S., "Higher Engineering Mathematic		h Edition.2014.
2. Veerarajan. T., "Transforms and Partial Difference of the second seco		
Education Pvt. Ltd., New Delhi, Second reprint		
3. Kandasamy P., Thilagavathy K. and Gunavath		ne
III",S.Chand & Company ltd., New Delhi,20064. Ian Sneddon., "Elements of partial differential	equations" McGraw – Hill New Delhi	2003
5. Arunachalam T., "Engineering Mathematics II		
5. In anacharann I., Engineering Wathematics II		

	0		P
Signatu	ure of BOS c	hairma	n, MCE

ELECTRONIC DEVICES AND CIRCUITS

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Use passive elements and basic theorems to solve electric circuits.	K2
CO2:	Understand the basic principles of semiconductor devices.	K2
CO3:	Use diode to construct regulators, rectifiers, and other applications.	K3
CO4:	Analyze small signal amplifiers and oscillators constructed using transistors.	K2
CO5:	Apply op-amp to construct various applications.	K3

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO6 PO7 PO8 PO1 PO2 PO3 PO4 PO5 PO9 PO10 PO11 PO12 PSO1 PSO2 S Μ **CO1** S Μ **CO2** Μ S S S М **CO3** S Μ S S **CO4** Μ S S S М CO5

DIRECT	INDIRECT	
1. Continuous Assessment Test I,II	1.Course end survey	
2. End Semester Examination		
3. Assignment		
CIRCUIT THEORY INTRODUCTION		9 Hours
Network Theorems: Kirchhoff's laws – Thevenin's t Superposition theorem – Maximum power transfer th		
THEORY OF SEMICONDUCTOR DEVICES		9 Hours
PN junction - diode equation (Derivation not require	d) – forward and reverse bias – Diod	e dc and ac
resistances - Zener diode-Bipolar Junction Transisto	r-CE,CB and CC configurations-Biasin	ng of a
transistor; fixed bias, self-bias - FET - Common sou	rce and drain characteristics of JFET and	d MOSFET.

		A
5.		L
Signature of BOS	chairman,	MCE

APF	PLICATION OF DIODES		9 Hours
Half	f Wave rectifier and Full Wave rectifiers – Filters with Capacitor and	d Inductors - Clippers and Cla	ampers –
Volt	tage Multipliers - Voltage regulators - Zener, series and shunt types		
AM	IPLIFIERS AND OSCILLATORS		9 Hours
Con	nmon Emitter configuration - h parameter model for low frequencies	s – Small signal amplifiers -c	ascading
	blifiers, differential amplifier – Oscillators – Barkhausen stability cri	terion - Hartley oscillators an	d Colpitts
osci	illators		
	ERATIONAL AMPLIFIERS		9 Hours
	al characteristics - Inverting, Non-inverting - summer - Comparato		Schmitt
0	ger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable 1		
	eory:45 Hours Practical:30Hou	rs Total Hours	s: 75
	FERENCES:		
1.	Agarwal, Anant, and Jeffrey H. Lang. Foundations of Analogan		
	Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2	005. ISBN: 978155860735	4(Unit: 1,
	2, 3, 4, 5)		
2.	Albert Malvinoand BatesJ., Electronic Principles, Tata McC	Graw-HillPub. Company L	td., 9th
	Edition, 2020		
3.	MillmanJ., HalkiasC.C. and SatyabrataJit, Electronic Devices a	ndCircuits,TataMcGrawHi	ill,
	New Delhi, 2nd edition, 2008.		
4.	Thomas L. Floyd, Electronic Devices, Pearson Education A		
5.	WilliamHayt, KemmerlyJ. and Durban S.M., Engineering C	Circuit Analysis, 9th Edition	n, Mc
-	GrawHill Education, 2020.		
6.	Sudhakar, Shyammohan and Palli S., Circuits and Network	s: Analysis & Synthesis, Ta	ata McGrav
	Hill, New Delhi, 5th edition, 2015.		·
7.	SalivahananS., SureshkumarN. And VallavarajA., Electron		ita Mc
0	Graw Hill publishing company, New Delhi, 4 th edition, 201		dition
8.	Roy ChowdhuryD. and Jain ShailB., Linear Integrated Circ 2017.	unis, NewAgeInt.Pub.,4the	altion,
	2017.		
	IST OF EXPERIMENT:		
	1. Characteristics of PN junction diode and Zener diode using		SIM.
	2. Input and Output characteristics of BJT using breadboard		
	3. Characteristics of JFET using breadboard and MULTISIM		
	4. Frequency response of CE amplifier using breadboard and	MULTISIM	
	5. Clipper and Clamper using breadboard and MULTISIM		
	6. Phase shift and Wein Bridge oscillators using OP-AMP us	6	ISIM
	7. Astable multivibrator using OP-AMP using breadboard an		
	8. Voltage Regulator (Zener diode, Transistor series and shur	\mathbf{u}) using breadboard and N	IULIISIM

- 8. Voltage Regulator (Zener diode, Transistor series and shunt) using breadboard and MULTISIM
- 9. Half-wave and Full-wave Rectifier with and without filter using breadboard and MULTISIM
- 10. Printed Circuit Board design using software for simple circuits.

<	- P
Signature of E	OS chairman, MCE

ELECTRICAL MACHINES

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Describe the construction, principle of operation and performance of DC motors.	K2				
CO2:	Elucidate the construction, principle of operation and performance of Induction Machines	K2				
CO3:	Summarize the speed control methods of electrical machines	K2				
CO4:	Explain the construction, principle of operation and performance of special machines and Permanent magnet machines.	K2				
CO5:	Select suitable motor for simple applications	K3				

Pre-requisite Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	umme (Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										М	
CO2	М												М	
CO3	М												М	
CO4	М		М										М	
CO5											М		М	

DIRECT	INDIRECT					
1. Continuous Assessment Test I,II 1.Course end survey						
2. End Semester Examination						
3. Assignment						
DC MACHINES	DC MACHINES 12 Hours					
DC machines: Principle of working -Construction, -Types of DC machines based on						
construction-Back emf, voltage equations, torque equ	ation-Characteristics of DC motors -					
Speed control of DC series and Shunt motors -Armat	ure and Field control.					
AC MACHINES 12 Hours						
Three phase induction motor: Principle of working -construction - Production of RMF - Torque-slip						
characteristics, torque equation - cogging – crawling - Speed control of three phase induction motor -						
Voltage Control-Voltage/frequency control-slip power recovery scheme						

	-	-	-6)
0:	5		1	-
Signat	ure of BC	JS chair	man, MO	æ

PERMANENT MAGNET MACH	IINES	6 Hours
	ple of operation -Permanent magnet and va s: Construction, principle of operation.	ariable reluctance type: Construction,
SPECIAL MACHINES		6 Hours
Stepper motors: Construction, princ. Construction of AC and DC servo M	iple of operation Servo motors: Types of so lotors	ervo motors -Servo Mechanism-
SELECTION OF A MOTOR		9 Hours
	a motor - Motor Application Requirements nd Lubrication tests – trends in test auton	
Theory:45 Hours	Practical:30Hours	Total Hours: 75
REFERENCES:		
 Theraja B.L and Theraja A.K machines, student edition, S. JANARDANAN, E.G. SPEC Nagrath I J and Kothari DP., " Pillai SK, "A first course on E Stephen Chapman, "Electric M Computer Engineering 7th ed 	Gerhard Henneberger, "Electrical Mae	ia, PHI Learning, 2014. McGraw-Hill, New Delhi, 2017. , 3 rd edition 2012. Ill Series in Electrical and
LIST OF EXPERIMENT:		
1. Study of Two point starter		
2. Study of Three point starter		
3. Load test on DC series motor		
4. Load test on DC Shunt motor		
5. Speed control of DC shunt mo		
6. Speed control of DC shunt mo	ě	
7 Open circuit characteristics of	DC Generator	

8. Load Test on Three Phase Squirrel Cage Induction motor9. Speed control of three phase slip ring induction motor

0	- P
Signature of BC	OS chairman, MCE

MECHANICS OF SOLIDS

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Recognize the elastic response of the materials and calculate the stresses and deflection in simple and compound bars	K2
CO2:	Calculate the thermal stresses and the material response due to temperature variations	K2
CO3:	Find the stresses in bi-axial load system and strain energy for different loads	K2
CO4:	Develop the shear force, bending moment diagram and locate maximum values of shear force and bending moments induced in various types of beams.	K2
CO5:	Estimate the slope and deflection of beams under various loading conditions and crippling load for a column with different end conditions.	K3
CO6:	Determine the power transmitting, torque carrying capacities of the circular shafts and required thickness of the pressure vessel for a given internal pressure.	K2

Pre-requisite U18MET2001 Engineering Mechanics

						CO/P	O Map	oping						
	((S/M/W	indica	ates stre	ength of	f correl	ation)	S-S	trong, N	M-Medi	ium, W	-Weak		
COs						Progra	mme C	Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										S	М
CO2	S		М										S	М
CO3	М		М										S	
CO4	М		М										S	W
CO5	S		М										S	W
CO6	S		S										S	М

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	1.Course end survey
 Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	

	-		<u>A</u>
5	an	1	50
Signature of B	DS chair	man, M	CE

ELASTIC RESPONSE OF MATERIALS	12 Hours
Introduction to elastic response - stresses (tensile, compressive, shear & bending) & stren	ngth – strain and
deformation, stress-strain curve for steel. Stresses and deformation of simple and compound	l bars under axial
loads - Elastic constants and their relations -Thermal stresses and creep.	
BI-AXIAL STRESSES AND STRAIN ENERGY	12 Hours
Principal stresses - Introduction, significance, calculation of principal stresses - Mohr's cir	
principal stresses. Strain energy in gradually applied loads, suddenly applied loads and Imp	pact loads
STRESSES IN BEAMS	12 Hours
Types of beams: supports and loads – Cantilever, simply supported and Overhanging beam and bending moment diagrams. Stresses in beams – theory of simple bending and its applic conditions effect of shape of beams on stress induced - Bending stress and flexural strengt	ability for actual
DEFLECTION OF BEAMS	12 Hours
Elastic curve- Evaluation of beam: Double integration method & Macaulay's method. Col	umns: End
conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra	
for columns	
TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS	12 Hours
TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress	s – Bars of solid
Analysis of torsion of circular bars - shear stress distribution - twist and torsional stiffness	s – Bars of solid sses.
Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress	s – Bars of solid sses.
Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stressTheory:45HoursPractical:30HoursTotalHour	s – Bars of solid sses. s:75
Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stressTheory:45HoursPractical:30HoursTotalHourREFERENCES:	s – Bars of solid sses. s:75
Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stressTheory:45HoursPractical:30HoursTotalHourREFERENCES:Image: Constraint of the stress of the str	s – Bars of solid sses. s:75 ompany, 2014.
Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress Theory:45Hours Practical:30Hours REFERENCES: 1. Ramamrutham S, "Strength of materials", 14 th Edition, Dhanpat Rai Publishing Control	s – Bars of solid sses. s:75 ompany, 2014.
Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress Theory:45Hours Practical:30Hours TotalHours REFERENCES: 1. Ramamrutham S, "Strength of materials", 14 th Edition, Dhanpat Rai Publishing Co. 2. Rattan S S, "Strength of materials", 3 rd edition, McGraw Hill, 2016. 3. Ferdinand Beer and Russell Johnston Jr., "Mechanics of materials", 8 th edition, Tat	s – Bars of solid sses. s:75 ompany, 2014. ta McGraw Hill

				A
	\leq	Sau	-	P_
Signa	ture of I	BOS cha	airman, N	ICE

U18MCT3104

FLUID MECHANICS AND THERMAL SCIENCES

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Describe the properties of fluids and its importance in selection of fluid for suitable application.	K2
CO2:	Apply the concept of fluid statics to determine the pressure and forces on plane and curved surfaces.	K2
CO3:	Differentiate the types of flow with its characteristics and also calculate the flow rate by applying concept of fluid kinematics and dynamics.	K2
CO4:	Identify the major and minor losses involved in the fluid flow through pipes.	K2
CO5:	Explain the concept of boundary layer and methods of preventing the boundary layer separation.	K3
CO6:	Summarize the laws of thermodynamics and concept of heat transfer mechanisms in energy interactions.	K2

Pre-requisite

Nil

						CO/I	PO Ma	pping						
		(S/M/V	V indic	ates str	ength c	of correl	lation)	S-S	trong, l	M-Medi	um, W-	Weak		
COs						Progra	amme (Dutcom	es(POs	3)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М													
CO2	S													W
CO3	S	М												W
CO4	S	S												W
CO5	W													
CO6	М				W									W

DIRECT	INDIRECT
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1.Course end survey
PROPERTIES OF FLUIDS AND FLUID STATICS	14 Hours
Fluid-definition, distinction between solid and fluid-U density, specificweight, specificvolume, specificgravit	

		A
1	Sau	1
Signatur	e of BOS chai	irman, MCE

	sion. Fluid statics: Pascal law - Hydrostatic l	
	es - Forces on immersed plane and curved su	urfaces – Buoyancy – Meta-
centre - Stability of floating and subm		
FLIUD KINEMATICS AND FL		10 Hours
Fluid Kinematics – Types of flow	- velocity and acceleration - continuity ed	quation. Fluid dynamics -
equations of motion - Euler's equat	tion along streamline - Bernoulli's equati	ion – Applications - Venturi
meter, Orifice meter, Pitot tube		
FLUID FLOW AND BOUNDAR	RY LAYER CONCEPTS	12 Hours
Hagen Poiseuille Equation - Darcy	Welsbach equation - Friction factor – M	Iajor and minor energy losses -
Flow through pipes in series and in	n parallel. Types of Boundary layer thick	ness – Boundary layer
separation – Methods of preventing	g the boundary layer separation.	
LAWS OF THERMODYNAMIO	CS	12 Hours
Zeroth law of thermodynamics – M	Aeasuring temperature, Thermal expansion	on, absorption of heat by solids
and liquids. First law of thermodyr	namics – First law applied to flow and no	on-flow process. Second law of
thermodynamics – Entropy		-
		10.11
HEAT TRANSFER MECHANIS	SMS	12 Hours
	SMS ction – Fourier's Law, thermal resistance	
Heat transfer mechanisms: Conduc	ction - Fourier's Law, thermal resistance	. Convection – Newton's law of
Heat transfer mechanisms: Conduc		. Convection – Newton's law of
Heat transfer mechanisms: Conduc cooling. Radiation – Wien's law, K	ction - Fourier's Law, thermal resistance	. Convection – Newton's law of
Heat transfer mechanisms: Conduc cooling. Radiation – Wien's law, k NTU – Fins.	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. I	. Convection – Newton's law of Heat exchangers – LMTD –
Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES:	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. I	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60
Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: 1. White FM., "Fluid Mechani	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60
Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: 1. White FM., "Fluid Mechani	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours cs", 6 th Edition, Tata McGraw-Hill, New	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60
Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: 1. White FM., "Fluid Mechani 2. CengelYA., CimbalaJM.,"Fl education, 2019.	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours cs", 6 th Edition, Tata McGraw-Hill, New	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher
Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: 1. White FM., "Fluid Mechani 2. CengelYA., CimbalaJM.,"Fl education, 2019.	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours cs", 6 th Edition, Tata McGraw-Hill, New luidMechanics",4 th Edition, McGraw Hil ulics and Fluid Mechanics Including Hyd	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher
 Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: White FM., "Fluid Mechani CengelYA., CimbalaJM.,"Fluid conduction, 2019. Modi PN., Seth SM., Hydrat Publisher and Distributors, 2 	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours ics", 6 th Edition, Tata McGraw-Hill, New luidMechanics",4 th Edition, McGraw Hil ulics and Fluid Mechanics Including Hyd 2019	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher draulics Machines. India, Amit
 Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: White FM., "Fluid Mechani CengelYA., CimbalaJM.,"Fluid conduction, 2019. Modi PN., Seth SM., Hydrat Publisher and Distributors, 2 	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours cs", 6 th Edition, Tata McGraw-Hill, New luidMechanics",4 th Edition, McGraw Hil ulics and Fluid Mechanics Including Hyd	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher draulics Machines. India, Amit
 Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: White FM., "Fluid Mechani CengelYA., CimbalaJM.,"Fluid Mechani Modi PN., Seth SM., Hydrau Publisher and Distributors, 2 Bansal RK., "Fluid Mechani Ltd.,New Delhi, 2011. 	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours ics", 6 th Edition, Tata McGraw-Hill, New luidMechanics",4 th Edition, McGraw Hil ulics and Fluid Mechanics Including Hyd 2019 ics and Hydraulics Machines", 9 th edition	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher draulics Machines. India, Amit n, Laxmi publications (P)
 Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: White FM., "Fluid Mechani CengelYA., CimbalaJM.,"Fluid Mechani Modi PN., Seth SM., Hydrau Publisher and Distributors, 2 Bansal RK., "Fluid Mechani Ltd.,New Delhi, 2011. 	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours ics", 6 th Edition, Tata McGraw-Hill, New luidMechanics",4 th Edition, McGraw Hil ulics and Fluid Mechanics Including Hyd 2019	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher draulics Machines. India, Amit n, Laxmi publications (P)
 Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: White FM., "Fluid Mechani CengelYA., CimbalaJM., "Fluid Mechani CengelYA., Seth SM., Hydrat Publisher and Distributors, 2 Bansal RK., "Fluid Mechani Ltd., New Delhi, 2011. Ramamirtham S., "Fluid Mechani Sons, Delhi, 2006. 	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours ics", 6 th Edition, Tata McGraw-Hill, New luidMechanics",4 th Edition, McGraw Hil ulics and Fluid Mechanics Including Hyd 2019 ics and Hydraulics Machines", 9 th edition	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher draulics Machines. India, Amit h, Laxmi publications (P) hes", Dhanpat Rai and
 Heat transfer mechanisms: Conduct cooling. Radiation – Wien's law, K NTU – Fins. Theory:45 Hours REFERENCES: White FM., "Fluid Mechani CengelYA., CimbalaJM., "Fluid Mechani CengelYA., Seth SM., Hydrat Publisher and Distributors, 2 Bansal RK., "Fluid Mechani Ltd., New Delhi, 2011. Ramamirtham S., "Fluid Mechani Sons, Delhi, 2006. Nag P.K., "Engineering them 	ction – Fourier's Law, thermal resistance Kirchhoff's law, Stefan-Boltzmann law. H Tutorials:15Hours cs", 6 th Edition, Tata McGraw-Hill, New luidMechanics",4 th Edition, McGraw Hil ulics and Fluid Mechanics Including Hyc 2019 ics and Hydraulics Machines", 9 th edition	. Convection – Newton's law of Heat exchangers – LMTD – TotalHours:60 / Delhi, 2018. Il higher draulics Machines. India, Amit h, Laxmi publications (P) nes", Dhanpat Rai and ion, 2017.

	-	-	-)
Signa	ture of BC	OS chai	rman, M	CE

U18INI3600

ENGINEERING CLINIC - III

L	Т	Р	J	С
0	0	4	2	3

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Identify a practical problem and find a solution.	K2
CO2:	Understand the project management techniques	K2
CO3:	Demonstrate their technical report writing and presentation skills	K2

Pre-requisite

Nil

CO/PO Mapping

	((S/M/W	indica	ates stre	ength of	f corre	lation)	S-St	trong, N	M-Medi	um, W	-Weak		
COs						Progra	imme (Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	
2. Workbook report 10%	1. Course Exit Survey
3. Demonstration & Viva-voce 40%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines. In the third semester, students will focus primarily on design project combining concepts learnt in Engineering clinics I and II

	A-
5	- 1
Signature of BOS c	hairman MCE

GUIDELINES:

1. Practical based learning carrying credits.

2. Multi-disciplinary/ Multi-focus group of 5-6 students.

3. Groups can select to work on a specific task, or projects related to real world problems.

4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.

5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

7. Multi-disciplinary/ multi-focus group of 5-6 students.

Total Hours: 90

	0
\langle	P
Signature of BOS of	hairman MCE

	FAMILY VALUES	L	Т	Р	J	С
U18VEP3503	(Mandatory)	0	0	2	0	0

Course Outcomes

After s	successful completion of this course, the students should be able to
CO1:	Develop skills in maintaining the harmony in the family.
CO2:	Create impulsive activities for healthy family
CO3:	Be receptive to troubled Individuals
CO4:	Gain healthy life by practicing Kundalini Yoga & Kayakalpa
CO5:	Possess Empathy among family members.
CO6:	Reason the life and its significance

Pre-requisite

- 1. U17VEP1501 / PERSONALVALUES
- 2. U17VEP2502 / INTERPERSONALVALUES

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO10 PO11 PO12 PSO1 PO9 PSO2 S **CO1** М **CO2** Μ **CO3 CO4** S CO5 S CO6 М

DIRECT	INDIRECT
1. Group Activity / Individual performance	1. Mini project on values / Goodwill Recognition
and assignment	
2. Assessment on Value work sheet /Test	
Values through Practical activities:	
1. Family system: Introduction to Family Values	– elements of family values – Adjustment,
Tolerance, Sacrifice - Family structure in different	t society – work life balance.
2. Peace in Family :Family members and their respo	onsibility - Roles of parents, children, grant parents
Respectable women hood	

Signature of BOS chairman, MCE

- 3. **Core value: Empathy:** Unconditional love Respect Compassion sacrifice–Care &share -helping emotional support- hospitality cleanliness
- 4. **Blessing:** Blessing methods Vibration effect Benefits Reason for misunderstanding in the Family and resolution through blessings.
- 5. **Healthy Family:** Good relationship with neighbors Counseling Simplified Kundalini Yoga -Kaya Kalpa Yoga

	Workshop mode
	REFERENCES
1.	FAMILY - www.download.nos.org/331courseE/L-13%20FAMILY.pdf
2.	FRAMEWORKFOR ACTIONON VALUESEDUCATION IN EARLY
	CHILDHOOD – UNESCO – PDF –
	www.unesdoc.unesco.org/images/0012/001287/128712e.pdf
3.	TRUE FAMILY VALUES Third Edition – Tparents Home
4.	www.tparents.org/Library/Unification/Books/TFV3/_TFV3.pdf
5.	FAMILY VALUES IN A HISTORICAL PERSPECTIVE - The Tanner Lecture son
	www.tannerlectures.utah.edu/_documents/a-to-z/s/Stone95.pdf
6.	PROBLEMS OF INDIA'S CHANGING FAMILY AND STATE the United Nations -
	www.un.org/esa/socdev/family/docs/egm09/Singh.pdf

				0
	\leq	Sau	-1	1
Signa	ture of E	BOS cha	airman, N	ICE

SEMESTER IV

		-		-0-
	<	>~	-	1
Signa	ture of E	OS ch	airman	MCE

U18MAT4101

NUMERICAL METHODS AND

PROBABILITY

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After	After successful completion of this course, the students should be able to									
CO1:	Apply the concepts of various numerical techniques for solving non-linear equations and systems of linear equations.									
CO2:	Analyze and apply the knowledge of interpolation and determine the integration and differentiation of the functions by using the numerical data.									
CO3:	Predict the dynamic behavior of the system through solution of ordinary									
CO4:	differential equations by using numerical methods.									
CO5:	Apply the concepts of probability, conditional probability and total probability.									
CO6:	Analyze random or unpredictable experiments and investigate important features of random experiments.									
Due no	autoita									

Pre-requisite

Nil

CO/PO Mapping S-Strong, M-Medium, W-Weak (S/M/W indicates strength of correlation) Programme Outcomes COs (POs) PO8 PO9 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO10 PO11 PO12 PSO2 PSO1 **CO1** S S **CO2** S S CO3 S S Μ **CO4** S Μ Μ S **CO5** S S Μ Μ Μ **CO6** S S

< Signature of BOS chairman, MCE

Course Assessment methods: DIRECT **INDIRECT** 1. Continuous Assessment Test I.II 2. Assignment: Group Presentation, Project report, 1. Course Exit Survey Prototype or Product Demonstration etc. (as applicable) End Semester Examination 3. SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS 9+3Hours Linear interpolation method – Iteration method – Newton's method – Solution of linear system By Gaussian elimination and Gauss-Jordan Methods-Iterative methods: GaussJacobiandGauss-Seidel methods - Inverse of matrix by Gauss - Jordan method - Eigenvalues of a matrix by Power method. INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL 9+3Hours **INTEGRATION** Lagrange's and Newton's divided difference interpolation – Newton's forward and backward difference interpolation – Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal and Simpson's rules. 9+3Hours NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Single step methods: Taylor's series method – Euler and Improved Euler methods for solving first order equations – Fourth order Runge – Kutta method for solving first and second order equations – Multistep method: Milne's predictor and corrector method. PROBABILITY 3+1Hours Measures of central tendency: Mean Median and Mode - Measures of variation - Range, standard deviation, Mean deviation and coefficient of variation - Correlation and Regression: Karl Pearson's coefficient of correlation - Rank Correlation - Regression lines. 6+2Hours **RANDOM VARIABLES** Random variable - Distribution function - properties - Probability mass function - Probability density function – moments and moment generating function – properties. STANDARD DISTRIBUTIONS 9+3Hours Binomial, Poisson and Normal distributions – Moments, Moment Generating functions and properties for the above distributions - Fitting of Binomial and Poisson distributions. Tutorials: 15Hours Total: 60Hours **Theory:45Hours REFERENCES:** 1. Grewal, B. S. Numerical Methods in Engineering and Science: C, C++, and Matlab. India, Mercury Learning and Information, 2018. 2. Gerald, Curtis F. Applied Numerical Analysis. India, Pearson Education, 2004. 3. Chapra, Steven C., et al. Numerical Methods for Engineers. Singapore, McGraw-Hill Education, 2015. 4. Miller, Irwin, et al. Miller & Freund's Probability and Statistics for Engineers. United Kingdom, Pearson, 2017. 5. Myers, Sharon L., et al. Probability & Statistics for Engineers & Scientists, EBook, Global Edition. United Kingdom, Pearson Education, 2016.

$\leq \mathcal{A}$
Signature of BOS chairman, MCE

Course Outcomes

After successful completion of this course, the students should be able to								
CO1:	Describe the concept of fluid power and different types of fluid power systems.	K2						
CO2:	Explain the working principles of different types of hydraulic pumps.	K2						
CO3:	Discuss the working principles of different types of hydraulic actuators.	K2						
CO4:	Summarize the working principles of compressors and pneumatic components.	K2						
CO5:	Design hydraulic and pneumatic circuits for simple applications.	K3						
CO6:	Explain the concept of fluid logic control systems, maintenance of fluid power systems.	K2						

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	М													М
CO2	М	М												М
CO3	М													М
CO4	М													М
CO5	S	М			S								М	М
CO6	М													М

DIRECT	INDIRECT						
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1. Course end survey						
FUNDAMENTALS OF FLUID POWER6 Hours							
Introduction to fluid power, Advantages of fluid power, Application of fluid power system. Types of fluid							
power systems, Properties of hydraulic fluids – General types of fluids. Fluid power symbols.							

	A
5.	ml
Signature of BOS	chairman, MCE

Directional control valve – 3/2 way valve – 4/2, 4/3 way valve – Shuttle valve – check valve. Pressure control valves, Flow control valve – Fixed and adjustable, electrical control solenoid valves. Types of accumulators, Accumulators circuits, Intensifier – Circuit and Application, Speed control circuits, synchronizing circuit and industrial application circuits – copying circuit and press circuit. PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS 10 Hour Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method.	HYDR	AULIC SYSTEM AND COMPONENTS	10 Hours
Interview Interview Interview Directional control valve – 3/2 way valve – 4/2, 4/3 way valve – Shuttle valve – check valve. Pressure control valves, Flow control valve – Fixed and adjustable, electrical control solenoid valves. Types of accumulators, Accumulators circuits, Intensifier – Circuit and Application, Speed control circuits, synchronizing circuit and industrial application circuits – copying circuit and press circuit. PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUTTS 10 Hour Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. 9Hour Hydro Mechanical servo systems. Theory:45Hours 9Hour Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments	pumps cylinde applica	s – pump performance – Variable displacement pumps. Linear hydraulic actuators – Types ers–Single acting, Double acting special cylinders like tandem, Rodless, Telescopic-Constation. Cushioning mechanism, Rotary actuators-Gear, Vane and Piston motors-Selection of Pump	of hydraulic structionand
control valves, Flow control valve – Fixed and adjustable, electrical control solenoid valves. Types of accumulators, Accumulators circuits, Intensifier – Circuit and Application, Speed control circuits, synchronizing circuit and industrial application circuits – copying circuit and press circuit. PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS 10 Hour Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: Andrew Parc, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5. Srinivasan R, "Hydraulic and Pneumatic s", MicGraw Hill Education, 2016. LIST OF EXPERIMENTS PNeumatic Experiments 1. Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using solenoid operated DCV and roller operated DCV. 4. Design of Pneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic circuit for sequential circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic circuit for sequential circuit (Relay control) for synchronization of multip pneumatic cy	HYDF	RAULIC VALVES, ACCUMULATORS AND CIRCUITS	10 Hours
control valves, Flow control valve – Fixed and adjustable, electrical control solenoid valves. Types of accumulators, Accumulators circuits, Intensifier – Circuit and Application, Speed control circuits, synchronizing circuit and industrial application circuits – copying circuit and press circuit. PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS 10 Hour Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: Andrew Parc, "Pluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parc, "Hydraulics and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS PNeumatic Circuit to control the direction and speed of single acting/double actin cylinder using solenoid DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit (Relay control) for synchronization of single pneumatic cylinder using solenoid operated DCV. 4. Design of Pneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic circuit for sequential circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic circuit for sequential circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic circuit for sequential operation of multip p			sure
synchronizing circuit and industrial application circuits – copying circuit and press circuit. I0 Hour PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS 10 Hour Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. 9Hour FUUD LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. 9Hour Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1 Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3.James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education, 2016. 1.ST OF EXPERIMENTS Pneumatic Circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cyli			
PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS 10 Hour Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. 9Hour FUID LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit to control the direction of single pneumatic cylinder using pile operated DCV. 4. Design of Electropneumatic circuit (Relay control) for supersure valve (AND function 3. Design of Pneumatic circuit (Relay control) for supentici using pile pneumatic circuit (Relay cont	accum	ulators, Accumulators circuits, Intensifier – Circuit and Application, Speed control circuits,	
Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. 9Hour Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Total: 75Hours REFERENCES: 1 Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulic and Pneumatics ", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV. 4. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV. 4. Design of Pneumatic Circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using pil operated DCV.	synchr	ronizing circuit and industrial application circuits – copying circuit and press circuit.	
 valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. FLÜDI LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5. Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education, 2016. LIST OF EXPERIMENTS Pneumatic circuit to control the direction and speed of single acting/double actin cylinder using pub button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV. 4. Design of Electropneumatic circuit (Relay control) for synchronization of single pneumatic cylinder using pil operated DCV and magnetic sensors. 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 6. Design of Pneumatic Liectropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 7. Design of Pneumatic circuit for sequential operation of multip pneumatic cylinders. 7. Design of Pneumatic circuit for sequential operation of multip pneumatic cylinders	PNEU	MATIC SYSTEMS, COMPONENTS AND CIRCUITS	10 Hours
 using cascade method, Karnaugh – Veitch Mapping method. FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE PHour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulics and Pneumatic Controls", McGraw Hill Education, 2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of Simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV. Design of Pneumatic Licuit (Relay control) for sutomatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip	Proper	rties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Qui	ck exhaust
FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hour Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES:	valves	and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple ap	plications
 Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional values. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 	using o	cascade method, Karnaugh – Veitch Mapping method.	
Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education, 2016. LIST OF EXPERIMENTS Pneumatic Experiments 1. Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using pil operated DCV. 4. Design of Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 6. Design of Pneumatic / Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders.	FLUII	D LOGIC CONTROL SYSTEMS AND MAINTENANCE	9Hours
trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education, 2016. LIST OF EXPERIMENTS Pneumatic Experiments 1. Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using pil operated DCV. 4. Design of Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 6. Design of Pneumatic / Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 7. Design of Pneumatic circuit for sequential operation of multip pneumatic cylinders. 7. Design of Pneumatic circuit for se	Hydro	Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportion	onal valves.
Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments 1. Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit tor automatic reciprocation of single pneumatic cylinder using pil operated DCV. 4. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV. 4. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 6. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 7. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. <	Fluidic	c Logic and switching controls - PLC applications in fluid power control, Maintenance - Fai	ilure and
 REFERENCES: Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic / Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders. 	trouble	e shooting in fluid power systems.	
 Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV. Design of Electropneumatic circuit (Relay control) for synchronization of single pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 	Theory	y:45Hours Practical: 30Hours Total: 75Hours	
 Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV. Design of Electropneumatic circuit (Relay control) for synchronization of single pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 			
 Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 	REFE	RENCES:	
 James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 			
 Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 			
 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education,2016. LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV and roller operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 	3. Jame	es A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013.	
 LIST OF EXPERIMENTS Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV and roller operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 			
 Pneumatic Experiments Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV and roller operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascada (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascada (Control) for Pneumat			
 Design of simple pneumatic circuit to control the direction and speed of single acting/double actin cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV and roller operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multip pneumatic cylinders. 			
 cylinder using push button DCV/lever operated DCV and flow control valve. 2. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pill operated DCV and roller operated DCV. 4. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 6. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 7. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for Pneumatic circuit for pneumatic cylinders using Cascador (Control) for Pneumatic cy		▲	
 Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV and roller operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders. 	1.		louble acting
 Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pil operated DCV and roller operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders. 	2		ID function)
 operated DCV and roller operated DCV. 4. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumaticylinder using solenoid operated DCV and magnetic sensors. 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multiping pneumatic cylinders. 6. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multiping pneumatic cylinders. 7. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders. 			
 Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for sequential cylinders using Cascador (Control) for Sequential	5.		using phot
 cylinder using solenoid operated DCV and magnetic sensors. 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. 6. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. 7. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Control) for sequential cylinders using Cascador (Control) f	4.		e pneumatic
 Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multip pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador (Relay control) for sequential cylinders using Casca			I I I I I I I I I I I I I I I I I I I
 Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multip pneumatic cylinders. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador Ca	5.		of multiple
pneumatic cylinders.7. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascador			_
7. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascad	6.		of multiple
method.	7.		sing Cascade
0 Design of Electron and event is signed if for a surroutist constraint of events in the section of DLC	0		C
8. Design of Electropneumatic circuit for sequential operation of multiple cylinders using PLC.			C.
1ydraulic Experiments9. Design of Hydraulic circuit to control the speed and direction of a hydraulic motor.			
10. Design of Hydraulic circuit for sequential operation of two hydraulic cylinders using pressure			ure
sequence valve.	10.		u10
11. Study of the working of Counterbalance valve, Accumulator, Proportional control valve.	11.		

HYDRAULIC SYSTEM AND COMPONENTS

$\subset I$
Signature of BOS chairman, MCE

Software Experiments 12. Design and Simulation of hydraulic and pneumatic circuits using Automation Studio software.

< Signature of BOS chairman, MCE

U18MCI4202

SENSORS AND INSTRUMENTATION

Course Outcomes

After successful completion of this course, the students should be able toCO1:Classify the transducers and instruments based on their working principles, characteristic contracteristic contracter								
CO1: Classify the transducers and instruments based on their working principles charac								
nd order of the system.								
CO2: Describe the working principle and characteristics of non-electrical transducers.		K2						
CO3: Discuss about the construction, working principles and characteristics medical sensors.	of bio	K2						
CO4: Generate appropriate design procedure, suitable for signal conversion to interface computer.	with	K2						
CO5: Design appropriate circuits by using conventional formulas used in signal conditio conversion.	oning and	K2						
CO6: Use sensors and transducers to create simple Mechatronics applications using data software	a logging	K2						

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COa	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S			W									W	
CO2	S			М	Μ								М	
CO3	S			Μ	Μ								М	
CO4	S	М	S	S	М								S	М
CO5	М	М	S	S	Μ								S	М
CO6	Μ	М		S	S								S	

DIRECT	INDIRECT	
1. Continuous Assessment Test I,II		
2. Assignment: Group Presentation, Project report,		
Prototype or Product Demonstration etc. (as	1.Course end survey	
applicable)		
3. End Semester Examination		
MEASUREMENT SYSTEMS	9 Hours	
Generalized Measurement System – Performance Characteristics: Static and Dynamic Characteristics – Errors in		
Measurements – statistical Analysis of errors - Calibration and Standards – Generalized Performance of Zero Order,		
First Order and Second Order Systems – Classifications of	Transducers.	

	0
5-	- P
Signature of BOS c	hairman, MCE

MEASUREMENT OF NON-ELECTRICAL PARAMETERS-1	9Hours
Linear and angular displacement: Resistive, capacitive, inductive types and Optics (encoders),	proximity
sensors	r J
Velocity measurement: tachometers, tacho generators and resolvers	
Temperature measurement: Contact type: Bimetallic, RTD, Thermocouple and Thermistor Nor	n- Contact
type:	
Radiation Pyrometer – Optical Pyrometer	
Humidity: Capacitive and resistive and hot and wet bulbs.	
Other sensors: Fire, smoke and metal detectors. MEASUREMENT OF NON-ELECTRICAL PARAMETERS-2	0.11
	9 Hours
Force measurement: Resistive type strain gauges: Bridge configurations, Temperature compens	ation, Load
cells, Fiber optic strain gauge- Semiconductor strain gauges- Piezo electric transducers.	
Vacuum Measurement : McLeod Gauge, Thermal Conductivity Gauge – Ionization Gauge.	
Airflow: Anemometers	
Light: UV, IR, Light emitter and detector	
Introduction to Acoustics and acoustic sensors: Ultrasonic sensor- Types and working of Micr	ophones
and Hydrophones – Sound level meters- Nuclear radiation sensors.	1
MEAŠURĖMENT OF BIO SIGNALS	9 Hours
Basic transducer principle Types - source of bioelectric potentials - electrode - electrolyte interfa	ice,
electrode potential, resting and action potential – electrodes for their measurement, ECG, EEG.	
SIGNAL CONDITIONING AND DATA ACQUISITION	9 Hours
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circuit	
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization –	it —
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and	it —
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging	it —
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging – Data conversion – Introduction to Digital Transmission system.	it —
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging	it —
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging – Data conversion – Introduction to Digital Transmission system.	it —
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging – Data conversion – Introduction to Digital Transmission system.	it —
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging – Data conversion – Introduction to Digital Transmission system. Theory:45Hours Practical:30Hours Total Hours:75	it – P/I
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging – Data conversion – Introduction to Digital Transmission system. Theory:45Hours Practical:30Hours Total Hours:75 REFERENCES:	it – P/I
SIGNAL CONDITIONING AND DATA ACQUISITION Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circui Quantization – Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging – Data conversion – Introduction to Digital Transmission system. Theory:45Hours Practical:30Hours Total Hours:75 REFERENCES: 1. ErnestODoebelin, "MeasurementSystems–ApplicationsandDesign", TataMcGraw-Hill, 2012	it – P/I 2.

	0
<	P
	-
Signature of BOS chairman, I	MCE

Control", 12thedition, Dhanpat Rai & Co, New Delhi,2013.

LIST OF EXPERIMENTS

- 1. Design and testing of Voltage to frequency converter and frequency to voltage converter
- 2. Design and testing of sample and hold circuit.
- 3. Displacement measurement using potentiometer and LVDT and plotting the characteristic curves and interface with ARDINUO Board
- 4. Study of Characteristics and calibration of strain gauge and Load Cell
- 5. Measurement of strain using resistive type strain gauges with temperature compensation and various bridge configurations interface with ARDINUO Board.
- 6. Temperature measurement using Thermocouple, Thermistor and RTD and comparing the characteristics interface with ARDINUO Board.
- 7. Comparison of capacitive and resistive type transducer for humidity measurement with their characteristics
- 8. Measurement of sound using microphones and sound level meter.
- 9. Measurement of temperature, strain, displacement, acceleration using NI DAQ and RIO cards.
- 10. Signal conditioning the physical signals using LABVIEW.

Saul		0
The second secon	\langle	P
	Signature of BOS cha	ITTER MCE

DIGITAL ELECTRONICS AND MICROPROCESSOR

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After successful completion of this course, the students should be able to									
CO1:	Use number systems, Boolean algebra and explain various digital logic families.	K2							
CO2:	Apply basic logic gates to design simple circuits and simplify logic circuits using K- Map	K3							
CO3:	Design various combinational and sequential circuits	K3							
CO4:	Explain the architecture of 8085 microprocessor	K2							
CO5:	Develop assembly language program for 8085 for the given application.	K3							
CO6:	Construct interface for memory and I/O devices.	K3							

Pre-requisite

U18MCI3201-Electronics devices and circuits

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М												М	
CO2	S	W	S										S	
CO3	М	S	S										М	М
CO4	М												S	М
CO5	М				S								М	S
CO6	М		S		S								М	S

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	
 Assignment: Group Presentation, Project report, Prototype or Product Demonstration etc.(as applicable) End Semester Examination 	1.Course end survey

~	- P
Signature	of BOS chairman, MCE

NUMBER SYSTEMS, DIGITAL LOGIC FAMILIES AND BOOLEAN LOGIC	9 Hours					
Introduction to Number systems: Binary, Octal, Hexadecimal, BCD, Gray code, Excess 3 d	code -Binary					
arithmetic: 1's complements, 2's complements, and Code conversions -Digital Logic Fami	•					
CMOS, NMOS, ECL- Performance comparison of various logic families- Boolean algebra	: Basic					
Postulates and theorems, switching functions, Canonical forms, Logic gates- Simplification						
maps and Implementation using logic gates.	6					
COMBINATIONAL CIRCUITS	9 Hours					
Problem formulation and design of combinational circuits: adder, subtractor, Parallel adder						
Subtractor- Carry look ahead adder- BCD adder, Magnitude Comparator, parity checker En	,					
decoder, Multiplexer/Demultiplexer, code converters, Function realization using gates and multiplexer and the second seco	1					
Implementation of Combinational circuits using Multiplexers and Demultiplexers- Memory	y: PROMs					
and PLAs.						
SEQUENTIAL CIRCUITS	9 Hours					
General model of sequential circuits: Latch, Flip Flops, Level triggering, Edge triggering, I	Master clave					
configuration - Realization of one flip flop using other flip flop- Registers-Counters: Binar						
Modulo–n counter, Decade, Counters, Ring counter and Johnson counter.	y counters,					
Modulo-II counter, Decade, Counters, King counter and Johnson counter.						
MICROPROCESSOR 8085						
Organization of 8085: Architecture, Internal Register Organization and Pin Configuration -	– Instruction					
Set of 8085 – addressing modes - instruction and machine cycles with states and timing dia						
assembly language programming						
MEMORY AND I/O INTERFACING	9 Hours					
Address space partitioning – address map – Address decoding – Designing decoder circuit	for the given					
address map -I/O Interfacing- Peripheral ICs*: 8255, 8279 and 8251 A.	8					
* Emphasis to be given on architecture with simple applications.						
Theory:45Hours Tutorials:15Hours TotalHours:60						
REFERENCES:						
1. Morris Mano M. and CilettiM D., "Digital Design", 4 th edition, Prentice Hall of Inc	lia Pvt.Ltd					
NewDelhi,2008						
2. Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Ap	plications", 8 th					
edition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special India						
2014.						
3. Salivahanan S. and Arivazhagan S., "Digital Circuits and Design", 5 th edition, oxfo	rd university					
press,2018	-					
4. Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications wa	ith the 8 <u>085"</u> ,					
6 th edition, Penram International (India),2013.						
5. Aditya P Mathur, "Introduction to Microprocessor", 3 rd edition, Tata McGraw Hill,	New					
Delhi,2003						
6. <u>Floyd</u> , " <u>Digital electronics</u> " Pearson Education India, 2005						

_	Sul
	Signature of BOS chairman, MCE

U18MCT4104	THEORY OF MACHINES	L	Т	Р	J	С
010101014104	I HEUK I UF MACHINES	3	1	0	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to								
CO1:	Apply concepts of mechanisms to achieve desired motion transformation	K2							
CO2:	Choose appropriate gear train and friction drives for a given application	K3							
CO3:	Calculate various forces acting on rigid bodies under static and dynamic conditions	K3							
CO4:	Solve balancing problems related to rotating and reciprocating masses.	K2							
CO5:	Apply the fundamental concepts of vibrating system to predict the natural frequency and force transmitted	K3							

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S												S	М
CO2	М													М
CO3	М		М										М	
CO4	S		W										М	
CO5	S		W										М	

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	
2. Assignment: Group Presentation, Project	
report, Prototype or Product Demonstration	1.Course end survey
etc. (asapplicable)	
3. End Semester Examination	

	0	-	1	7
Signat	ure of BC	Schair	man, M	CE

	CHANISMS		13 Hours
	chanisms – Introduction to kinema		,
	Brashoff's law, Kutzback criterion. H		
	of cam and follower, terminologies		celeration
GEAR AND FRICT	chain and single slider crank mecha		12 Hours
profile. Gear meshing,	yes - Fundamentals of toothed gearin , contact ratio. Gear trains, simple c g Problems) – Screw and Brake (Co	compound gear trains and epicyclic	
FORCE ANALYSIS	1		12Hours
D'Alemberts principle	in general plane motion – Equatior e –The principle of superposition – Reciprocating Engines.	•	
BALANCING			9 Hours
VIBRATION Types of vibration, free	ating masses, Hammer blow, Swayi equency of undamped and damped s sed by unbalance-Support motion - ration isolation.	system. Response to periodic forci	
Theory:45Hours	Tutorials:15Hours	Total Hours:60	
REFERENCES:			
1. Rattan SS., "Th Delhi,2019.	neory of Machines", 5 th Edition, Ta		•
 Rattan SS., "Th Delhi,2019. R.L. Norton, "H Ltd.,2017. 	Kinematics and Dynamics of Mach	inery", Tata McGraw Hill Publishi	•
 Rattan SS., "Th Delhi,2019. R.L. Norton, "H Ltd.,2017. 	-	inery", Tata McGraw Hill Publishi	•
 Rattan SS., "Th Delhi,2019. R.L. Norton, "Th Ltd.,2017. R.K. Bansal, "The second s	Kinematics and Dynamics of Mach	inery", Tata McGraw Hill Publishi lications pvt.ltd.,2016	•
 Rattan SS., "Th Delhi,2019. R.L. Norton, "I Ltd.,2017. R.K. Bansal, "The Singiresu S.Race 	Kinematics and Dynamics of Mach Theory of Machines", Lakshmi pub	inery", Tata McGraw Hill Publishi lications pvt.ltd.,2016 n,2017.	ing Company

Signature of BOS chairman, MCE			^
	<	\leq	P
	Signature	of BOS cho	airman MCE

L	Τ	Р	J	С
0	0	4	2	3

Course objectives

•	To help the students look into the functioning of simple to complex devices and systems
•	To enable the students to design and build simple systems on their own
•	To help experiment with innovative ideas in design and teamwork
•	To create an engaging and challenging environment in the engineering lab

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Identify a practical problem and find a solution	K2
CO2:	Understand the project management techniques	K3
CO3:	Demonstrate their technical report writing and presentation skills	K3

Pre-requisite

Nil

						CO/P	'O Map	oping						
		(S/M/W	⁷ indica	ates stre	ength of	f correl	ation)	S-St	trong, N	M-Medi	ium, W	-Weak		
COs						Progra	umme C	Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
 Project reviews50% Workbook report10% Demonstration & Viva-voce40% 	1. Course Exit Survey

Content:

The course will offer the students with an opport unity togain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample

opportunity to be innovative in designing and building a range of products from toys to robots and flyingmachines.Inthefourthsemester,studentswillfocusprimarilyonreverseengineeringprojectto improve performance of a product

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

U18CHT4000	Environmental Science and Engineering	L	Т	P	J	С	
U18CH14000	(Common to All branches)	3	0	0	0	3	

Course Outcomes

Course	L'Outcomes
After s	uccessful completion of this course, the students should be able to
CO1:	Analyze the impact of engineering solutions in a global and societal context.
CO2:	Discuss contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems.
CO3:	Highlight the importance of ecosystem and biodiversity.
CO4:	Consider issues of environment and sustainable development in his/her personal and professional undertakings.
CO5:	Paraphrase the importance of conservation of resources.
CO6:	Play an important role in transferring a healthy environment for future generations.

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		Μ					S		Μ					Μ
CO2						Μ				Μ				
CO3							Μ							
CO4						Μ	S							
CO5							S							
CO6			W				S					М		

Course Assessment methods:

DIRECT	INDIRECT				
1. Internal Test I					
2. Internal Test II					
3. Assignment	1.Course end survey				
4. End semester					
INTRODUCTION TO ENVIRONMENTAL STU	DIES AND NATURAL	14 Hours			
RESOURCES					
Definition, scope and importance – Need for public a	wareness - Forest resources: Use and ov	er-			
exploitation, deforestation, case studies – Timber extraction, mining, dams and their effects on forests					
and tribal people.					

Water resources: Use and overutilization of surface and ground water, conflicts over water, dams– benefits and problems – Water conservation, rain water harvesting, watershed management. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.

6	- P
Signature of B	OS chairman, MCE

Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, case studies.

Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources, case studies.

Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification, Wasteland reclamation – Role of an individual in conservation of natural resources.

ECOSYSTEMS AND BIODIVERSITY

9 Hours

ECOSYSTEM: Concept of an ecosystem – Structure and function of an ecosystem: Producers, consumers and decomposers, Food chain, Food web, Energy flow in the ecosystem and Ecological Ecological succession Introduction, features. pyramids _ types, characteristic structure and function of the (a) Forestecosystem (b) Grasslandecosystem (c) Desertecosystem(d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

BIODIVERSITY: Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity – geographical classification of India – Value of biodiversity: consumptive Bio use. productive use, social, ethical, aesthetic values - India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts -Endangered and endemic species of India-Conservation of biodiversity:In-situ and Ex-situ conservation of biodiversity. 8 Hours

ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution – Organic and inorganic pollution - cyclone separator, electrostatic precipitator (b) Water pollution (c) Heavy metal pollution (d) Noise pollution (e) Thermal pollution (f) Nuclear hazards - Role of an individual in prevention of pollution -Pollution case studies – Solid waste and hazardous Management: Causes, effects and control measures from factories, small scale and large scale industries – Waste minimization – Disaster management: floods, earthquake, cyclone and landslides.

SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable development – Urban problems related to energy – Resettlement and rehabilitation of people; its problems and concerns, case studies – Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion – Environment Production Act – Air (Prevention and Control of Pollution) Act - Water (Prevention and control of Pollution) Act - Wildlife Protection Act - Forest Conservation Act

– Issues involved in enforcement of environmental legislation – Human Rights.

HUMAN POPULATION AND THE ENVIRONMENT

7 Hours

7 Hours

Population growth and explosion – Welfare Program – Environment and human health – Communicable disease – Role of Information Technology in Environment and human health – Case studies.

Theory:45Hours	Practical:0Hours	Total Hours:45
REFERENCES:		
1. Spoolman, Scott, and Mill	er, G. Tyler. Environmental Science. Un	nited States, Cengage

- Learning, 2018.
- 2. Gilbert M. Masters and Wendell P. Ela, 'Introduction to Environmental Engineering and Science', Third Edition. Pearson Education. 2013.
- 3. Bharucha, Erach. The Biodiversity of India. India, Mapin Pub., 2002.
- 4. Trivedy, R K, and Goel, P K. An Introduction to Air Pollution. India, BSP Books Pvt. Limited, 2016..

Signature of BOS chairman, MCE

5. Trivedy, R. K Handbook Of Environmental Laws, Acts, Guidelines, Compliances & Standards, 2
Vol. Set, 3Rd Ed India, BS Publications, 2010.
6. Cunningham, W.P.Cooper and T.H.Gorhani, 'Environmental Encyclopedia', Jaico Publication
House, Mumbai, 2011.
7. WagerK.D., 'EnvironmentalManagement', W.B.SaundersCo., Philadelphia, USA, 1998ColinR
8. Townsend, Michael Begon and John L. Harper, 'Essentials of Ecology', Third Edition, Blackwell
Publishing, 2008.

		A
	Sa	-1
Signatur	re of BOS ch	airman, MCE

PROFESSIONAL VALUES

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Develop the ethical values in both professional and personal life					
CO2:	Develop ability to take decision to reinforce professional life					
CO3:	Rational in professional skills required for diverse society					
CO4:	Excel in ingenious attitude to congregate professional life					
CO5:	Research into the professional stand					
CO6:	Spruce an Individual with decorum to achieve professional life					

Pre-requisite

- 1. U18VEP1501 / PERSONALVALUES
- 2. U18VEP2502 / INTERPERSONALVALUES
- 3. U187VEP3503 / FAMILYVALUES

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								S						
CO2				Μ										
CO3			S											
CO4												S		
CO5								Μ						
CO6										Μ				

DIRECT	INDIRECT			
1. Group Activity / Individual performance and	1. Mini project on values / Goodwill Recognition			
assignment				
2. Assessment on Value work sheet /Test				
VALUES THROUGH PRACTICAL ACTIVITIES:		30 Hours		
1. Professional skills With Values: Positive Attitude, Adaptability, Responsibility,				
Hone sty and Integrity, Self Esteem, & Self Confidence				
2. Building Innovative work cultures: Creative thinking, Critical thinking, Conflict				
Resolution, Problem Solving, & Decision making				

0
$C \downarrow$
Saul
Signature of BOS chairman, MCE
organization of the of the initiality in the

- **3. Professional Work Ethics:** Types of Ethics, Etiquette, personality Grooming, Emotional quotient, Human Dignity, Safety & Role of Professional in Social Responsibility
- **4. Engineering Ethics:** Engineering Council of India Objectives Code of Ethics Social responsibility -Professional Quality Ethical issues Effects Strategy Corruption, Consequences, Cures
- **5.** Case studies in engineering ethics: Discussion of case studies relating to Public safety, health, welfare, Quality of product, Improper conduct by management ,Product responsibility, Intellectual property

Theory:0	Tutorial:0	Practical:30	Project:0	Total: 30hours					
REFERENCE	S:								
1. LEARNING	TO DO SOURCE	BOOK 3 - UNESCO	-UNEVOC -						
PDF <u>www.u</u>	nevoc.unesco.org/fil	eadmin/user_upload/pu	ubs/LearningToDo.p	<u>odf</u>					
2. DECLARATION OF PROFESSIONAL VALUES AND ETHICAL									
STANDAR	DS <u>www.garda.ie/Do</u>	ocuments/User/declarat	tionvalues.pdf						
3. KARMA YO	DGA - SWAMI VI	VEKANANDA <u>www.</u>	vivekananda.net/PD	DFBooks/KarmaYoga.pdf					
4. PROFESSIO	NAL ETHICS IN	ENGINEERING - Sa	asurie College of						
Engineering	g <u>www.sasurieengg.c</u>	/GE2025%20Pro	fessional%20Ethics	%20in%20Engineering					
5. ENGINEER	ING ETHICS CAS	E STUDY;							
Challenger	www.ucc.ie/en/proce	esseng/staff/academic/e	ebyrne//PE1006Pp	tNotesLect7.pdf					

_	A
_	Saul
	Signature of BOS chairman, MCE

SEMESTER V

Signature of BOS chairman, MCE		1	1
	0	1	1
	 	1	

INDUSTRIAL ELECTRONICS AND DRIVES

L

3

Course Outcomes

After successful completion of this course, the students should be able to						
CO1: Relate the basic semiconductor physics to the properties of real power	K2					
semiconductor.						
CO2: Describe the concept of operation of AC-DC converters.	K2					
CO3: Identify the operating the single phase and three phase inverter circuits	K3					
CO4: Describe the various PWM techniques.	K2					
CO5: Identify DC equipment with changing DC voltage and choppers for simple	K3					
electrical application						
CO6: Describe the speed control method in DC to DC converter	K2					

Pre-requisite

U17MCI3202- Electrical Machines

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
Cos	Programme Outcomes(Pos)													
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S				М					М			S	
CO2	S												М	
CO3	S				М								М	
CO4	S	S	S										W	
CO5		М	S		М						М		S	
CO6	S				М					М			S	

Direct	Inc	lirect							
1. Continuous Assessment Test I,II									
2. Assignment: Group Presentation, Project report,									
Poster preparation, Prototype or Product	1. Course end survey								
Demonstration etc. (as applicable)									
3. End Semester Examination									
POWER SEMICONDUCTOR DEVICES		9 Hours							
Thyristors – Volt-Ampere Characteristics – Switching Characteristics-Power MOSFET – Volt-									
AmpereCharacteristics–SwitchingCharacteristics-PowerIGBT–Volt-AmpereCharacteristics–									
Switching Characteristics									

AC to DC CONVERTERS	9 Hours
Diode Rectifiers – Single phase Bridge – R, RL – Thyristor Converter – Sir	gle phase bridge – RL
– Three phase fully controlled converter -R-RL Load.	
INVERTERS	9 Hours
Single-phase VSI – Half-bridge – Centre tapped inverter – Full bridge inver	ter -Three-phase VSI –
Square-wave–Control of induction motor by voltage source inverter.	-
PWM TECHNIQUES	9 Hours
PWM Inverter – fundamental concepts of PWM – naturally sampled PWM	- PWM analysis by
duty cycle variation	
DC- DC CONVERTER	9 Hours
DC Chopper - Step Down Converter - Step Up Converter - Buck Boost Con	verter – Introduction -
Fly Back converter-speed control of PMDC motor.	
Theory:45Hrs Practical:30Hrs	Total Hours: 75
REFERENCES:	
1. Bimbhra P S, "Power Electronics" Tata McGraw Hill, 2012	
2. Rashid M H, "Power Electronics – Circuits Devices and Application", 4 ^t	^h Edition, Prentice
Hall International, New Delhi, 2013.	
3. Dubey G K., Doradia S R., Joshi A. and Singh, R.M., "Thyristorised Pow	ver Controllers", 2 nd
Edition, Wiley Eastern Limited, 2010.	
4. Joseph Vithayathil, "Power Electronics – Principle and Applications", Ta	ata McGraw-Hill Inc,
New Delhi, 2010.	
5. Bimal K Bose "Modern power electronics and AC Drives" Prentice Hall Delhi, 2001.	International, New
6. D. Grahame Holmes, Thomas A. Lipo "Pulse Width Modulation for Pow	ver Converters:
Principles and Practice", John Wiley & Sons, 2003.	
LIST OF EXPERIMENTS:	
1. Voltage-Current characteristics of SCR	
2. Voltage-Current characteristics of IGBT/MOSFET	
3. AC-DC uncontrolled converter	
4. AC-DC converter for half wave controlled using phase control method	
5. Speed control of PMDC motor using three phase fully controlled cor	verter
6. DC Voltage control using DC – DC Converter	
7. Buck – boost converters	
8. Single phase IGBT based PWM inverter	
9. Speed control of three phase induction motor using AC to AC voltag	e control
10. Speed control of BLDC/servo motor	

Saul	
Signature of BOS chairman, MCE	

MANUFACTURING TECHNOLOGY

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After s	fter successful completion of this course, the students should be able to							
CO1:	Select and justify appropriate casting methods.	K2						
CO2:	Summarize various bulk deformation processes and the explain the working machineries.	K2						
CO3:	Describe the working principles of machines and various machining processes.	K2						
CO4:	Choose a suitable metal joining process for a given application.	K2						
CO5:	Perform various lathe and drilling operation for a given drawing.	K2						
CO6:	Perform machining operation in special purpose machine.	K2						
D	• • /							

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ					Μ							W	М
CO2	Μ												W	М
CO3	Μ												W	М
CO4	Μ					Μ							W	М
CO5	М								М	М			W	М
CO6	М								М	М			W	М

Course Assessment methods.								
DIRECT								
1. Internal test I								
2. Internal test II								
3. End semester Examination 1.Course end survey								
4. Assignment								
FOUNDRY TECHNOLOGY 7 Hours								
Pattern and Core making – Melting furnaces: Cupola and	d Induction furnaces – Special casting	g processes –						
Shell, Investment, Die casting – Defects in casting.								
FORMING PROCESSES 7 Hours								
Hot and Cold Working - Rolling - Introduction - Rolling Mills - Rolling Operations - Forging-								
Introduction–ForgingOperations–Dropforging-ExtrusionandDrawing-ExtrusionPractice–Hot,								

		_		D
	<	>-		1
Signa	ature o	f BOS d	chairma	n, MCE

Cold, Impact and Hydrostatic extrusion. Drawing Pr Equipment.	rocess – Defects and Residual Stresses	– Drawing
CONVENTIONAL MACHINING PROCESS		8 Hours
Lathes and Lathe Operations, Drilling and Drilling N	Machines, Reaming and Reamers, Tapping	g and Taps
- Tool nomenclature, cutting speed, feed. Milling, S		tions.
PRINCIPLES & APPLICATIONS OF JOINING	FPROCESSES	8 Hours
Gas welding, Basic Arc Welding Processes, Thermit	Welding, Ultrasonic Welding, Friction W	elding,
Resistance Welding and Explosive Welding. Princip	les and applications of Brazing and Solder	ing.
Theory: 30 Hours Practical: 30 H	Hours Total Hours: 60	
REFERENCES:		
 KalpakjianS., "Manufacturing Engineering and 2020. 	d Technology",8 th edition, Pearson educati	on India,
2. Hajra Choudhury S K. and Hajra Choudhury A	A K., "Elements of Workshop Technology	", Volume I
and II, Media Promoters and Publishers Privat	te Limited, Mumbai,2008.	
3. Paul Degarma E, Black J T. and Ronald A Kos	sher, "Materials and Processes in Manufac	cturing", 8 th
edition, Hall of India, 2008.		
4. Sharma P C., "A Textbook of Production Tech	hnology", S. Chand and Co., Ltd., 2009.	
LIST OF EXPERIMENTS		
1. Study on measurement (Linear and angu	ular measurements)	
2. Step Turning		
3. Taper Turning		
4. Thread cutting operation		
5. Knurling operation		
6. Boring operation		
7. Surface Milling operation		
8. Gear Cutting operation		
$0 \qquad C_{n+1} = \frac{1}{2} + $		

- 9. Grinding operation (surface, cylindrical and centerless)10. Shaping operation(Dove tail and slotting operation)

P
nan, MCE

PROGRAMMABLE LOGIC CONTROLLERS

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Outline the importance of PLC, DCS, SCADA in industrial automation	K2					
CO2:	Describe the architecture of PLCs with the analogy of relay logic components	K2					
CO3:	Develop ladder logic program for applications	K3					
CO4:	Integrate PLCs with electro-mechanical systems	K3					
CO5:	Classify the communication protocols	K2					
CO6:	Design SCADA system for industrial applications	K3					

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	М	М		М	S					S			S	Μ
CO4	М	М	Μ		S								М	
CO5	М												М	
CO6	М	М	Μ	М	S					S			S	S

DIRECT	INDIRECT							
1. Continuous Assessment Test I,II								
2. Assignment: Group Presentation, Project report,								
Poster preparation, Prototype or Product	1.Course end survey							
Demonstration etc. (as applicable)								
3. End Semester Examination								
INTRODUCTION		6 Hours						
Role of automation in industries, Benefits of automation -	-Introduction to automation tools: Low cost	automation,						
PLC, DCS, SCADA - Automation strategy evolution.								
PLC HARDWARE MODULES AND PROGE	RAMMING	6 Hours						
CPU – processor function – processor operating modes –	PLC system memory and application memory	ory – input						
modules - output modules - module selection - PLC inter	rnal operation and signal processing - input	and output						
processing.								
PROGRAMMING OF PLC SYSTEM11 Hou								
Introduction to IEC 61131 - System functions – sequence control – ladder logic – programming sequences –								
limitation of ladder programming – logic instruction sets – standard PLC functions – special function relays – data								
handling instructions – arithmetic instructions – data man	ipulation – program subroutines –programm	ning						
examples.								

0 Signature of BOS chairman, MCE

INDUSTRIAL COMMUNICATION PROTOCOLS

Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII & RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), Foundation Fieldbus (H1&HSC). Comparison of Foundation Fieldbus, Modbus, Device net, Profibus, Industrial Ethernet.

SCADA SYSTEMS

Concept of SCADA systems, Programming techniques for: Creation of pages, Sequencing of pages, creating graphics & animation, Dynamos programming with variables, Trending, Historical data storage & Reporting, Alarm management, reporting of events and parameters, Comparison of different SCADA packages, Interfacing PLC and SCADA using communication links, Development stages involved for PLC based automation systems, Application Development using SCADA system.

Theory:45 HoursPractical:30HoursTotal Hours: 75

REFERENCES:

- 1. John W Webb and Ronald A Reis, "Programmable logic controllers: Principles and Applications", 5th Edition, Prentice Hall India, 2002.
- 2. Michael P Lukas, "Distributed Control systems", Van Nostrand Rein fold Company, 1995.
- 3. Frank D Petruzella, "Programmable Logic Controllers", 5thedition, McGraw-Hill Companies, March 2019.
- 4. Ian G Warnock, "Programmable Controllers Operation and Application", Prentice Hall International, UK, 1992.
- 5. Krishna kant, "Computer Based Industrial Control", 2nd revised edition, Prentice Hall of India, 2011.

LIST OF EXPERIMENTS

- 1. Construct a circuit to control a simple process using Relay and Timer module.
- 2. Design a T-junction traffic light controller using PLC
- 3. Design a PLC Program for automating bottle filling systems
- 4. Develop a PLC system to control a simple conveyor system
- 5. Study of industrial process automation and communication network architecture
- 6. Develop an HMI design for a simple pump tank system.
- 7. Develop a simple SCADA application using Dynamos.
- 8. Develop a SCADA panel to control a PLC based system.
- 9. Design a PLC ladder logic program to control the Speed of a motor
- 10. Design a PLC ladder logic program to control the Position of a servomotor.

0
≤ 1
Signature of BOS chairman, MCE
Signature of DOS chairman, MCL

11 Hours

11 Hours

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CONTROL ENCINEEDING	L	Т	Р	J	С
	U18MCT5004	CONTROL ENGINEERING	3 0 0			0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
C01	Know the significance to control engineering and the basic construction of control systems.	K2
CO2	Develop mathematical equations for model mechanical, electrical systems and can able to compute transfer function using block diagram and signal flow graph methods	K3
CO3	Analyze the 1st and 2nd order systems in time domain for various test signals and Calculate steady state errors and derive generalized error series in the time domain analysis	K3
CO4	Analyze the 1st and 2nd order systems in frequency domain using Bode and Polar plots	K3
CO5	Calculate the stability of the system using Routh Hurwitz, Nyquist and Root Locus techniques.	K3
CO6	Explain about PID control and tuning, time delay responses and also discuss sequence control in process industry	K2

Pre-requisite

U18MAT3101 Partial differential Equations and Transforms

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
G Q		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S												М	
CO3	S		М										М	
CO4	S			М										
CO5			М	М										
CO6	S				М									
Course	Assess	sment	metho							т	dinaat			

Direct	Indirect
1. Continuous Assessment Test I,II	
2. Assignment: Group Presentation, Project report,	1.Course end survey
Poster preparation, Prototype or Product	, j
Demonstration etc. (as applicable)	
3. End Semester Examination	

<>-Signature of BOS chairman, MCE

INTRODUCTION	12Hours
Open loop and closed loop systems - Examples - Elements of closed lo	oop systems - Transfer function
of elements - Modeling of physical systems - Mechanical systems - Tr	anslational and Rotational
systems - Electrical networks - Block diagram - Signal flow graph - M	lason's gain formula. Transfer
function - Transfer function of DC servomotor, AC servomotor.	
TIME DOMAIN ANALYSIS	12Hours
Standard Test signals - Time response of second order system - Time	
criteria - Types of systems - Steady state error constants - Generalized	error series.
FREQUENCY RESPONSE OF SYSTEMS	12Hours
Frequency domain specifications - correlation between time and frequ	ency response for second order
systems-Bode plots- Polar Plot -Assessment of stability - Gain Margin	and phase Margin Assessment
- Lead, lag and Lead lag compensation using Bode Plot. Tutorials: B	ode plot and polar plot using
MATLAB.	
STABILITY OF CONTROL SYSTEMS	12Hours
Characteristic equation - Routh Hurwitz criterion of stability - Nyquis	t stability - Nyquist stability
criterion-Assessmentofrelativestability-GainandPhaseMargin.RootLo	cusconcept-RootLocus
procedure - Root Locus construction - Root contours- Tutorials: Stab	ility analysis of higher order
systems using MATLAB	
AUTOMATIC CONTROL	12Hours
Introduction to Automatic Control -P-I-D Control - PID Control Tunin	ng - Feed forward Control
Ratio Control - Time Delay Systems and Inverse Response Systems up	sing MATLAB tool.
Theory:60 Hrs Total Hours: 60	
REFERENCES:	
1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5th editional data and the statement of the sta	ion, Prentice Hall of India, New
Delhi, 2009.	
Delhi, 2009.	ice Hall India, 2011.
Delhi, 2009. 2. Katsuhiko Ogata, "Modern Control Engineering", 5 th edition, Prent	, Pearson India, 2014.

-	-	0	_
5	an	1	-
Signature of BO	S chairr	nan, MCE	

U18MCT5105

DESIGN OF MACHINE ELEMENTS

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1	Recognize the design process and the factors influencing it and design the simple components for static loading	K3
CO2	Apply the basic concepts of design to Estimate the life of the components subjected to varying loads.	K3
CO3	Design the circular shafts based on strength and rigidity, keys and couplings for power transmitting elements	K3
CO4	Apply the basics of power transmission to select the belts	K3
CO5	Design the welded joints, threaded joints and springs subjected to static and dynamic loads.	K3
CO6	Select the rolling contact bearings for static and cyclic loads	K3
Dro r	equisite	4

Pre-requisite

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S		М		М								М	W
CO2	S				М								М	
CO3	S												М	
CO4	М												W	
CO5	S												М	
CO6	М												W	
Course	Assess	sment	metho	ds:						Ŧ	1.			

	Direct	Indirect
1.	Continuous Assessment Test I,II	
2.	Assignment: Group Presentation, Project	
	report, Poster preparation, Prototype or	1.Course end survey
	Product Demonstration etc. (as applicable)	
3	End Semester Examination	

0 Signature of BOS chairman, MCE

DESIGN PROCESS AND DESIGN FOR STATIC LOAD	9 Hours
Machine Design – Design Process – Factors influencing design – Calculation of stresse	es for various
load combinations - theories of failure – Factor of safety – Design of curved beams – C	Crane hook
and 'C' frame – Design of levers	
DESIGN OF FLUCTUATING LOAD	8 Hours
Stress concentration – causes & remedies – fluctuating stresses – fatigue failures – S-N	curve –
endurance limit – notch sensitivity – endurance strength modifying factors – design	for finite and
infinite life - cumulative damage in fatigue failure - Soderberg, Gerber, Goodm	nan, Modified
Goodman diagrams – Fatigue design of components under combined stresses	
DESIGN OF POWER TRANSMITTING ELEMENTS	8 Hours
Shaft design on the basis of strength, torsional rigidity and lateral rigidity and A.S.M.E Design of keys and splines – Design of flange coupling and flexible bushed pin couplin Selection of Flat belts, V-belts and ribbed belts.	ng – Belt drives:
DESIGN OF JOINTS AND SPRINGS	10 Hours
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the pla theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equation compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sprin and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Multi- leaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS	s for helical ngsin series 10 Hours
Types of rolling contact Bearings - Static and dynamic load carrying capacities, Strib	
Equivalent bearing load – Load-life relationship – Selection of rolling contact bearing cyclic loads and speed – mounting of bearings – Types of failure in rolling contact bear and remedies.	
Theory:45 Hrs Total Hours	s:45
REFERENCES:	
1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill Publi Ltd., 2020.	
2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, Mc International, 2020.	
3. Prabhu T J, "Fundamentals of Machine Design", Bharat Institute of Science and Tec 2010.	
4. Alfred Hall, Alfred Holowenko, Herman Laughlin and Somani S, "Machine design" McGraw Hill, 2007.	, Tata

5.	P
Signature of BOS chairman,	NCE

U18INI5600 ENGINEERING CLINIC - V	ENCINEEDING CUINIC V	L	Т	Р	J	C
	ENGINEERING CLINIC - V	0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems •
- To enable the students to design and build simple systems on their own •
- To help experiment with innovative ideas in design and teamwork •
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to

Identify a practical problem and find a solution **CO1:**

CO2: Understand the project management techniques

CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	Μ	W		S			S	S	Μ
CO2											S		S	Μ
CO3										S			S	Μ

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	
2. Workbook report10%	1. Course Exit Survey
3. Demonstration & Viva-voce 40%	
Content:	

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the fifth semester, students will focus primarily on design project combining concepts learnt in Engineering clinics I and II

Signature of BOS chairman, MCE

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real worldproblems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group aswell as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end ofsemester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

Signature of BOS chairman, MCE		0
	\langle	P
	Signature of BOS	chairman MCE

U18VEP5505	SOCIAL VALUES	L	Т	Р	J	С
	(Mandatory)	0	0	2	0	0
Course Outcomes						

Course Outcomes

After successful completion of this course, the students should be able to			
CO1:	Understand the transformation from self to society		
CO2:	Acquire knowledge about disparity among Human Beings		
CO3:	Realize the new ethics in creating a more sustainable Society		
CO4:	Develop skills to manage challenges in social issues		
CO5:	Acquire the skills for Management of Social work & Holistic Society		
CO6:	Validate the social liabilities at dissimilar situations		

Pre-requisite

- 1. U17VEP1501 / PERSONALVALUES
- 2. U17VEP2502 / INTERPERSONALVALUES
- 3. U17VEP3503 / FAMILY VALUES
- 4. U17VEP4504 / PROFESSIONALVALUES

						CO/I	PO Maj	pping						
		(S/M/	W indic	cates sti	engtho	fcorrela	tion)	S-S	trong, N	A-Medi	um, W	-Weak		
COs						Progra	.mme O	utcome	es(POs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						S								
CO2							S							
CO3								М						
CO4											S			
CO5												S		
CO6									М					

	DIRECT	INDIRECT
1.	Group Activity / Individual performance and	1. Mini project on values / Goodwill
	assignment	Recognition
2.	Assessment on Value work sheet /Test	

		1	1
	Sa	-1	6
Signature	e of BOS ch	airman, M	CE

VALUES THROUGH PRACTICAL ACTIVITIES:

- **1.** Self and Society: Relation between self and society Different forms of society Elements of Social structures Realization of Duties and Responsibilities of Individual in theSociety
- 2. Social Values: Tolerance Responsibility Sacrifice Sympathy Service peace- nonviolence right conduct- Unity forgive dedication –Honest
- **3.** Social issues: Disparity among Human beings- Poverty-Sanitation -corruption- un employmentsuperstition – religious intolerance & castes –terrorism.
- **4. Emerging Ethics for Sustainable Society:** Unison of Men in Society Positive Social Ethics Cause and Effect Ensuring an Equitable Society- Effect of Social Media in society development of Education and Science in the Society
- **5. SocialWelfare**:SocialwelfareOrganization-ProgrammebyGovernmentandNGO's-Benefits of Social Service - Balancing the Family and Social Life – Development of Holistic Society

Workshop mode

REFERENCES

- 1. SOCIAL PROBLEMS IN INDIA ForumIAS.com PDF discuss.forumias.com/uploads/Fileupload/.../711b18f321d406be9c79980b179932.pd...
- 2. INVESTING IN CULTURAL DIVERSITY AND INTERCULTURALDIALOGUE: UNESCO ... www.un.org/en/events/culturaldiversityday/pdf/Investing_in_cultural_diversity.pdf
- 3. INDIAN SOCIETY AND SOCIAL CHANGE University of Calicut www.universityofcalicut.info/SDE/BA_sociology_indian_society.pdf
- 4. CULTURE, SOCIETY AND THE MEDIA E- class www.eclass.uoa.gr/.../MEDIA164/.../%5BTony_Bennett, James_Curran, Michael_G
- 5. SOCIAL WELFARE ADMINISTRATION IGNOU<u>www.ignou.ac.in/upload/Bswe-003%20Block-2-</u> <u>UNIT-6-small%20size.pdf</u>

SEMESTER VI

COMPUTER AIDED MANUFACTURING

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Describe the fundamentals of Computer Aided Design.	K2
CO2:	Describe the basic and constructional features of CNC machines.	K2
CO3:	Develop a CNC part programming for the basic turning and milling operation.	K3
CO4:	Explain the importance of group technology and computer aided process plan.	K2
CO5:	Generate CNC part program for a given components.	K3
CO6:	Draft, model and assemble a given dimensional engineering components.	K3

Pre-requisite

1. U17MCT2001 – Manufacturing Technology

						CO/I	PO Maj	pping						
		(S/M/	W indic	cates str	ength o	of corre	lation)	S-S	trong, N	M-Medi	um, W	-Weak		
CO						Progra	mme O	utcome	s(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S									W				
CO2	М												W	
CO3	М	М	М		М								М	
CO4	М		W											
CO5	Μ				S									
CO6	S				S					М			S	

DIRECT	IN	NDIREC T
 Internal Test I Internal Test II End semester Examination Assignment 	1.Course	e end survey
FUNDAMENTALS OF COMPUTER GRAPHICS		9 Hours
Product Cycle- Design Process- Sequential And Concurrent Engineering- Compu- – CAD System Architecture- Computer Graphics – Co-Ordinate Systems- 2D Ar Transformations- Homogeneous Coordinates – Line Drawing -Clipping- Viewing	nd 3D	-
INTRODUCTION TO CNC		8 Hours
History - Classification, Introduction to NC machine - Introduction to Computer Features of CNC Machines - Different types of CNC machines – Advantages and machines DNC and Adaptive control - Maintenance features of CNC Machines.		,

	- 0
Signatu	re of BOS chairman, MCE

COMPONENTS OF CNC MACHINES AND TOOLING 10	Hours
Description of CNC components: Structure, Drive Mechanism, gearbox, Main drive, f Motors, Axesmotors-Spindlebearing-Slideways–Recirculatingballscrews–Backlashmea compensation, linear motion guide ways - Tool magazines, ATC, APC, Chip com-	surement and
measuring systems in CNC machines –Magnetic Sensors for Spindle Orientation. Qualified and pre-set tooling – Principles of location – Principles of clampi devices. Retrofitting of Conventional Machine Tools.	ng – Work holding
CNC PART PROGRAMMING AND MAINTENANCE	11 Hours
Part Program Terminology- G and M Codes – Types of interpolation Methods of CNC programming–Manual part programming: Fixed cycle, canned cycle–Computer Assist programming – APT language – CNC part programming using CAD/CAM-Introductio Automated Part Programming. Factors influencing selection of CNC Machines - Pract introducing CNC machines in industries.	ed part on to Computer
Group Technology and CAPP	7 Hours
Introduction, part families, part classification and coding systems: OPITZ, PFA, Benef technology. Approaches to Process Planning, Different CAPP system, application and Manufacturing System(FMS) – Components – Layout.	
Theory:45 HrsPracticals:30 HrsTotal He	ours: 75
REFERENCES	
1. Radhakrishnan P., "Computer Numerical Control Machines", New Central Bool	k Agency, 2013.
2. Groover M P., "Automation, Production Systems and Computer Integrated Man Prentice Hall, 2007.	-
3. YoremKoren, "Computer Control of Manufacturing Systems", Pitman, London,	
 Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Ma management "Second Edition, Pearson Education, 1999 	anufacturing
5. Ibrahim Zeid, Sivasubramanian R, "CAD/CAM: Theory & Practice" 2 nd edition Singapore, 2009.	, McGraw Hill,
LIST OF EXPERIMENTS:	
1.Drafting	
2. Modeling	
3. Assembly	
4. Part Programming - CNC Turning Centre	
i) Step and Taper Turning	
ii) Thread cuttingiii) Drilling	
5. Part Programming - CNC Milling Centre	
i) Contouring	
ii) Drilling	
iii) Pocketing	

				0
	5	2	-	P
Signa	ture of B	OS chai	rman, N	ICE
orgine	and of D	ooona	initiani, o	

ROBOTICS ENGINEERING

L	Τ	Р	J	С
3	0	2	0	4

Course Outcomes After successful completion of this course, the students should be able to Explain the robotic terminologies for various configurations **CO1:** K2 **CO2:** Select an appropriate gripper for a given application and use a gripper for pick and place K3 application **CO3**: Calculate the forward kinematics, inverse kinematics and Jacobian for a serial robot K3 **CO4**: Apply Lagrangian and Newton-Euler methods to analyze dynamic characteristics of a robot K3 Describe various robot motion planning algorithm and robot interfaces CO5: K2 CO6: Explain and practice various programming techniques used in industrial robots K3 **Pre-requisite**

Nil

CO/PO Mapping														
(S/M/V	V indi	cates st	trength	n of co	rrelat	ion)	S ·	– Stro	ong, M	– Med	lium, V	V –Wea	ık
Cos]	Progra	imme	Outcor	nes (P	O's)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S			W					М	М			М	М
CO3	S	М	Μ		М				М	М			М	М
CO4	S	М	Μ										М	М
CO5	М													W
CO6					S				М	Μ			М	М
Cours	e Asse	essmen	t meth	ods:										
			Dire	ct							Indir	ect		
1. Co	ontinuo	ous Ass	essment	t Test I,	Π									
2. As	•		oup Pre				-	1.Cour	se end	l survey	/			
		• •	ation,	•	•	r Pro	duct			2				
Demonstration etc. (as applicable) 3. End Semester Examination														
				tion										
	RODU													Hours
Brief	Histor	у, Тур	es of ro	obots, C	Dvervi	ew of	robot	subsys	tems,	resoluti	ion, rej	peatabi	lity and	

Brief History, Types of robots, Overview of robot subsystems, resolution, repeatability an accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace, Mechanisms and transmission - Applications.

KINEMATICS OF ROBOTS 9 Hours Introduction - Matrix Representation - Homogeneous transformation matrices – Forward and Inverse kinematics Equations: Position and Orientation -Denavit- Hardenberg Representation of forward kinematics equations of robots- Degeneracy and Dexterity.

DYNAMICS OF ROBOTS

11 Hours

	-	D
Cinnet		airman, MCE
Signatu	re or bos cri	airman, MCE

 programming, teach pendant programming; Off-line programming languages – Simulation. Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1. Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India,2011. 2. Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. 3. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1st edition, Springer,2012 4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. 5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. 6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. 	ROBOT MOTION PLANNING AND ROBOT INTERFACES	5 Hours
and connections 4 Hours End effectors and Different types of grippers, vacuum and other methods of gripping - Grippers force analysis-Gripper Design-Simple problems 10 Hours ROBOT PROGRAMMING 10 Hours Robot programming: Introduction; On-line programming: Manual input, lead throug programming, teach pendant programming; Off-line programming languages – Simulation. Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1 Saeed B Niku, 'Introduction to Robotics', 2 ^{md} edition, Prentice Hall of India,2011. Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1 st edition, Springer,2012 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. 6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3 st Edition,	Robot Motion Planning: Cartesian Space vs Configuration space, Introduction	to motion planning
END EFFECTORS 4 Hours End effectors and Different types of grippers, vacuum and other methods of gripping - Grippers force analysis-Gripper Design-Simple problems 10 Hours ROBOT PROGRAMMING 10 Hours Robot programming: Introduction; On-line programming: Manual input, lead throug programming, teach pendant programming; Off-line programming languages – Simulation. Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1 Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of India,2011. 2 Mikell P Groover, "Industrial Robots rogramming: Building Applications for the Factories of the Future', 1 st edition, Springer,2012 4 Nagrath and Mittal, "Robotics and Control", John Wiley and sons,2008. S. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. 5 Supong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. B. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3 st Edition, Packt,2016. 15 Implementations'', Prentice Hall of India,2005. 9 <td>algorithms. Robot interfaces: Low level interfaces, IO digital signals, Fieldbus</td> <td>ses – Data protocols</td>	algorithms. Robot interfaces: Low level interfaces, IO digital signals, Fieldbus	ses – Data protocols
End effectors and Different types of grippers, vacuum and other methods of gripping - Grippers force analysis-Gripper Design-Simple problems 10 Hours Robot programming: Introduction; On-line programming: Manual input, lead throug programming, teach pendant programming; Off-line programming languages – Simulation. 10 Hours Robot programming: Introduction; On-line programming languages – Simulation. Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Total Hours:75 Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1 Saced B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of India,2011. 1 Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. 3 Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1 st edition, Springer,2012 4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. 5 Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. 6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 7 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn,	and connections	
force analysis-Gripper Design-Simple problems 10 Hours ROBOT PROGRAMMING 10 Hours Robot programming: Introduction; On-line programming: Manual input, lead throug programming, teach pendant programming; Off-line programming languages – Simulation. Simulation: Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1 Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of India,2011. Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. 3. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1 st edition, Springer,2012 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. 5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International, 1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3 rd Edition, Packt,2016. I. Study of different type of robotics simulation software 2. Modeling forward and inverse kinematics for robotic arm using Mathematical Software <		
ROBOT PROGRAMMING 10 Hours Robot programming: Introduction; On-line programming: Manual input, lead throug programming; teach pendant programming; Off-line programming languages – Simulation. Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1 Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of India,2011. Nikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. 3. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1 st edition, Springer,2012 4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. 5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. 6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3	End effectors and Different types of grippers, vacuum and other methods of g	ripping - Grippers
Robot programming: Introduction; On-line programming: Manual input, lead throug programming, teach pendant programming; Off-line programming languages – Simulation. Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES:		
programming, teach pendant programming; Off-line programming languages – Simulation. Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1. Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of India,2011. 2. Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. 3. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1 st edition, Springer,2012 4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. 5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. 6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3 rd Edition, Packt,2016. IST OF EXPERIMENT:	ROBOT PROGRAMMING	10 Hours
Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the robot in Gazebo, Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: 1 Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of India,2011. 2 Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. 3. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1 st edition, Springer,2012 A Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. 5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3 st Edition, Packt,2016. IST OF EXPERIMENT: 1. 1. Study of different type of robotics simulation software 2. Modeling forward and inverse kinematics for robotic arm using		1 / 2
Manipulation with Movelt, - Simulation. Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES:	programming, teach pendant programming; Off-line programming languages	– Simulation.
Theory:45 Hrs. Practical:30Hrs Total Hours:75 REFERENCES: . .		g the robot in Gazebo,
 REFERENCES: Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India,2011. Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1st edition, Springer,2012 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Develop a trajectory planning for a robot using a Robotics simulation Software Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		
 Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India,2011. Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1st edition, Springer,2012 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3^{ad} Edition, Packt,2016. IStudy of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		Total Hours:75
 Mikell P Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1st edition, Springer,2012 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International, 1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		
 McGraw Hill, New York, 2008. Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1st edition, Springer,2012 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International, 1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Develop a trajectory planning for a robot using a Robotics simulation Software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations 	1. Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of In	ndia,2011.
 Norberto Pires, 'Industrial Robots programming: Building Applications for the Factories of the Future', 1st edition, Springer,2012 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International, 1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Setup and program a robot with object profile tracking using a Robotics simulation Software Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 	2. Mikell P Groover, "Industrial Robots - Technology, Programming and A	Applications",
 the Future', 1st edition, Springer,2012 4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. 5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. 6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 	McGraw Hill, New York, 2008.	
 Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 	3. Norberto Pires, 'Industrial Robots programming: Building Applications	for the Factories of
 Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and sons,2008. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International,1987 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Setup and program a robot with object profile tracking using a Robotics simulation Software Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 	the Future', 1 st edition, Springer, 2012	
 6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International, 1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 	4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003.	
 McGraw Hill International,1987 7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. 8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: 1. Study of different type of robotics simulation software 2. Modeling forward and inverse kinematics for robotic arm using Mathematical Software 3. Offline programming of an Industrial robot using a Robotics simulation Software 5. Develop a trajectory planning for a robot using a simulation software. 6. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation 7. Writing and verifying a Program for point to point operations 8. Robot programming and simulation for Shape identification 	5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley a	nd sons,2008.
 Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York,2006. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. IST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 	6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision a	nd Intelligence",
 Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. LIST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 	-	C I
 Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India,2005. 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. LIST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations 8. Robot programming and simulation for Shape identification 	7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New Yo	ork,2006.
 9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics Programming with ROS', 3rd Edition, Packt,2016. LIST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		
 with ROS', 3rd Edition, Packt,2016. LIST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		
 LIST OF EXPERIMENT: Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		Robotics Programming
 Study of different type of robotics simulation software Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		
 Modeling forward and inverse kinematics for robotic arm using Mathematical Software Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		
 Offline programming of an Industrial robot using a Robotics simulation Software Setup and program a robot with object profile tracking using a Robotics simulation Software Develop a trajectory planning for a robot using a simulation software. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation Writing and verifying a Program for point to point operations Robot programming and simulation for Shape identification 		
 4. Setup and program a robot with object profile tracking using a Robotics simulation Software 5. Develop a trajectory planning for a robot using a simulation software. 6. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation 7. Writing and verifying a Program for point to point operations 8. Robot programming and simulation for Shape identification 		
 5. Develop a trajectory planning for a robot using a simulation software. 6. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation 7. Writing and verifying a Program for point to point operations 8. Robot programming and simulation for Shape identification 		
 6. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a simple pick and place operation 7. Writing and verifying a Program for point to point operations 8. Robot programming and simulation for Shape identification 		nulation Software
and place operation7. Writing and verifying a Program for point to point operations8. Robot programming and simulation for Shape identification		
8. Robot programming and simulation for Shape identification	and place operation	or a simple pick
	7. Writing and verifying a Program for point to point operations	
9. Setup and Program a robot to avoid obstacles	8. Robot programming and simulation for Shape identification	

-
1
MCE

MICROCONTROLLER AND EMBEDDED SYSTEMS

L	Τ	Р	J	C
3	0	2	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO1:	Compare various cores of embedded systems	K2				
CO2:	Brief the architecture, instruction set and interrupts of microcontroller	K3				
CO3:	Describe the features of ARM Cortex-M4 controller	K2				
CO4:	Interface the peripherals of ARM Cortex-M4 controller	K3				
CO5:	Develop embedded systems through hardware and software integration	K3				
CO6:	Explain the concepts of real time operating systems	K2				

Pre-requisite

1. U18MCT4103- Digital Electronics and Microprocessor

						CO/I	PO Ma	opping						
	(S/N	M/W in	dicates	s streng	gth of o	correla	tion)		S-Stro	ng, M-	Mediu	ım,W-V	Weak	
	Programme Outcomes(Pos)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ		М										М	Μ
CO2	Μ		S	Μ	S								S	S
CO3	W		М										М	М
CO4	Μ		S		S								S	S
CO5	W	Μ	S		S								S	S
CO6	S	S	Μ	Μ									М	М

Dime et	T19				
Direct	Indirect				
1. Continuous Assessment Test I,II					
2. Assignment; Group Presentation, Project report,					
Poster preparation, Prototype or Product	ict 1.Course end survey				
Demonstration etc. (as applicable)					
3. End Semester Examination					
INTRODUCTION TO EMBEDDED SYSTEMS 3 Ho					
Embedded system overview and applications, features - Brief introduction to embedded microcontroller cores: CISC, RISC, ARM and DSP.					
THE MICROCONTROLLER ARCHITECTURE 9 Hours					
	UNE	9 Hours			
Introduction to 8051 Microcontroller: Architecture, I					
	Pin configuration, Memory organ	nization, Input			
Introduction to 8051 Microcontroller: Architecture, H /Output Ports, Counter and Timers, Serial communic	Pin configuration, Memory organ ation and Interrupts, Instruction	nization, Input			
Introduction to 8051 Microcontroller: Architecture, H /Output Ports, Counter and Timers, Serial communic	Pin configuration, Memory organ eation and Interrupts, Instruction M4	nization, Input set, 9 Hours			
Introduction to 8051 Microcontroller: Architecture, H /Output Ports, Counter and Timers, Serial communic INTRODUCTION TO TIVA ARM CORTEX	Pin configuration, Memory organ eation and Interrupts, Instruction M4 figuration –I/O pin multiplexing	nization, Input set, 9 Hours , pull			
Introduction to 8051 Microcontroller: Architecture, F /Output Ports, Counter and Timers, Serial communic INTRODUCTION TO TIVA ARM CORTEX Key Features – Functional Block Diagram - Pin Con	Pin configuration, Memory organ cation and Interrupts, Instruction M4 figuration –I/O pin multiplexing Peripherals, programming Sys	nization, Input set, 9 Hours , pull tem registers,			
Introduction to 8051 Microcontroller: Architecture, H /Output Ports, Counter and Timers, Serial communic INTRODUCTION TO TIVA ARM CORTEX Key Features – Functional Block Diagram - Pin Con up/down registers, GPIO control, Memory Mapped	Pin configuration, Memory organ eation and Interrupts, Instruction M4 figuration –I/O pin multiplexing Peripherals, programming Sys dded systems, System Clocks	nization, Input set, 9 Hours , pull tem registers, and control,			

PERIPHERALS OF TIVA ARM CORTEX	9 Hours
Timer, Basic Timer, Real Time Clock (RTC), Timing generation and measure	ements, Analog
interfacing and data acquisition: ADC, Analog Comparators, DMA, Motion (Control Peripherals:
PWM Module & Quadrature Encoder Interface (QEI)	
HARDWARE/SOFTWARE INTEGRATION:	6 Hours
Host and Target Machines. Getting Embedded Software into Target System:	Programmers,
Display, Keyboard, Relay, Stepper and DC Motor Interfacing	-
REAL TIME OPERATING SYSTEMS	9 Hours
Survey of Software Architectures, Tasks and Task States, Tasks and Data, Se	maphores and Shared
Data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memo	bry Management and
Interrupt Routines in RTOS Environment. Study of embedded product design	
concepts using RTOS.	
Theory: 45 Hrs Practicals: 30 Hrs. Total Hours: 75	
REFERENCES:	
1. Kenneth J Ayala and Dhananjay V Gadre, "The 8051 Microcontroller	& Embedded Systems
using Assembly and C" Cengage Learning (India edition), 2010	5
2. Jonathan W Valvano, "Introduction to Arm Cortex -M Microcontroller	s", 2012.
3. Steve Furber, "ARM System-on-Chip Architecture", Pearson Educatio	
4. David E Simon, "An Embedded Software Primer", Pearson Education	-
5. Rajkamal," Embedded Systems: Architecture, Programming and Desig	
Hill, New Delhi, 2017	
6. Mazidi M A, Mazidi J G. and McKinlay R D., "The 8051 Microcontrol	ller & Embedded
7. systems", 2 nd Edition, Pearson, 2011	
8. Shibu K V., "Introduction to Embedded Systems" McGraw Hill, 2016.	
9. Andrew N Sloss, Dominic Symes and Chris Wright, "ARM system dev	
Elsevier, 2010.	
List of Experiments	
8051 Assembly language program & interfacing	
1. Basic programming using 8051 ALP (addition, subtraction, multiplication	n, ascending,
descending etc.)	
2. 8051 peripheral programming (ADC, counter, timer, interrupts etc.)	
3. Motor control using 8051(DC motor and stepper motor)	
4. Build and test circuits with switches, LEDs, resistors, potentiometers, and	l liquid crystal display
5. Synchronizing hardware and software input/output with switches, lights,	
and liquid crystal displays	
6. Implementation of combination lock with Capsense	
7. Motor control using PWM	
8. Development of hypothetical Switch Protocol using GPIO and timer usin	g ARM7 and PSoC
using embedded C.	5 man, and 1 500
 9. Utilization of capacitive sensing (CapSense) module of PSoC board for st 	imple applications
7. Unization of capacitive sensing (Capsense) module of PSOC board for s.	imple applications

		-		-D-
	5	>~	-	1
Signat	re of B	OS ch	airman	, MCE

U18VEP6506

NATIONALVALUES

(Mandatory)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After s	successful completion of this course, the students should be able to
CO1:	Acquire knowledge on the Essence of Indian Knowledge Tradition
CO2:	Know the great Indian personalities and follow their trail
CO3:	Understand the specialty of democracy
CO4:	Disseminate our Nation and its values to propagate peace
CO5:	Contribute with their energy and effort for a prosperous India
CO6:	Propagate the youth and the contribution for development of our Nation

Pre-requisite

- 1. U17VEP1501 / PERSONALVALUES
- 2. U17VEP2502 / INTERPERSONALVALUES
- 3. U17VEP3503 / FAMILY VALUES
- 4. U17VEP4504 / PROFESSIONALVALUES
- 5. U17VEP5505 / SOCIALVALUES

						CO	/PO Ma	pping						
		(S/M/	W ind	icates s	trength	of cor	relation)	S-S	trong,	M-Med	ium, W	/-Weak		
Cos						Prog	ramme C	Jutcom	es(POs))				
0.00	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						S								
CO2									М					
CO3							М							
CO4								S						
CO5											S			
CO6												М		

DIRECT	INDIRECT
 Group Activity / Individual performance and assignment Assessment on Value work sheet / Test 	1. Mini project on values / Goodwill Recognition

			0
	5.	m	P
Signat	ure of BOS	chairman,	MCE

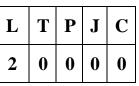
VALUES THROUGH PRACTICAL ACTIVITIES:

- 1. Essence of Indian Knowledge Tradition:
- Basic structure of Indian Knowledge System Modern Science and Indian Knowledge System Yoga and Holistic Health care Case studies Philosophical Tradition Indian Linguistic Tradition Indian Artistic Tradition.
- 2. Great Indian Leaders : Ancient rulers Freedom fighters Social reformers -Religious and Spiritual leaders Noble laureates -Scientists –Statesman.
- 3. Largest Democracy : Socialist -Secular Democratic and Republic special features of Indian constitution Three pillar of Indian democracy Fundamental rights Duties of a citizen centre state relationship.
- India's Contribution to World peace : Nonaligned Nation Principle of Pancha Sheela

 Mutual respect, non-aggression, non-interference, Equality and cooperation Role of India in UNO
 Yoga India's gift to theworld.
- 5. Emerging India : World's largest young work force Stable Economic development Labor market & Achievement in space technology Value based Social structure. Emerging economic superpower.

Workshop mode

REFERENCES


- 1. KNOWLEDGE TRADITIONS AND PRACTICES OF INDIA, CBSEPublication cbseacademic.nic.in/web_material/Circulars/2012/68_KTPI/Module_6_2.pdf
- CULTURAL HERITAGE OF INDIA SCERT Kerala www.scert.kerala.gov.in/images/2014/HSC.../35 Gandhian Studies unit-01.pdf
- 3. LEARNING TO DO: VALUES FOR LEARNING AND WORKING TOGETHER –UNESCO www.unesdoc.unesco.org/images/0014/001480/148021e.pdf \backslash
- 4. INDIA AFTER GANDHI.pdf Ramachandra Guha University of Warwick www2.warwick.ac.uk/fac/arts/history/students/modules/hi297/.../week1.pdf
- 5. INDIA'S CONTRIBUTION TO THE REST OF THE WORLD -You Sigma www.yousigma.com/interesting facts/indiasgifttotheworld.pdf
- 6. INDIA AS AN EMERGING POWER International Studies Association web.isanet.org/Web/Conferences/.../11353cac-9e9b-434f-a25b-a2b51dc4af78.pdf

U18INT6000

CONSTITUTION OF INDIA

(Mandatory course)

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Gain Knowledge about the Constitutional Law of India

CO2: Understand the Fundamental Rights and Duties of a citizen

CO3: Apply the concept of Federal structure of Indian Government

CO4: Analyze the Amendments and Emergency provisions in the Constitution

CO5: Develop a holistic approach in their life as a Citizen of India

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs					l	Progra	mme	Outco	mes(P	Os)				
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						М			W			S		
CO2						S		S				Μ		
CO3									Μ	S		W		
CO4								W	Μ			Μ		
CO5						М		Μ				S		
CO6														

DIRECT	INDIRECT					
1. Group Activity / Quiz/ Debate / Case studies	1. Surveys					
2. Class test /Assignment						
THEORY COMPONENT CONTENTS						
MODULE.1: INTRODUCTION TO INDIAN (CONSTITUTION	4 Hours				
Meaning of the constitution law and constitutional	lism - Historical perspective of	of the				
Constitution - Salient features and characteristics of the Constitution of India						
MODULE.2: FUNDAMENTAL RIGHTS	8 Hours					
Scheme of the fundamental rights - Right to Equality - Fundamental Right under Article 19 -						
Scope of the Right to Life and Liberty - Fundament	Scope of the Right to Life and Liberty - Fundamental Duties and its legal status - Directive					
Principles of State Policy – Its importance and imp	plementation					
MODULE.3: FEDERAL STRUCTURE	8 Hours					
Federal structure and distribution of legislative and fin	ancial powers between the Unio	n and the States -				
Parliamentary Form of Government in India - The con	stitutional powers and status of t	the President of				
India						
MODULE.4: AMENDMENT TO CONSTITUTION 6 How						
Amendment of the Constitutional Powers and Pro constitutional amendments in India	cedure - The historical perspe	ectives of the				

		A
<	Sau	1
Signature	of BOS cha	irman, MCE

MODULE.5	: EMERGENC	Y PROVISIONS		4 Hours			
National Emergency, President Rule, Financial Emergency Local Self Government –							
Constitutiona	l Scheme in Ind	ia					
Theory:30	Tutorial:0	Practical:0	Project:0	Total:30			
Hours							
REFEREN	CES:						
1. Constit	1. Constitution of India - Ministry of Law & Justice – PDF format						
awmin.	nic.in/coi/coiaso	n29july08.pdf∖					
2. Introdu	ction to the Con	stitution of India b	oy Durgadas Basu				
3. The Constitution of India – Google free material -							
www.constitution.org/cons/india/const.html							
4. Parliament of India – PDF formatdownload.nos.org/srsec317newE/317EL11.pdf							
5. The Role of the President of India – By Prof. Balkrishna							
6. Local C	Bovernment in Ir	ndia – E Book - Pr	adeep Sachdeva				
https://l	books.google.co	m/books//Local	_Government_in_In.				

		0
<	Sau	1
Signature	of BOS chair	man, MCE

SEMESTER VII

U18MBT7001ENGINEERING ECONOMICS AND
FINANCIAL MANAGEMENTLTPJC30003

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Evaluate the economic theories, Cost concepts and pricing policies	K2				
CO2:	Analyze the market structures and integration concepts	K2				
CO3:	Apply the concepts of national income and understand the functions of banks and concepts of globalization	K2				
CO4:	Apply the concepts of financial management for project appraisal and working capital management	K2				
CO5:	Understand accounting systems	K2				
CO6:	Analyze financial statements using ratio analysis	K2				

Pre-requisite

NIL

CO/PO Mapping

(S/M/W indicates strength of correlation) S – Strong, M – M								I – Med	lium, W	–Weak				
		Programme Outcomes (PO's)												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		М				М					М		W	
CO2											М		W	
CO3				М		М					М			
CO4											S			
CO5						М					S			
CO6			М		М						S			

Direct	Indirect
1. Internal Test I	
2. Internal Test II	
3. Assignments	1.Course End Survey
4. End Semester Exam	

< Signature of BOS chairman, MCE

Course Content:			
ECONOMICS, COST A	ND PRICING CONCEPTS		9 Hours
Cost and opportunity Cost TotalCost–ElementsofCost – Limitations of break eve	nd analysis – Determinants of de – Incremental Cost and sunk Cost t–Costcurves–Breakevenpointand n chart – Interpretation of break p – Price fixation – Pricing polici	t – Fixed and variable Cost – M dbreakevenchart a even chart – Contribution – F	arginalCosting-
	AND MANUFACTURING PE		9 Hours
Firm – Industry – Market - – Horizontal integration.	- Market structure – Diversificati	ion – Vertical integration – Me	erger
NATIONAL INCOME, N ENVIRONMENT	MONEY AND BANKING, ECO	ONOMIC	9 Hours
National income concepts	– GNP – NNP – Methods of mea ney – Value of money – Functior on – Globalization		
CONCEPTS OF FINAN	CIAL MANAGEMENT		9 Hours
	cope – Objectives – Time value o inance – Working capital and ma		sing project
	M, STATEMENT AND FINAN		9 Hours
	ems of book-keeping – Journal –		ncial
	s – Types of ratios – Significance		
Theory:45hours	Tutorials:0hour	Total Hours: 45	
REFERENCES:	······································		
	inancial Management (Theory &		
-	Essentials of Managerial Finance	<u> </u>	
3. Pandey, I. M., "Finan			
	Fundamentals of Financial Mana ing Economics and Financial Act		gancias
Chennai	ing Economics and Emancial Ac	Counting , (2003) Anurauna A	rgeneies,
	Financial Management & Policy		
	ting & Financial Management		
	ain Management Accounting Pri	inciples & Practice -P. Saravar	navel
	. A., and Ramana Murthy V.V.,		
-	cGraw Hill, New Delhi, 2006.	· · ·	
Delhi, 2001	Maheshwari K.L.," Managerial E		Sons, New
11. Samvelson and Nord	haus," Economics"-Tata McGrav	w Hill, New Delhi, 2002	

Signature of BOS chairman, MCE		0
	\leq	P
	Signature of POI	Sahairman MCE

MOBILE ROBOTICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to	
CO1: Explain different types of mobile robot locomotion	K2
CO2: Apply mobile robot kinematics and constraints	K2
CO3: Choose sensors for the perception of mobile robots.	K2
CO4: Implement robot localization techniques	K3
CO5: Explain planning and navigation in robotics	K2
CO6: Apply obstacle avoidance techniques in mobile robots	K3

Pre-requisite

Nil

CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Prog	ramme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													Μ
CO2	S	М	М		М									S
CO3	S				М								M	S
CO4	S				М									S
CO5	S												Μ	S
CO6	S				М								Μ	S
Cours	e Ass	essmer	nt met	hods:			•					•		
	Direct Indirect													
1. Co	ntinuo	ous Ass	sessme	nt Test	I,II									
	-	ent; Gi	-			•		1. Co	ourse e	nd surve	ey			
-		oster p	-		• 1									
		Demo			(as app	licable	e)							
3. End LOCO		ester E	xamin	ation									0.1	T
				1 .		1	. 1		T	C T		1		Iours
										es of Lo				
MOB						rodous	s - stat	mity -	rodol I	naneuve	eradinty	- contr		ty. Iours
-											4. 1-1-1-1-		-	
									omic c	constrair	its, kine	matic n	nodels (Л
simple car and legged robots, simulation of mobile robots ROBOT PERCEPTION 9 Hours														
	-			-	d nasa	iva/act	tiva cor	neore +	orforn	nance m	A0611700	ofsens		
										effect-b				
		ertaint						1 <i>5)</i> , D	oppier	uneu-u	aseu se	115015, V	151011-0	aseu
5011501	s, une	<u>ci tuint</u>	y 111 3C	nomg,	1110111	5.								

< Signature of BOS chairman, MCE

MOBILE ROBOT LOCALIZATION	9 Hours
Introduction to localization - challenges in localization - localization and navigation -	belief
representation - map representation - probabilistic map-based localization - Markov lo	ocalization,
Kalman localization.	
PATH PLANNING AND NAVIGATION	9 Hours
Introduction to planning and navigation - planning and reacting - path planning algorit	thms based
on A-star, Dijkstra, Voronoi diagrams – obstacle avoidance techniques	
Theory:45Hours Tota	al Hours: 45
REFERENCES:	
1. Roland Seigwart, IllahReza Nourbakhsh, and Davide Scaramuzza, "Introduction to a mobile robots", Second Edition, MIT Press, 2011.	autonomous
2. Howie Choset, Kevin M. Lynch , Seth Hutchinson , George A. Kantor , Wolfram Bu	0
Lydia E. Kavraki, Sebastian Thrun, ``Principles of Robot Motion: Theory, Algorithms, and Compare the second seco	ļ
Implementations", A Bradford Book, 2005.	
3. Gregory Dudek and Michael Jenkin, "Computational Principles of Mobile Robotics"	", Second
Edition, Cambridge University Press, 2010.	
4. Peter Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB,	Springer
Tracts in Advanced Robotics, 2011.	
5. S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006.	

				A
	\leq	Sau	-	Ľ
Signa	ture of	BOS ch	airman,	MCE

IMAGE PROCESSING AND

U18MCT7002

COMPUTER VISION

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to	
CO1: Summarize the fundamentals of digital image processing	K2
CO2: Apply image enhancement techniques in spatial and frequency domain.	K3
CO3: Apply image segmentation and clustering techniques	K3
CO4: Describe 3D vision concepts	K2
CO5: Choose appropriate techniques for different applications	K4

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
00						Progr	amme	Outco	mes(P	Os)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	W											S	
CO2	М	М	S		S								W	М
CO3	М	М	S		S								W	М
CO4	М	М		S									М	S
CO5	S	S	S	S	S								S	S

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. End semester Examination	
4. Assignment	

< Signature of BOS chairman, MCE

FUNDAMENTALS OF IMAGE PROCESSING	7 Hours				
Introduction to Image processing and Computer Vision; Digital image representation;	elements of				
digital image processing systems; Structure of the human eye; a simple image model; brightness					
adaptation and discrimination; Electromagnetic Spectrum. Image Sensing and Acquist	ition. Some				
Basic Relationships Between Pixels.					
IMAGE ENHANCEMENT	10 Hours				
Basic gray level transformations-histogram equalization- Arithmetic/logic Operations					
spatial filtering-comparison between smoothing and sharpening spatial filters. 2D Fou	rier				
transform -Smoothing & sharpening Frequency domain filters (Ideal, Butterworth, Ga	ussian)				
SEGMENTATION AND CLUSTERING	10 Hours				
Segmentation – Thresholding, Edge detection and Region growing, watershed, Binary	Morphology				
and grey morphology operations. boundary descriptors-chain codes -Fourier descript	ors –region				
descriptors, moments Clustering: K-means Clustering. Pattern recognition.					
3D VISION GEOMETRY	9 Hours				
from multiple views, Two cameras stereopsis, Three cameras and trifocal tensor, 3D vision, 2D view based representations of a 3D scene					
APPLICATIONS	9 Hours				
Industrial automation and quality inspection, Object detection; Gesture Recognition;	Finger print				
recognition, Vision for robot control-Selection of camera based on applications. Theory:45Hrs Total Hou					
Theory:45Hrs Total Hou REFERENCES:	urs:45				
KEFEKENCES:					
	D				
1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th India	ın Reprint,				
1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th India Pearson Education Asia/Addison Wesley publishing company, 2017.	1				
 Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th India Pearson Education Asia/Addison Wesley publishing company, 2017. William K Pratt, "Digital Image Processing", 2ndedition, Wiley-Inter Science 1991. 	e Publication,				
 Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th India Pearson Education Asia/Addison Wesley publishing company, 2017. William K Pratt, "Digital Image Processing", 2ndedition, Wiley-Inter Science 	e Publication,				
 Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th India Pearson Education Asia/Addison Wesley publishing company, 2017. William K Pratt, "Digital Image Processing", 2ndedition, Wiley-Inter Science 1991. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, and 	e Publication,				
 Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th India Pearson Education Asia/Addison Wesley publishing company, 2017. William K Pratt, "Digital Image Processing", 2ndedition, Wiley-Inter Science 1991. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, and Vision", Brooks/Cole, Singapore,2008. 	e Publication,				
 Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th India Pearson Education Asia/Addison Wesley publishing company, 2017. William K Pratt, "Digital Image Processing", 2ndedition, Wiley-Inter Science 1991. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, and Vision", Brooks/Cole, Singapore,2008. Davies E. R., "Computer & Machine Vision", Academic Press, 2012. 	e Publication, d Machine				

		0
<	Sau	1
Signature of	BOS chair	man, MCE

U18VEP7507	

GLOBAL VALUES

(Common to all branches of Engineering and Technology)

L	Т	Р	J	С
1	1	0	1	1

Course Outcomes

After s	uccessful completion of this course, the students should be able to
CO1:	Understand importance of ecology and its preservations
CO2:	Understand the various global issues and their causes and solutions.
CO3:	Approach any problem holistically as against giving a reductionist solution
CO4:	Learn impact of globalization on various factors such as environment, local population
CO5:	Learn to integrate and understand how an Individual peace impacts world peace

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PSO1 PSO2 PO6 PO8 PO12 PO1 PO2 PO3 PO4 PO5 PO7 PO9 P10 PO11 W CO1 Μ М М М М CO2 W Μ S S Μ М Μ W W W W W CO3 М Μ М М CO4 W S Μ Μ W W М CO5 W W W S

Direct	Indirect	
1. Individual Assignment		
2. Group Assignment		
3. Presentation	Course end survey	
4. SurpriseTest	Course end survey	
5. Practical Assessment		
6. End Semester Assessment		
Introduction to Global Values		1 Hours
Introduction to Systems Thinking		1 Hours
Ecology, ecological imbalances and its	solution	3 Hours
Globalisation Vs Localisation – an eco	nomic and Spiritual Perspective	3 Hours
Global Issues & Solutions		3Hours
Advanced Contemplative Practices		4 Hours
	Т	otal Hours: 15

< Signature of BOS chairman, MCE

REFERENCES:

1. Vethathiri's Maharishi's, "World peace" The World Community Service Centre,
Vethathiri Publications, 1957.
2. Fritz Schumacher, "Small is Beautiful", The Blond & Briggs, Published1973
3. Noam Chomsky, "Profit over People", Seven Stories Press, Published1999.
4. Vethathiri's Maharishi's, "Atomic Poison" The World Community Service Centre,
Vethathiri Publications, 1983.

				1
	\leq	Sau	-	P
Signa	ature of	BOS ch	airman, N	ACE

U18MCP7701		L	Т	Р	J	С
	PROJECT PHASE I	0	0	0	6	3
Course Outcome						

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Design, analyze, realize / simulate a physical system by using the technology they learnt during the program.

CO2: Integrate various systems into one Mechatronics product.

CO3: Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

Pre-requisite

Nil

CO/PO Mapping

	(S/M/V	V indic	ates st	rength	of con	rrelati	on)	S-Str	ong, M	-Mediur	n, W-W	eak	
COs						Prog	gramn	ne Out	comes	(POs)				
COS	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 P									PSO2			
CO1	S	S	S	S	S		М	М				S	S	S
CO2	S	S S S S M M M S S S								S				
CO3									S					
CO4										S	S			

Course Assessment methods:

Direct	Indirect
1. Interdisciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing	
5. End Semester Viva Voice	

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer based simulation projects. This exception should be recorded and approved by the department committee. Management related projects will not be allowed. The interdisciplinary projects will carry more weightage.

	0
5.	- P
Signature of BOS c	hairman, MCE

SEMESTER VIII

	PROJECT PHASE II /	L	Т	Р	J	С
U18MCP8701	INTERNSHIP	0	0	0	24	12

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Design, analyze, realize / simulate a physical system by using the technology they learnt during the program.

CO2: Integrate various systems into one Mechatronics product.

CO3: Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs					ł	rogra	mme (Jutco	mes(P	Os)				
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	S	S	S	S		Μ	Μ				S	S	S
CO2	S	S S S S M M M S S S									S			
CO3									S					
CO4										S	S			

Course Assessment methods:

Direct	Indirect
1. Inter disciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing	
5. End Semester Viva Voice	

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer-based simulation projects. This exception should be recorded and approved by the department committee. Management related project swill not be allowed. The interdisciplinary projects will carry more weightage.

	A
5.	- L
Signature of BOS c	hairman, MCE

PROGRAMME ELECTIVES

AUTOMOTIVE ELECTRONICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Explain the basics concepts of automobile engines	K2
CO2:	Describe the components of Engine Control system	K2
CO3:	State the working principle of automotive sensors.	K2
CO4:	Describe the principle of vehicle network protocols	K3
CO5:	Explain the working of various comfort system embedded in automobile	K2
CO6:	Describe the working principle of automobile safety systems	K2

Pre-requisite

U18MCI4202 - Sensors and Instrumentation

						CO/	PO M	appin	g					
(S/M/	W indi	icates s	streng	th of c	orrelati	on)	S-S	trong,	M-M	edium,	W-Wea	ak		
						Progr	amme	Outco	mes(P	Os)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	S						М					W		
CO2	S					W	W	М					М	М
CO3	S	М											W	М
CO4	S	М	М	W		W		W					S	М
CO5	S		М		М	W	М					W		М
CO6	S		М		М	М	М	W				W	S	S
Cours	e Asse	essmer	nt met	hods:	•	•	•	•	•	•		•		

Direct	Indirect	
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1.Course end survey	
INTRODUCTION		9 Hours
Automobile physical configuration - Evolution of	electronics in automobiles - Operating	principles

2	-	P
Signature	of BOS chairn	man MCE

of IC engine – Two stroke – Four stroke - Major engine components – Engi	•
arrangements -working of simple carburetor- Ignition system - definition of engine	performance
terms	
ENGINE CONTROL SYSTEM	9 Hours
Motivation For Electronic Engine Control - Electronic Engine Control System - Eng	ine Functions
And Control - Electronic Fuel Control System- Engine Mapping- Effect of Air/Fue	Ratio, Sparl
Timing on Performance, Exhaust Gas Recirculation on Performance- Electronic Ig.	nition. Digita
Engine Control System - Engine Crank (Start) - Engine Warm-Up - Open-Loop Contr	ol - Closed-
Loop Control - Hard Acceleration - Deceleration and Idle	
AUTOMOTIVE SENSORS AND COCK PIT ELECTRONICS	9 Hours
Role of sensors and actuators in automotive control- construction and working princip	le of Mass ai
flow (MAF) rate sensor - Exhaust gas oxygen sensor - Throttle plate angular pos	ition sensor
Crankshaft angular position/RPM sensor - Coolant temperature - Intake air temper	ature sensor
Manifold absolute pressure (MAP) sensor - Differential exhaust gas pressure sensor -	Vehicle speed
sensors- Introduction to Cockpit Electronics – Visual displays	1
VEHICLE NETWORKS	9 Hours
Vehicle Tracking System GPS, Vehicle networks CAN, CAN FD, LIN, FlexRay- I/O	Modules –
Features- Advantages- Protocol formats – on board diagnostics systems.	
COMFORT AND SAFETY SYSTEMS	9 Hours
Traction control system - Cruise control system - electronic control of automatic trans	
antilock braking system - electronic suspension system -airbag systems - centralized	
system - Navigation systems - climate control of cars- Maintenance and charging of b	atteries.
Theory: 45 HrsTotal Hours: 45	
REFERENCES:	
1. David Crolla, "Encyclopedia of Automotive Engineering", 6 th edition, wiley, 20	15
2. Tom Denton, "Automobile Electrical and Electronics Systems", 2 nd edition Edw	ard Arnold
Publishers, 2017.	
3. William B Ribbens, "Understanding Automotive Electronics", 5 th edition, Newn	es Publishing
2003	
4. Robert Bosch GmbH, "BOSCH Automotive Handbook", 9th edition, Bentley pu	blishers, 2014
5. Barry Hollembeak, "Automotive Electricity, Electronics and Computer Controls	
Delmar Publishers, 2001.	
6. Warren M Farnell, "Fuel System and Emission controls", 1st edition Check Cha	rt Publication
2005.	
 7. H.H. Braess, "Handbook of Automotive Engineering", Ulrich Seiffert, 1st editio International, 2005 	n, SAE

	-	-	-)-
	5	and	1	
Signat	ure of BC	OS chair	man, M	CE

CONDITION MONITORING

Course Outcomes

After s	accessful completion of this course, the students should be able to	
CO1	Recognize the types of failures and maintenance strategies	K2
CO2	Illustrate the fundamental principles of machinery vibration	K2
CO3	Explain signal analysis, fundamentals of FFT and signal conditioning	K2
CO4	Explain the vibration and noise based condition monitoring techniques	K3
CO5	Explain the thermography and wear analysis for condition monitoring	K2
CO6	Identify and explain the appropriate condition monitoring technique for a given application	K3

Pre-requisite

Nil

						CO	/PO M	Iappin	g					
	(S	S/M/W	indica	tes st	rength c				-	ong, M-	Mediun	n, W-W	eak	
COs								Outco				,		
	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М
Course	Asses	sment	meth	ods:										
			Dir								Indire	ect		
					est I,II esentatio	on, Pi	roject							
re P	eport, roduct	Poste	r pre nstrati	parati on etc	on, Pr c (as ap	ototype	e or	1.Cou	rse end	d survey				

		1	5
	S.	-1	6
Signatur	e of BOS ch	nairman, MC	E

FAILURES AND PRINCIPLES OF MAINTENANCE	07 Hours
System failure and component failure, Types of failure, Causes of failure	, Failure investigation
principles, Human factors in failure incidents, Maintenance strategies: Pr	
Predictive Maintenance, Bath Tub Curve, Failure Modes Effects and Cri-	
FUNDAMENTALS OF MACHINERY VIBRATION	10 Hours
Simple harmonic motion and vibration, Vibration and Spring Mass syst	tem, Degrees of freedom,
Free vibration and Natural frequency, Forced vibration and Vibration iso	
Freedom Motion, Forced Vibration Response, Base Excitation, For	5
Vibration Isolation, Tuned Vibration Absorber, Unbalanced Response, Cl	5
Systems, Vibration of Continuous Systems, Mode Shapes and Operation	al Deflection
Shapes	10.77
DIGITAL SIGNAL PROCESSING	10 Hours
Classification of Signals, Signal Analysis, Frequency Domain Signal An	
Fast Fourier Transform, Computer-Aided Data Acquisition, Signal Cond	0, 0
Demodulation, Cepstrum Analysis, Illustrative examples: Representation	of signals in the
frequency domain, Compressor Vibration and Engine Vibration	0.4.77
VIBRATION AND NOISE MONITORING	06 Hours
Principles of Vibration Monitoring, Misalignment Detection, Eccentr	•
Shaft, Bowed and Bent Shaft, Unbalanced Shaft, Looseness, Rub, Bearin	e ,
Machines, Acoustical Terminology, NoiseSources, SoundFields, NoiseMe	asurements,
Noise Source Identification	A 4 77
THERMOGRAPHY	06 Hours
Thermal Imaging Devices, Use of IR Camera, Industrial Application	is of Thermography in
Condition Monitoring	
WEAR DEBRIS ANALYSIS	06 Hours
Mechanisms of Wear, Detection of Wear Particles, Oil Sampling Techni	que, Oil Analysis, Limits
of OilAnalysis	
Theory:45Hours Total	Hours:45
REFERENCES:	REFERENCES:
 Amiya R. Mohanty, "Machinery Condition Monitoring: Principles Press, 2015 	and Practices", CRC
2. R.A. Collacott, "Mechanical Fault Diagnosis and Condition Monit	oring", Springer,2012.
3. W.T.Becker, R.J.Shipley, "ASM Handbook: Volume 11: Failure A ASM International, 2002.	Analysis and Prevention",
4. V.P. Singh, "Mechanical Vibrations", Dhanpat Rai & Co., 2014.	

 -		-0
\$ 5-	-	1

MICRO ELECTROMECHANICAL

L	Т	Р	J	С
3	0	0	0	3

U18MCE0003

SYSTEMS

K2
K2

Pre-requisite Nil

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М

Indirect
1. Course end survey
1

C	-		P
Signature	>~ of BOS c	hairmar	, MCE

IN'	TRODUCTION	9 Hours						
Ove	erview - Microsystems and microelectronics - definition-MEMS materials-scaling	g laws scaling in						
geo	ometry-scalinginrigidbodydynamics-scalinginelectrostaticforces-scalinginelectrici	ity-scaling						
	luid mechanics- scaling in heat transfer.							
MI	ICRO SENSORS AND ACTUATORS	9 Hours						
Wo	orking principle of Microsystems - micro actuation techniques - micro sensors-typ	bes-Micro						
	uators – types – micro pump – micro motors – micro – valves – micro grippers –							
Acc	celerometers							
FA	BRICATION PROCESS	9 Hours						
Sub	ostrates-single crystal silicon wafer formation-Photolithography-Ion implantation	-Diffusion –						
Oxi	idation-CVD-Physical vapor deposition-Deposition by epitaxy-etching process.							
MI	MICRO SYSTEM MANUFACTURING							
Bul	lk Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro syste	em packaging-						
	lk Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro systeterials - die level-device level-system level-packaging techniques - die preparation							
mat	Ik Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro systeterials - die level-device level-system level-packaging techniques - die preparation inding -wire bonding - sealing.							
mat bon	terials - die level-device level-system level-packaging techniques - die preparation							
mat bon MI	terials - die level-device level-system level-packaging techniques - die preparation nding -wire bonding - sealing.	n -surface 9 Hours						
mat bon MI Des	terials - die level-device level-system level-packaging techniques - die preparation nding -wire bonding - sealing. ICRO SYSTEM DESIGN	n -surface 9 Hours						
mat bon MI Des syst	terials - die level-device level-system level-packaging techniques - die preparation nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic	n -surface 9 Hours						
mat bon MI Des syst	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45	n -surface 9 Hours						
mat bon MI Des syst The REFI	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES:	n -surface 9 Hours cations of micro						
mat bon MI Des syst	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGr	n -surface 9 Hours cations of micro						
mat bon MI Des syst The EFI 1.	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGr Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005.	n -surface 9 Hours cations of micro raw-Hill, 2017.						
mat bon MI Des syst The EFI 1. 2.	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGr	n -surface 9 Hours cations of micro raw-Hill, 2017.						
mat bon MI Des syst The EFI 1. 2.	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGr Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensors Smart Devices", John Wily and sons Ltd., 2001.	n -surface 9 Hours cations of micro raw-Hill, 2017. MEMS and						
mat bon Des syst The EFI 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGr Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensors	n -surface 9 Hours cations of micro raw-Hill, 2017. MEMS and						
mat bon Des syst The EFI 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-applic tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGr Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensors Smart Devices", John Wily and sons Ltd., 2001. Fatikow S,Rembold U, "Microsystem Technology and Micro robotics", Spring	n -surface 9 Hours cations of micro raw-Hill, 2017. MEMS and ger-Verlag						

		_		-D-
	<	>~	-	1
Signat	ure of I	BOSC	hairma	an, MCE

U18MCE0004

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to							
CO1	Express the basic concepts of Artificial Intelligence	K2						
CO2	Demonstrate the usage of planning and decision making.	K3						
CO3	Interpret the ideas of machine learning by supervised and unsupervised learning methods	K3						
CO4	Apply Linear Regression and Logistic Regression machine learning methods.	K3						
CO5	Summarize the concepts of Artificial Neural Networks	K2						
CO6	Describe various Artificial Neural Networks methodology	K2						

Pre-requisite

Data Warehousing and Data Mining

	CO/PO Mapping													
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
		Programme Outcomes(POs)												
COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	Μ		S	S			S	Μ		М	Μ	М
CO2	S	Μ	Μ							Μ		Μ	W	М
CO3	S	S	Μ		Μ					М		М	W	М
CO4	S	S	Μ		Μ					М		М	W	М
CO5	S	S	Μ		S	S			S	М		М	S	М
CO6	S	S	Μ		S	S		W	S	М		М	S	S
Course	Asse	ssment	t metho	ods:		•	•		•					

course Assessment methods.					
Direct	Indirect				
1. Internal Test I					
2. Internal Test II					
3. Assignment	1.Course end survey				
4. Group Presentation					
5. End semester exam					
INTRODUCTION TO ARTIFICIAL INTELLIGENCE 9 Hou					
Defining Artificial Intelligence, Intelligent Agent	s, Solving Problems by searching-Problem-s	olving agents-			
Example problems - Searching for Solutions-Uninf	ormed search strategies - Informed search st	rategies –			
Heuristic functions	-	-			
KNOWLEDGE REPRESENTATION AN	KNOWLEDGE REPRESENTATION AND PREDICATE LOGIC 10 Hours				
Knowledge Representation and Mappings, Approaches to knowledge representation					
Representing simple facts in logic, Computable fund	ctions and predicates, Procedural vs Declarat	ive			
knowledge,LogicProgramming,Forwardvsbackwardreasoning.ClassicalPlanning,Makingsimple					
Desisions					

Decisions

				0
	\leq	Sau	-	Ľ
Signa	iture of B	IOS cha	airman, I	MCE

IDEA OF MACHINE LEARNING	9 Hours			
Idea of Machine learning from data, Supervised Learning : Learning a Class from Exam	ples-Noise-			
Learning Multiple Classes- Regression-Model Selection and Generalization, Unsupervi	sed learning-			
Introduction, k-Means Algorithm, Optimization objective, Random Initialization, Choos	ing number			
of clusters -Deep learning.				
LINEAR REGRESSION AND LOGISTIC REGRESSION	9 Hours			
Linear Regression -Model representation for single variable, Single variable Cost Function, Mu				
function, Gradient Decent for Linear Regression, Multivariable model representation, Logistic Regression -				
Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced Optimi	zation,			
Classification (One vs All), Problem of Overfitting, Regularization				
APPLICATIONS	9 Hours			
Applications of AI- Natural Language Processing – Machine Translation – Robot – Gaming. Int				
Artificial Neural Networks and Convolution Neural networks – Applications Use of Tensor flow				
Theory:45Total Hours:	45Hours			
REFERENCES:				
1. Stuart Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", 3rd Edition, P	earson			
Education / Prentice Hall of India,2015.				
3. Elaine Rich, Kevin Knight, Shivashankar.B.Nair, "Artificial Intelligence", Tata McGraw H	Iill,Third			
Edition, 2009				
5. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.				
 George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex ProblemSc Pearson Education / PHI,2008 	_			
8. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computationa	al Agents",			
Cambridge University Press, 2010.				
9. EthemAlpaydin, "Introduction to Machine Learning", Second Edition, MIT Press, 2015				
10. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 20	013			
11. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.				
 Y. S. Abu-Mostafa, M. Magdon-Ismail, and HT. Lin, "Learning from Data", AML Book F 2012 	Publishers,			
13. K. P. Murphy, "Machine Learning: A probabilistic perspective", MIT Press, 2012.				
14. M. Mohri, A. Rostamizadeh, and A. Talwalkar, "Foundations of Machine Learning"	', MIT Press,			
2012.				

 <	-		P	
 		-	n, MCE	

1119MCE0005	DATABASE MANAGEMENT SYSTEMS	L	Т	Р	J	С
U18MCE0005	DATADASE MANAGEMENT SISTEMS	3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to				
CO1	Understand the functional components of DBMS and Relational Model.	K2			
CO2	Devise queries using SQL to develop database application	K2			
CO3	Describe the database design approaches.	K2			
CO4	Understand data storage and retrieval techniques.	K2			
CO5	Explore concepts for transaction processing, concurrency control and NOSQL.	K2			
CO6	Illustrate the concepts of NOSQL	K2			

Pre-requisite

NIL														
		CO/PO Mapping												
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
C O						Progra	amme (Dutcome	s(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	Μ					S		Μ					М
CO2				Μ	S			М		Μ	S	Μ		М
CO3			М				М						М	
CO4			М				S							
CO5	S						S			Μ				
CO6	S	М	М							М			М	Μ

Course Assessment methous.					
Direct	Indirect				
1. Internal Test I					
2. Internal Test II	1.Course end survey				
3. Assignment: Group Presentation					
4. End semester exam					
INTRODUCTION TO DATABASE AND REI	LATIONAL MODEL	9Hours			
Introduction: Database applications, Purpose, Accessing a Relational Databases: Relational model, Database schema					
DATABASE APPLICATION DEVELOPMEN	NT	9 Hours			
Guidelines for Database Design. SQL: Data definition, Basic SQL query structure, Specifying integrity constraints in SQL, Set operations, Nested subqueries, Aggregation, Join expressions, Views. Functions, Procedures and Triggers. Accessing Databases from Programs using JDBC, Building Web Applications using PHP &MySQL. Case Study: Open Source Relational DBMS					

		-	-0-
_	5	an	1
Signat	ture of BOS	S chairma	n, MCE

Hill.2016.

2. R. Elmasri and S. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education, 2016

3. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 3nd Edition, McGraw Hill, 2014.

Thomas M. Connolly and Carolyn E. Begg, "Database Systems - A Practical Approach toDesign, 4.

C.J.Date, A.Kannan and S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson 5. Education, 2006.

REFERENCES:

45

Theory:

Abraham Silberschatz, Henry Korth, and S. Sudarshan, "Database System Concepts", Sixth Edition, McGraw-1.

Timestamp based protocols. Deadlock handling. Case Study: NoSQL: CAP Theorem and BASE

Implementation and Management", Fifth edition, Pearson Education, 2014

DATABASE DESIGN

Database Design: E-R model, E-R diagram, Reduction to relational schema, E-R design issues, Relational Database Design: features of good design, Functional Dependency theory, decomposition using functional dependency, Normal forms. (Optional: multi-valued dependency and 4th normal form).

STORAGE AND INDEXING

Storage and File structure: File Organization, RAID. Indexing: Concepts, Clustered and Non-clustered Indices, Btree and B+-tree. Basics of Hashing (Static, Dynamic). Overview of Query processing.

Transactions: Concept and purpose, ACID properties and their necessity, transactions in SQL .Transaction Schedules: Conflicts and Aborts, Serializability, Recoverability, Concurrency Control: lock-based protocols, 2- phase locking,

TRANSACTION MANAGEMENT

Properties, Types of NoSQL Systems.

11 Hours

7 Hours

9 Hours

Total Hours: 45Hours

U18MCE0006	SOFT COMPUTING	L	Т	Р	J	С
		3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to				
CO1	Identify and describe soft computing techniques and their roles in building intelligent machines	K2			
CO2	Recognize the feasibility of applying a soft computing methodology for a particular problem	K2			
CO3	Identify and select a suitable classification/clustering algorithm to solve the problem	K2			
CO4	Apply evolutionary algorithms and Fuzzy logic to solve the problem	K2			
CO5	Discuss the soft computing systems by hybrid soft computing techniques	K2			
CO6	Describe the various optimization techniques used in soft computing	K2			

Pre-requisite

1.														
							CC)/PO N	/Iapping	g				
		((S/M/V	V indic	cates st	rength	of cor	relatio	n) S	-Strong,	M-Mec	lium, W	-Weak	
						Р	rogran	nme Ou	utcomes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	М	S										S	S
CO2	S	М											М	
CO3	S		S	S				S	S				М	S
CO4	S		S		S	М		S	S				М	S
CO5	S				S			S						
CO6	S	S						S					W	W
0														

Course Assessment methods:

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. Assignment: Group Presentation	
4. End semester exam	
INTRODUCTION TO FUZZY SETS AND FUZZ	Y LOGIC SYSTEMS 9 Hours

Fuzzy sets and Fuzzy logic systems- Classical Sets and Fuzzy Sets and Fuzzy relations- Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions: Features of membership functions, standard forms and boundaries, different fuzzification methods Fuzzy toCrispconversions:LambdaCutsforfuzzysets,fuzzyRelations, Defuzzification methods.

FUZZY RULE BASED SYSTEMS

9 Hours

Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication- Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Rules, Fuzzy Inference System- Mamdani Fuzzy Models – Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting

	A-
5-	-f
Signature of BOS c	hairman, MCE

		-	_A_
_	5.	in	1
Signat	ure of BOS	S chairma	n, MCE

INTRODUCTION TO NEURAL NETWORKS

Advent of Modern Neuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline and Madaline networks; single layer network; Back propagation and multi-layer networks. Competitive learning networks: Kohonen self-organizing networks, Hebbian learning; Hopfield Networks.

GENETIC ALGORITHMS

Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA) Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based clustering Algorithm, Image processing and pattern Recognition.

HYBRID SOFT COMPUTING TECHNIQUES

Introduction - Neuro-Fuzzy Modelling-Applications of Neural Networks- Pattern Recognition and classification Genetic-Neuro Hybrid System, Genetic-Fuzzy Hybrid System, Fuzzy-Genetic Hybrid System, Simplified Fuzzy ARTMAP, Application of Soft Computing, CASE Study.

Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle Swarm Optimization (PSO).

Theory:45HrsTotal Hours:45 HrsREFERENCES:

- 1. Samir Roy, Udit Chakroborthy, —Introduction to soft computing neuro-fuzzy and genetic algorithm^I, Person Education, 2013
- 2. Timothy J.Ross, —Fuzzy Logic with Engineering applications^{II}, Tata McGraw Hill New York, Third edition, 2016
- 3. DavidE.Goldberg,—GeneticAlgorithmsinSearchOptimizationandMachineLearning,PearsonEducation, 2007.
- 4. J.-S.R Jang., C.-T Sun., & E. Mizutani, —Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligencel, Prentice-Hall of India Pvt. Ltd., 2005.

9 Hours

9 Hours

9 Hours

UNDER WATER ROBOTICS

L	Т	P	J	С
3	0	0	0	3

9 Hours

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1	Express the basic concepts of underwater vehicle and Manipulator Systems	K2
CO2	Describe the rigid body kinematics of Autonomous Underwater vehicle and manipulators	K2
CO3	Summarize the dynamics of Autonomous Underwater vehicle and manipulators.	K2
CO4	Apply controllers for dynamic control of Autonomous Underwater vehicles.	K2
CO5	Discuss the concepts of kinematic control of Underwater manipulator systems.	K2
CO6	Describe various dynamic control theories of Underwater manipulator systems.	K2

Pre-requisite

N	Π	

						CO	/PO M	Iappin	g					
	(S/M/W	V indic	ates str	rength	of corr	elation	n) S	S-Stron	g, M-M	edium,	W-Wea	k	
COs						Prog	ramme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S											W		
CO2	S	М												
CO3	S	Μ				М							M	S
CO4	S	W		W	М								S	S
CO5	S	М		W	М								W	W
CO6	S	М		W	М								Μ	M
Cours	se Ass	essmei	nt met	hods:										,
			Dir	ect						Ι	ndirect	,		
1. In	nternal	Test I												
2. In	nternal	Test I	Ι					1.Cou	rse end	l survey				
3 A	ssion	nent [.] (Froun 1	Present	tation									

- 3. Assignment: Group Presentation
- 4. End semester exam

MODELLING OF UNDER WATER ROBOTS9 HeIntroduction to Underwater Vehicles -Sensorial Systems, Actuation, Localization, Autonomous

Underwater Vehicles (AUV) Control Fault Detection/Tolerance for UUVs, Underwater Vehicle Manipulator Systems (UVMS) Coordinated Control, Future Perspectives.

MODELLING OF UNDER WATER ROBOTS10 HoursRigid Body's Kinematics-Attitude Representation by Euler Angles, Attitude Representation by
Quaternion, Attitude Error Representation,6-DOFs Kinematics, Rigid Body's Dynamics-Rigid
Body's Dynamics in Matrix Form.10 Hours

		0
<	Sau	-1
Signature	of BOS cha	airman, MCE

DYNAMIC CONTROL OF AUVS	9 Hours
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, Nor	n model Based
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/V	ehicle
Fixed Frame Based Controller	
KINEMATIC CONTROL OF UVMS	8 Hours
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, Nor	n model Based
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/V	ehicle Fixed
Frame Based Controller.	
DYNAMIC CONTROL OF UVMS	9 Hours
Feed forward Decoupling Control, Feedback Linearization, Non-regressor-Based A	Adaptive Control,
Sliding Mode Control, Adaptive Control, Output Feedback Control.	
	Total Hours: 45
REFERENCES:	
1. Gianluca Antonelli, Underwater Robots: Motion and Force Control of Vehic	ele-Manipulator
Systems, Springer Berlin Heidelberg, Second Edition 2010	
2. C. Vasudevan, K. Ganesan, Underwater Robots, Springer, Third Edition, 20)15.
3. Frank Kirchner, Sirko Straube, Daniel Kühn, AI Technology for Underwate	er Robots, First
Edition 2019.	
4. Steven W. Moore, Harry Bohm, Vickie Jensen, Underwater Robotics: Scien	ce, Design &
Fabrication, Marine Advanced Technology Education (MATE) Center, 2010).
5. Daniel R. Faust, Underwater Robots, The Rosen Publishing Group, Inc , First	st Edition, 2016.

		1	-
<	Sa	-1	8
Signature	of BOS ch	nairman, MC	E

INDUSTRIAL IOT

L	Т	Р	J	C		
3	0	0	0	3		

9 Hours

Course Outcomes

After	After successful completion of this course, the students should be able to								
CO1	Explain the basic principles of smart manufacturing.	K2							
CO2	Illustrate the importance of IoT in smart manufacturing	K2							
CO3	Describe the functions of internet of things (IoT).	K2							
CO4	Explain the key elements of Industrial internet of things (IIoT).	K2							
CO5	Explain the functions of big data analytics.	K2							
CO6	Discuss various applications of Industrial IoT.	K2							

Pre-requisite

NIL

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	Μ													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	M

Course Assessment methods:

	Direct	Indirect	
1.	Continuous Assessment Test I,II		
2.	Assignment: Group Presentation, Project		
	report, Poster preparation, Prototype or	1. Course end survey	
	Product Demonstration etc (as applicable)		
3.	End Semester Examination		
IN	TRODUCTION		9 Hours

Globalization and Emerging Issues, The Fourth Revolution, LEAN Production Systems, Smart and Connected Business Perspective, Smart Factories

IoT COMPONENTS

Cyber Physical Systems and Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data And Advanced Analysis, Cyber security inIndustry4.0,Basics of Industrial IoT, Industrial Sensing & Actuation, Industrial Internet Systems.

		0
<	Sa	-1
Signature	of BOS cha	airman, MCE

INDUSTRIAL IoT	9 Hours
Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Bu	siness Models,
IIoT Reference Architecture, Industrial IoT- Layers: IIoT Sensing, IIoT Processing	g, IIoT
Communication, IIoT Communication, IIoT Networking.	
INDUSTRIAL IOT: BIG DATA ANALYTICS	9 Hours
IIoT Analytics - Introduction, Machine Learning and Data Science, IoT Platforms,	Data
Management tool, Software-Defined Networking, Data Center Networks, Cloud C	omputing
INDUSTRIAL IoT- APPLICATION	9 Hours
Power Plants, Oil, chemical and pharmaceutical industry, Inventory Management	& Quality
Control, Plant Safety and Security (Including AR and VR safety applications), Fac	ility
Management.	
Theory:45Hours	Total Hours: 45
REFERENCES:	
1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress,	, 2016.
2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Indust	rial Internet of
Things: Cyber manufacturing Systems", Springer, 2017.	
3. Andrew Minteer, "Analytics for the Internet of Things (IoT): Intelligent ana	lytics for your
intelligent devices", Packt Publishing, 2017.	
4. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The I	Evolving World of
M2M Communications", Willy Publications, 2013.	
5. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the In	nternet of Things",
Springer, 2011.	

U18MCE0008		L	Т	Р	J	С
UISNICE0008	STATISTICAL QUALITY CONTROL	3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to							
CO1	Define the concept of probability and quality control	K2					
CO2	Explain various sampling method to measure quality and the attributes of quality.	K2					
CO3	Summarize the process behavior based on various control charts for variables.	K2					
CO4	Summarize the process behavior based on various control charts for attributes	K2					
CO5	Select the appropriate samples for the study.	K2					
CO6	Apply various techniques to improve the overall quality.	K2					

Pre-requisite

N	IL

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
~ ~		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S		М					S					
CO2	S			М					S					
CO3	S	М		S										
CO4	S				S	М				S				
CO5														
CO6														

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. Assignment: Group Presentation	
4. End semester exam	

< >. Signature of BOS chairman, MCE

INTRODUCTION	9 Hours
Probability concepts, Review of distribution: Normal, Poison's, and Binomial, Proble	ms, Measuring of
quality and control, Value and quality, Quality costs, Quality assurance	
CONTROL CHARTS FOR VARIABLES	9 Hours
Chance and assignable causes of quality variation, Control charts for variables, X-bar	, R, and s-charts,
Warning and modified control limits, Process capability study, Ranges, Moving Aver	ages, and Six s-
limits, multivariate charts.	-
CONTROL CHARTS FOR ATTRIBUTES	9 Hours
Limitation of variable chart, p-chart, problems with variable sample size, np-chart, c-	chart, u-chart, and
ku-chart, Demerits per unit control chart.	
ACCEPTANCE SAMPLING	9 Hours
Economics of sampling, Lot formation, OC-Curve-Producer's and Consumer's risk, S	Single and double
sampling plans, AOQ, AOQL, ATI, ASN, Sequential sampling plan, MIL – STD – 10	0
STD – 414 tables, IS 2500 Standard.	
QUALITY IMPROVEMENT	9 Hours
Zero defects program, Quality circle, Fishbone diagram, scatter diagram, Pareto Analy	ysis, Deming cycle,
Introduction to Reliability function, System reliability of series, parallel, and combine	d configurations,
Reliability improvement techniques.	-
Theory: 45Hours Total	l Hours:45
REFERENCES:	
1. Grant E.L. and Leavenworth, "Statistical Quality Control", Tata McGraw-Hill Publish	ing Company, 5th
edition 2002.	
2. Douglas C. Montgomery, "Statistical Quality Control", John Wiley and Sons, 2001.	
3. Fiegenbaum, A.V., "Total Quality Control", McGraw-Hill Inc., 1991.	
4. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, New D	elhi, 2006
5. Srinath L.S "Reliability Engineering", Affiliated East west Press, 2005.	

	A
5	and
Signature of BO	S chairman, MCE

U18MCE0009

COMPOSITE AND SMART MATERIALS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

	Recognize the need and characteristics of the composite materials Explain the manufacturing processes of composite materials	K2 K2
CO2 E	Explain the manufacturing processes of composite materials	K2
		112
CO3 E	Explain the applications of composites and its sustainability	K2
CO4 E	Explain the principle and working of Piezoelectric and Magnetostricitve materials	K2
CO5 E	Explain the electro active materials and shape memory alloys	K2
CO6 U	Inderstand the concept behind smart composites	K2

Pre-requisite Nil

	CO – POMapping													
	(S/M/W indicates strength of correlation) S – Strong, M – Medium, W - Weak													
~~		Program Outcomes												
CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12	PSO1	PSO2
CO1	S													
CO2													М	
CO3							М							
CO4	S												М	
CO5													М	
CO6	М													
Cours		ssment	Motho	der										

Direct	Indirect				
1. Continuous Assessment Test I,II					
2. Assignment: Group Presentation, Project					
report, Poster preparation, Prototype or 1.Course end survey					
Product Demonstration etc. (as applicable)					
3. End Semester Examination					
INTRODUCTION TO COMPOSITE MATERIALS 9 Hours					
Need and general characteristics of composite materials- mechanical advantages and limitations					
Characteristics of fibers and matrixes – classificatio	Characteristics of fibers and matrixes – classification of composites – Prepregs – Lamina, Laminate and				
sandwich construction. Ceramics.					

		D
	Sau	1
Signat	ure of BOS chairman,	MCE

MANUFACTURING AND QUALITY INSPECTION	9 Hours
Fundamentals of curing - Bag molding process - compression and vacuum molding - filan	nent winding
- Quality inspection methods for raw materials - cure cycle monitoring - cured composite	parts.
APPLICATIONS OF COMPOSITES AND SUSTAINABILITY	9 Hours
Applications of composites - Natural fibers needs and its significance - Recycling of compo	osites
PIEZOELECTRIC AND MAGNETOSTRICTIVE MATERIALS	9 Hours
Introduction to Smart Materials, Principles of Piezoelectricty, Perovskyte Piezoceramic Materials, Crystals vs Polycrystalline Systems, Piezoelectric Polymers, Modelling Piezoelectric Amplified Piezo Actuation – Internal and External Amplifications. Principles of Magnetost earth Magnetostrictive materials, Giant Magnetostriction and Magneto-resista Magnetostrictive Actuation, Joule Effect, Wiedemann Effect, Magneto volume Effect, Ma	c Actuators, riction, Rare nce effect.
ELECTRO ACTIVE MATERIALS AND SHAPE MEMORY ALLOYS	9 Hours
Introduction to Electro-active Materials, Electronic Materials, Electro-active Polymers, Io	nic Polymer
Matrix Composite (IPMC), Shape Memory Effect, Shape Memory Alloys, Shape Memor	•
Electro-rheological Fluids, Magneto Rhelological Fluids. IPMC and Polymeric Actuators, S	Shape
Memory Actuators	1
Theory: 45 Hours Tota	al: 45 Hours
References:	
1. Mallick P K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 3	rdEdition,
Maneel Dekker Inc, 2008.	,
2. Brian Culshaw, Smart Structures and Materials, Artech House, 2000	
3. Gauenzi, P., Smart Structures, Wiley, 2009	
4. Cady, W. G., Piezoelectricity, Dover Publication	

Saul				^
Saul	6	-	1	
	-	Dan		

		L	Т	Р	J	С
U18MCE0010	ADDITIVE MANUFACTURING	3	0	0	0	3
Course Outcomes:						

COUL	se Outcomes:	
After	successful completion of this course, the students should be able to	
CO1	Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.	K2
CO2	Acquire knowledge on process of transforming a concept into the final product in AM technology.	K2
CO3	Elaborate the vat polymerization and material extrusion processes and its applications.	K2
CO4	Acquire knowledge on powder bed fusion processes and its applications.	K2
CO5	Acquire knowledge on direct energy deposition processes and its applications.	K2
CO6	Evaluate the advantages, limitations, applications of binder jetting, material jetting and laminated object manufacturing processes.	K3

Pre-requisite:

Nil

						CO/	PO M	apping	ç					
		(S/M/\	N indic	ates str	ength	of corre	elation) S-	-Strong	, M-M	edium	, W-W	Veak	
						Progra	amme	Outcon	nes(PO	s)				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	S													М
CO2	S		М										М	М
CO3	S		М										М	М
CO4	S		М										М	М
CO5	S		М										М	М
CO6	S		М										М	М
Course			t moth	oda.						-			•	·

Direct	Indirect
1. Continuous Assessment Test I,II	
2. Assignment:Group Presentation, Project	
report, Poster preparation, Prototype or	
Product Demonstration etc. (as	1.Course end survey
applicable)	
3. End Semester Examination	

	Sau	1
Signatur	e of BOS cha	irman, MCE

INTRODUCTION	9 Hours
Overview - Need - Development of Additive Manufacturing (AM) Technology: Ra	pid Prototyping-
Rapid Tooling – Rapid Manufacturing – Additive Manufacturing. AM Process Chain-	- Classification –
Benefits. Applications: Building Printing-Bio Printing-Food Printing-Printing Electro	onics. Business
Opportunities and Future Directions - Intellectual Property.	
DESIGN FOR ADDITIVE MANUFACTURING (DFAM)	9 Hours
Concepts and Objectives- AM Unique Capabilities: Part Consolidation-Topolog	
Lightweight Structure - DFAM for Part Quality Improvement. Data Processing	
Preparation –Part Orientation and Support Structure Generation -Model Slicing - Tool	
Generation-Customized Design and Fabrication for Medical Applications- Case Studi	
VAT POLYMERIZATION AND MATERIAL EXTRUSION	9 Hours
Photo polymerization: Stereolithography Apparatus (SLA) - Materials -Proces	ss -Advantages-
Limitations-Applications. Digital Light Processing (DLP) - Materials - Process	
Applications. Extrusion Based System: Fused Deposition Modeling (FDM) - Process-	Materials -
Applications and Limitations.	
POWDER BED FUSION AND DIRECT ENERGY DEPOSITION	9 Hours
Powder Bed Fusion: Selective Laser Sintering (SLS): Process – Powder Fusion Mech	
Parameters – Typical Materials and Application. Selective Laser Melting (SLM) and	d Electron Beam
Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposition	n Process: Laser
Engineered Net Shaping (LENS) - Process -Material Delivery - Process Parameters -M	Aaterials -
Benefits - Applications.	
OTHER ADDITIVE MANUFACTURING PROCESSES	9 Hours
Binder Jetting: Three-Dimensional Printing - Materials -Process - Benefits and Limita	tions. Material
Jetting: Multijet Modeling- Materials- Process- Benefits. Sheet Lamination Process: L	
Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bone	ding – Thermal
Bonding- Materials-Application and Limitation.	
	Total Hours: 45
REFERENCES:	
1. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing	g for
Prototyping and Manufacturing", Hanser publications, United States, 2015,	
2. Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Tech	
Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United Sta	ates, 2015,
3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition	
United States, 2015,	-,,
4. AndreasGebhardt, "Understanding Additive Manufacturing: Rapid Prot	otyping, Rapid
Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2012,.	JI 8, 1
5. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Spring	ger., United
States, 2011,	
6. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A	A tool box for
prototype development", CRC Press., United States, 2019,	
	hnologies, and
Applications", Woodhead Publishing., United Kingdom,2016,	und
representations, woodneder aononing., Onited Kingdoin,2010,	

		-		<u>)</u>
	5	an	-1	50
Signat	ure of BO	S chair	man, M	CE

U18MCE0011

DESIGN OF MATERIAL HANDLING SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO1	Recognize the need and types of the Material Handling Equipments	K2				
CO2	Calculate the power requirements for a given belt conveyor	K3				
CO3	Select the components for the belt conveyors	K3				
CO4	Select and design the conveyors for the particular application	K3				
CO5	Differentiate the conveyors and elevators and design the bucket and cage elevators	K3				
CO6	Explain the various elements of the hoists	K2				

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO 1 PSO 2 **CO1** Μ CO2 Μ **CO3** Μ Μ Μ **CO4** S Μ W W W Μ W **CO5** Μ Μ Μ **CO6** Μ Μ Μ **Course Assessment methods:**

Direct	Indirect	
1. Continuous Assessment Test I,II		
2. Assignment: Group Presentation, Project report,		
Poster preparation, Prototype or Product	1.Course end survey	
Demonstration etc. (as applicable).		
3. End Semester Examination		
MATERIAL HANDLING EQUIPMENTS (MH	IE)	4 Hours
Materials and Bulk materials – Types of material handl	ling equipments – selection ar	nd applications of
MHE. Automation in material handling system.		
BELT CONVEYORS		10 Hours
General components of belt conveyors - Selection of be	elt speed and belt width – Dri	ve unit design:
Power requirement – coupling types and selection – Sp	eed reduction: gearbox types	and selection –
Shaft and Pulley design – selection of Idlers and Idlers	spacing - Safety devises for l	belt conveyors
DESIGN OF OTHER CONVEYORS		10 Hours

0 Signature of BOS chairman, MCE

Apron conveyors, Screw conveyors, Cleat conveyors and Pneumatic conv	veyors
ELEVATORS	11 Hours
Conveyors and Elevators - Bucket elevators: centrifugal type and continu	uous type bucket elevators-
Design of bucket elevators – Safety devices for bucket elevators Cage ele	evators: Shaft way, guides,
counter weights – safety devises	
HOIST	10 Hours
Design of Hoisting elements: Welded and roller chains – Hemp wire and Pulley – sprockets and drums	ropes – Design of ropes –
Load handling attachments - Forged and Eye hooks - crane grabs - liftin	ng magnets – Grabbing
attachments – arresting gears and brakes	
Theory:45Hrs	Total Hours:45
REFERENCES:	
1. Rudenko N., "Materials handling equipment", ELnvee Publishers, 197	70.
2. Fenner & Dunlop, "Conveyor Handbook"	
2. David VHutton "FundamentalsofFiniteElementAnalysis",McGraw-H	illInternationalEdition,
2004.	
2. Alexandrov M, Materials Handling Equipments, MIR Publishers, 198	1.
A Spinelrously (Author) V Due chlory (Author) D. Donomonia (Trong	1

4. <u>A. Spivakovsky</u>(Author), <u>V. Dyachkov</u>(Author), <u>D. Danemanis</u> (Translator) Conveyors and Related Equipment, 1966.

		-	0
	5.	m	1
Signa	ture of BOS	chairma	n, MCE

U18MCE0012

Course Outcomes

After su	After successful completion of this course, the students should be able to				
CO1	Explain the design principles for manufacturability and factors influencing it				
CO2	List and explain the factors influencing form design.				
CO3	Explain the design considerations for cast steel and casting process				
CO4	Explain the design considerations various machining process.				
CO5	Explain the use of computer in DFMA.				
CO6	Describe the Design considerations and Guidelines for assembly.				

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
C01	М													
CO2	М													
CO3	М		М										М	
CO4	М	W	S										М	W
CO5	М	W	М		W								М	
CO6	М		М										М	
0				•										

Course Assessment methods:

	DIRECT	INDIRECT				
1.	Continuous Assessment Test I,II					
2.	Assignment: Group Presentation, Project report,					
	Poster preparation, Prototype or Product	1.Course end survey				
	Demonstration etc. (as applicable).					
3.	End Semester Examination					
IN	FRODUCTION		9 Hours			
Ger	General design principles for manufacturability – Factors influencing design-Types of problems to be solved-					

General design principles for manufacturability –Factors influencing design-Types of problems to be solvedevaluation of customer's requirements-Systematic working plan for the designer-Types of problems to be solved-Possible Solutions-Evaluation method- Process capability - Feature

tolerances -Geometric assembly. tolerances - Assembly limits -Datum features - Tolerance stacks-Interchangeable part manufacture and selective

FACTORS INFLUENCING FORM DESIGN

9 Hours

Materials choice - Influence of basic design, mechanical loading, material, production method, size and weight on form design- form design of welded members and forgings-case studies

			A	1
	\leq	Sau	1	
Signa	ature of B	OS chai	irman, MC	E

Form design of grey iron, steel, malleable iron and aluminum castings. Redesign of castings ba	sed on parting
line considerations - Minimizing core requirements, machined holes, redesign of cast memb	ers to obviate
cores-case studies	
COMPONENT DESIGN - MACHINING CONSIDERATION	9 Hours
Design features to facilitate machining - drills - milling cutters - keyways - Doweling proceed	dures, counter
sunk screws - Reduction of machined area- simplification by separation - simplification by an	nalgamation -
Design for machinability - Design for economy - Design for clampability - Design for accessit	oility - Design
for assembly. Identification of uneconomical design - Modifying the design - Computer Ap	plications for
DFMA- case studies	
DESIGN FOR ASSEMBLY	9 Hours
Design for assembly (DFA) - The assembly process - Economic production quantities - Desig	<u>g</u> n
considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - Metal stitc	hing
- Fits - press-fits - snap-fits. Weldments - Characteristics and applications of arc weldments -	Economic
Production Quantities - Design Recommendations.	
Theory:45Hrs Tot	al Hours:45
REFERENCES:	
1. Geoffrey Boothroyd, G, , Assembly Automation and Product Design.NewYork, Marc	el
Dekker 2011	

9 Hours

2. Bralla, Design for Manufacture handbook, McGraw hill, 1999.

COMPONENT DESIGN – CASTING CONSIDERATION

3. Kevien Otto and Kristin Wood, Product Design. Pearson Publication, 2004.

<	Saut	1
Signature	of BOS chairm	an, MCE

After successful completion of this course, the students should be able to							
CO1:	Describe different types of Unconventional Machining processes and principle of mechanical energy based unconventional machining processes.	K2					
CO2:	Explain the working principle of electrical energy based unconventional machining processes.	K2					
CO3:	Explain the working principle of chemical energy based unconventional machining processes.	K2					
CO4:	Explain the working principle of electro chemical energy based unconventional machining processes.	K2					
CO5:	Explain the working principle of thermal energy based unconventional machining processes.	K2					
CO6:	Describe the working principle of super finishing process.	K2					
CO6: Pre-ree	Describe the working principle of super finishing process.	K					

Pre-requisite Nil

CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO -	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	W												
CO2	М	Μ												
CO3	М	Μ											Μ	
CO4	М	Μ				W							Μ	W
CO5	М	Μ											Μ	
CO6	М	Μ											Μ	

Direct	Indirect
 Internal Test I Internal Test II End semester Examination Assignment 	1.Course end survey

		D
<	Dans	1
Signature o	f BOS chai	irman, MCE

0	P
Signature of BOS ch	airman, MCE

MECHANICAL ENERGY BASED PROCESSES	9 Hours					
Introduction Unconventional Machining Process, Need, Classification, Brief overview	w of all techniques,					
Abrasive Jet Machining - Water Jet Machining - Abrasive Water Jet Machining- U	Itrasonic Machining					
(AJM, WJM, AWJM, USM). Working Principles - equipment used - Process parameter	rs – MRR –					
Applications.						
ELECTRICAL ENERGY BASED PROCESSES	9 Hours					
Electric Discharge Machining (EDM) - working Principles-equipment-Process P						
electrodes Used - Power Circuits - Dielectric - Flushing - Applications, Wire C	ut EDM					
Applications.	1					
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED	9 Hours					
PROCESSES						
Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchan	ts – Maskant-					
techniques of applying maskants - Process Parameters - Surface finish and MRR	Applications.					
Principles of ECM- equipments - MRR -Process Parameters- ECG and ECH - A	pplications.					
THERMAL ENERGY BASED PROCESSES						
Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Bea	m Machining					
(EBM), Principles-Equipment – MRR - Process Parameters - Applications.						
SUPER FINISHING PROCESS	9 Hours					
Super finishing process - Honing - honing machines, Process parameter, MRR -	Lapping –					
characteristics, Types of lapping, lapping machines, and Super finishing - Burni	shing, Magnetic					
float polishing, Magnetic field assisted polishing, Electro polishing						
Theory:45Hrs	Total Hours:45					
REFERENCES:						
1. Vijay K Jain "Advanced Machining Processes", first edition, Allied Publisher	s Pvt. Ltd., New					
Delhi, 2007.	,					
2. Benedict G F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc.	New York,					
1987						
	l, New Delhi.					
 1987 Pandey P C and Shan H S. "Modern Machining Processes", Tata McGraw-Hil 1980. 	l, New Delhi,					
3. Pandey P C and Shan H S. "Modern Machining Processes", Tata McGraw-Hil						

			_A
	5.	ne	1_
Signatu	re of BOS	chairm	an, MCE

U18MCE0015	OPERATION RESEARCH	L	Т	Р	J	C	
UIONICEUU15	UPERATION RESEARCH	3	0	0	0	3	

After successful completion of this course, the students should be able to							
CO1:	Apply linear programming model and assignment model to domain specific situations.	K2					
CO2:	Analyze the various methods under transportation model and apply the model for testing. the closeness of their results to optimal results	K2					
CO3:	Apply the concepts of PERT and CPM for decision making and optimally managing. projects	K2					
CO4:	Analyze the various replacement and sequencing models and apply them for arriving at optimal decisions.	K2					
CO5:	Analyze and apply appropriate inventory techniques in domain specific situations.	K2					
CO6:	Analyze and apply appropriate queuing theories in domain specific situations.	K2					
D							

Pre-requisite Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COa		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	S		S									W	
CO2	S	S		S									W	
CO3	S	S		S						S			W	
CO4	S	S		S									W	
CO5	S	S		S									W	
CO6	S	S		S									W	

Course Assessment methods.								
Direct	Indirect							
1. Internal Test I								
2. Internal Test II	1.Course end survey							
3. Assignment								
4. End semester Examination								
LINEAR MODEL	9 Hours							
The phases of OR study – formation of an L.P model – graphical solution – simplex algorithm –								
artificial variables technique (Big M method, two pha	ase method), duality in simplex.							
TRANSPORTATION AND ASSIGNMENT P	9 Hours							
Transportation model – Initial solution by North Wes	t corner method – least cost metho	d – VAM.						
Optimality test – MODI method and stepping stone method. Assignment model – formulation –								
balanced and unbalanced assignment problems. Trave	eling salesman problem							
PROJECT MANAGEMENT BY PERT & CP	9 Hours							

			0
	5.		1
Signatu	ire of BOS of	chairman	MCE

Basic terminologies – Constructing a project network – Scheduling computations – PERT - CPM –	
Resource smoothening, Resource leveling, PERT cost	

REPLACEMENT AND SEQUENCING MODELS

Replacement policies - Replacement of items that deteriorate with time (value of money not changing with time) – Replacement of items that deteriorate with time (Value of money changing with time) – Replacement of items that fail suddenly (individual and group replacement policies).

Sequencing models- n job on 2 machines – n jobs on 3 machines – n jobs on m machines, Traveling salesman problem

INVENTORY AND QUEUING THEORY

9 Hours

9 Hours

Variables in inventory problems, EOQ, deterministic inventory models, order quantity with price break, techniques in inventory management. Queuing system and its structure – Kendall's notation – Common queuing models - M/M/1: FCFS/ ∞/∞ - M/M/1: FCFS/ n/∞ - M/M/C: FCFS/ ∞/∞ - M/M/1: FCFS/ n/∞ -

Theory:45Hrs

Total Hours:45

REFERENCES:

1. Taha H A., "Operation Research", Pearson Education, 2007.

2. Hira and Gupta "Introduction to Operations Research", S. Chand and Co.2012

3. Hira and Gupta "Problems in Operations Research", S. Chand and Co.2010

4. Wagner, "Operations Research", Prentice Hall of India, 2000

	0
5	- P
Signature of BOS c	hairman, MCE

U18MCE0016

FINITE ELEMENT ANALYSIS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Develop the governing equations for a continuum.	K3					
CO2:	Model and assemble the stiffness matrices for 1D, 2D elements.	K3					
CO3:	Explain about plane stress and plane strain	K3					
CO4:	Choose the appropriate element type for a particular application.	K3					
CO5:	Apply the FEM for plate bending and thermal analysis	K3					
CO6:	Apply different case study of finite element analysis	K3					

Pre-requisite

N	Jil										
		CO/PO Mapping									
	(S/)	M/W i	ndicat	es stre	ngth o	f corre	elatior	ı) :	S-Stro	ng, M-	Me
COs		Programme Outcomes(POs)							POs)		
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P
CO1	S	S							S		
CO2	S	S	М								
CO3	S		S		S						
CO4	2		S			S					

ledium, W-Weak

COs		1 Togramme Outcomes(1 Os)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
C01	S	S							S		S	S		
CO2	S	S	М								S	S	М	
CO3	S		S		S						S		S	
CO4	S		S			S					S		S	

Course Assessment methods:

Course Assessment methods.	Course Assessment methous.						
Direct Indirect							
1. Internal Test I							
2. Internal Test II	Course end survey						
3. End semester Examination							
4. Assignment							
INTRODUCTION		9 Hours					
Historical background – Introduction to FEA – R	eview of Matrix Algebra and Gaussian						
elimination – Governing equations for continuun	n – Spring assemblage – Stiffness meth	od &					
Potential Energy Approach – Galerkin"s weighte	ed residual method.						
ONE DIMENSIONAL ELEMENTS – BA	R, PLANE TRUSS & BEAM	9 Hours					
Bar element - Stiffness Matrix in local and globa	al coordinates, Computation of Stress -	- Potential					
EnergyandGalerkin'sresidualmethod-SolutionofPlaneTruss-Beamelement-Stiffnessand assembly							
of stiffness matrices - Potential energy and Galerkin sapproach.							
PLANE STRESS & PLANE STRAIN – CST & LST APPROACH 8 Ho							
Binomial, Poisson and Normal distributions – pro-	operties- Fitting of Binomial, Poisson a	nd normal					

distributions to data

AXISYMMETRIC ELEMENTS AND ISOPARAMETRIC	10 Hours
FORMULATION	
Axisymmetric formulation - Stiffness Matrix - Pressure Vessel Analysis - App	lications –
Isoparametric formulation – Formulation for Bar and Plane Elements – Numerical Integ	
Gaussian & Newton-Cotes Quadrature – Evaluation of Stiffness Matrix by Gaussian Qu	
PLATE BENDING AND THERMAL ANALYSIS	9 Hours
Basic Concepts of Plate Bending – Element Stiffness Matrix and Equations – Heat Tran	sfer –
Basic Differential Equation and Units – 1d and 2d formulation.	
CASE STUDY: Finite Element Analysis on Bicycle Frame, Finite Element Analysis of	on V-
belt pulley of a fodder crushing machine.	
Theory:45Hrs Total	Hours:45
REFERENCES:	
1. Daryl, L. Logan, "A First course in the Finite Element Method", Thomson Learning	, 4th edition,
2007.	
2. Chandrupatla T.R., and Belegundu A.D., "Introduction to Finite Elements in Engine	eering",
Pearson Education, 3rd Edition, 2002.	
3. David V Hutton "Fundamentals of Finite Element Analysis", McGraw-Hill Internat	ional Edition,
2004.	
4. Rao S.S., "The Finite Element Method in Engineering", Pergammon Press, 1989.	
5. N. Reddy, "An Introduction to the Finite Element Method", Tata McGraw Hill, 3rd	Edition,
2005.	

				A
	<	2-	-	L
Sign	ature of	BOS cha	airman, I	MCE

U18MCE0017

MAINTENANCE ENGINEERING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to							
CO1:	CO1: Extend the concept and function of maintenance department and costs associated.						
CO2: Plan for preventive maintenance. K2							
CO3:	CO3: Schedule and evaluate the maintenance. K2						
CO4:	CO4: Test the reliability in maintenance. K2						
CO5:	CO5: Analyze manpower requirement. K2						
CO6:	Explain the maintenance of mechanical and electrical systems.	K2					
Due n	aquisita						

Pre-requisite

IN	11

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ								S				S	
CO2		M	М									W		S
CO3			М										М	
CO4											S		S	
CO5									S					S
CO6	S													S

Course Assessment methods:

Internal test I	Internal test I
 Internal Test I Internal Test II Group Presentation End Semester exam 	Course end survey
MAINTENANCE CONCEPT	9 Hours

MAINTENANCE CONCEPT

Maintenance objectives, levels, types of systems, benefits, effects - Responsibilities of maintenance department - Concept of maintainability - Principles of Maintenance - R&D, Overhauling and Expert systems in Maintenance, Maintenance cost and budget.

PLANNED PREVENTIVE MAINTANANCE

9 Hours

Scope and elements of PPM, Implementation, work planning and scheduling Planned maintenance procedure, effectiveness of preventive maintenance, development of checklist.

MAINTENANCE EVALUATION, PLANNING AND SCHEDULING

	0
5	r
Signature of BOS cl	hairman MCE

Maintenance evaluation, planning of maintenance function, development of maintenance department, estimation of maintenance work maintenance scheduling.

RELIABILITY IN MAINTENANCE	9 Hours
Reliability, failure functions and their models, application, design for reliability, quality reliability improvement and testing.	and reliability,
MANPOWER PLANNING MAINTENANCE OF MECHANICAL AND ELECTRICAL SYSTEMS	9 Hours
Manpower planning: Objectives, stages, Timescale, Estimation Mode, Maintenance of Be clutches, Couplings, Fastening devises, Chains, Gear Drives, Support Equipments, Electric	•
Theory:45Hrs Tota	l Hours:45
REFERENCES	
1. Mishra, R.C., K.Rathak, Maintenance Engineering and Management, Prentice Hal 2ndEdition, 2012.	l of India,

2. Er. Sushil Kumar Srivastava, Maintenance Engineering (Principles, Practices and Management) S.Chand

	0
5	- P
Signature of BOS	S chairman, MCE

MEDICAL MECHATRONICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1	Explain different measurement techniques used in physiological parameters measurement. K2					
CO2	Describe the different sensors and transducer principles used in bio medical application	K2				
CO3	Describe the signal conditioning circuits used in biomedical engineering.	K2				
CO4	Comment on various measurement systems used in diagnostics.	K2				
CO5	Comment on various monitoring systems used in diagnostics	K2				
CO6	Differentiate the working of recorders and explain the advanced systems used in medicine.	K2				

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO -						Progra	mme O	outcome	es (POs	3)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	Μ											М	М	М
CO2	Μ			W								М		
CO3	Μ			Μ								М	W	
CO4	Μ	W										М		М
CO5	Μ	W										М	М	
CO6	М				М							Μ		

Course Assessment methods:

Internal test I	Internal test I				
Internal test I Internal test II End semester Examination Assignment	Course end survey				
INTRODUCTION 9 Hours					
Introduction to the physiology of cardiac, nervous & muscular and respiratory systems. Transducers and Electrodes: Different types of transducers & their selection for biomedical applications. Electrode theory,					

Electrodes: Different types of transducers & their selection for biomedical applications. Electrode theory,
selection criteria of electrodes & different types of electrodes such as, Ag – Ag Cl, pH, etcBIO-MEDICAL SENSORS AND TRANSDUCERS9 Hours

Basic transducer principles Types — resistive, inductive, capacitive, fiber-optic, photoelectric, chemical, active and passive transducers and their description and feature applicable for biomedical instrumentation – Bio, Nano sensors and application.

BIO AMPLIFIER

Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier – right leg driven ECG amplifier. Band pass filtering, isolation amplifiers – transformer and optical isolation - isolated DC amplifier and AC carrier amplifier. Chopper amplifier. Power line interference

MEDICAL MEASUREMENT AND MONITORING SYSTEMS

Blood pressure measurement: by ultrasonic method – plethysmography – blood flow measurement by electromagnetic flow meter, cardiac output measurement by dilution method – phonocardiography – vector cardiography. Heart lung machine – artificial ventilator – Anesthetic machine – Basic ideas of CT scanner – MRI and ultrasonic scanner – cardiac pacemaker –defibrillator patient safety - electrical shock hazards - Centralized patient monitoring system.

RECORDERS AND ADVANCED SYSTEMS

Oscillagraphic – galvanometric - thermal array recorder, photographic recorder, storage oscilloscopes, electron microscope. Biotelemetry, Diathermy, Audiometers, Dialysers, Lithotripsy. CASE STUDIES: Hot wire Anemometry for respiratory flow measurements.

Theory:45Hrs

Total Hours:45

REFERENCES

- 1. Khandpur R S., "Handbook of Biomedical Instrumentation", TMH, 2014
- 2. Cromwell, Weibell and Pfeiffer, "Biomedical Instrumentation and Measurements", 2nd edition, Prentice Hall of India, 2011.
- 3. Geddes L.A., and Baker, L.E., Principles of Applied Bio-medical Instrumentation, 3rd Edition, John Wiley and Sons, 2010

4. Tompkins W J., "Biomedical Digital Signal Processing", Prentice Hall of India, 2000.

5. Arumugam M, "Bio-Medical Instrumentation", Anuradha Agencies, 2006.

	0
0	P
>-	
Signature of BOS	chairman MCE

9 Hours

9 Hours

9 Hours

OPEN ELECTIVES

Signature of BOS chairman, MCE

L	Т	Р	J	С
3	0	0	0	3

After	successful completion of this course, the students should be able to	
CO1:	Describe about the robot laws ,kinematics and dynamics	K3
CO2:	Discuss about various robotic drives and control	K2
CO3:	Illustrate the various sensor used in robotic control	K2
CO4:	Brief about the image optimization techniques	K3
CO5:	Discuss about the application of robots in various fields	K2

Pre-requisite

Nil	

					CO/	'PO Maj	pping					
		(S/M/W	indicate	s strengt	h of corr	elation)	S-Str	ong, M-	Medium	n, W-Weak		
					Progra	amme O	utcomes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12
CO1	S										S	S
CO2	S		М								S	S
CO3	S	S				W					S	
CO4	S					W					S	S
CO5	S		М					М			М	М
Course		mont	othoda									

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	1. Course -end survey
2. Open book test; Cooperative learning report,	
Assignment; Journal paper review, Group	
Presentation, Project report, Poster preparation,	
Prototype or Product Demonstration etc. (as	
applicable)	
3. End Semester Examination	
INTRODUCTION	10 Hours
Evolution of robotics - Laws of robotics - classificatio	n - robot anatomy – specification – Resolution,
repeatability and precision movement. Introduction to re-	obot arm kinematics and dynamics – planning of
manipulator trajectories.	
ROBOTIC DRIVES AND CONTROL	10 Hours
Hydraulic, Electric and Pneumatic drives – linear and rotary a	
robot manipulator - variable structure control - non-linear de	•
disturbance – PID control scheme – resolved motion control	- computed torque control, force control of robotic
manipulators. Adaptive control.	
SENSORS	10 Hours
Need for sensing system - classification of robotic sensors - s	1 · ·
sensors, safety sensors and work cell control sensors non-c	
– proximity sensors – contact and noncontact type – touch an	ad slip sensors – force and torque sensors – selection

of right sensors.

MACHINE VISION SYSTEM

10 Hours

Image Sensing and Digitizing - Image definition, Image acquisition devices, specialized lighting techniques. Digital Images - Sampling, Quantization and Encoding. Image storage. Image Processing and Analysis Data reduction – digital conversion and windowing. Segmentation – Thresholding, Edge detection and Region growing. Binary Morphology and grey morphology operations. Feature Extraction, Object recognition, Depth measurement.

APPLICATION

5 Hours

Introduction - Delivery Robots – Intelligent vehicles – Survey and inspection robots – Space Robots – Autonomous aircrafts – Underwater Inspection – Agriculture and Forestry.

Theory:45Hrs

Total Hours:45

REFERENCES

- 1. Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India, 2010.
- 2. S. R. Deb and S. Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.
- 3. Mikell P. Groover, "Industrial Robots Technology, Programming and Applications", McGraw Hill, New York, 2008.
- 4. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987
- 5. Ramesh Jam, Rangachari Kasturi, Brain G. Schunck, "Machine Vision", Tata McGraw-Hill, 1995.

6. Yoremkoren, "Robotics for Engineers", McGraw-Hill, USA, 1987.

7. P.A. Janaki Raman, "Robotics and Image Processing", Tata McGraw-Hill, 1991.

Saut	1
Signature of BOS chairn	nan. MCE

After	successful completion of this course, the students should be able to	
CO1:	To understand the basics of automation in agriculture.	K2
CO2:	To understand the concepts of Precision agricultural systems and trends	K2
CO3:	To understand importance of automation in Irrigation systems	K2
CO4:	To understand the various Automation Practices in agriculture through case studies.	K2
CO5:	To know the Applications in material handling and packaging industries	K2

Pre-requisite

	•••
	1
1.1	н.

						CO	PO M	apping	g					
		(S/M	I/W inc	licates s	strength	n of cor	relation) S	-Strong	, M-Med	ium, W-V	Weak		
COa						Prog	ramme	Outcor	nes(PO	s)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	S												S	
CO2	S					W								М
CO3	S			S										М
CO4	S			S				W					S	
CO5		М		S				W					S	
0			41	1										

Course Assessment methods:

Course Assessment methous.		
DIRECT	INDIREC	Т
5. Internal Test I	Course end survey	
6. Internal Test II		
7. Assignment		
8. Group Presentation		
9. End semester exam		
AUTOMATION IN AGRICULTURE		10 Hours
Introduction to automation- Robot farming system –whe planting robot, robot combine harvester – sensing crop s	• • • • • • • • • • • • • • • • • • • •	
PRECISION AGRICULTURAL SYSTEMS		10 Hours
Soil sensors- crop sensors – yield monitors –remote sensimaging-satellite imaging system- Principle – applicatio	e 1	hyperspectral
		1
IRRIGATION SYSTEMS		15 Hours

drought monitoring- automated controller-based irrigation system-IOT based irrigation system- case study evaluation of irrigation system in agriculture

AUTOMATION PRACTICES

-	-	ß
Signature of B	OS chai	irman, MC

Field crop production automation – Mechanization, Sensing and Control in cotton production – Automatic Rubber Tapping

	Theory: 45 Total Hours:45
RE	FERENCES
1.	Qin Zhang, Francis J. Pierce, "Agricultural Automation: Fundamentals and Practices", CRC Press, A Chapman and Hall Book, 2013
2	Qin Zhang, "Precision Agriculture Technology for Crop Farming", CRC Press, 2016.
3	Irrigation Systems, A Laycock, Irrigation Systems-Design, Planning and Construction ,2011
4	Shimon Y Nof, Springer Handbook of Automation ,2009.
5	Jensen, J.R., 2004. "Introductory Digital Image Processing: A Remote Sensing Perspective". Prentice – Hall.
	New Jersey.
6.	A.M.Michael, 2010. Irrigation - theory and practice, Vikas publishers, New Delhi.
7	http://cyber.sci-hub.tw/MTAuMTIwMS9iMTkzMzYtMTE=/10.1201%40b19336-11.pdf /
8	https://link.springer.com/chapter/10.1007/978-3-540-78831-7_63
9	https://www.safaribooksonline.com/library/view/agricultural-systems-agroecology/9780128020951
10	http://sci-hub.tw/10.1080/10106048709354084
11	https://www.safaribooksonline.com/library/view/sustainable-water-engineering/9781118541029/
12	https://www.coursera.org/specializations/gis

	0
5	- l
Signature of BO	S chairman, MCE
Signature of BO	S chairman, MCE

			0
<	5-	-	P
ure of I	BOS ch	airman, I	MCE
	<pre>ure of</pre>	ure of BOS ch	Same of BOS chairman, I

1118N/	[CO00	04						IREI			L	Т	Р	J	С
			OP	PTIM	IZA	ΓΙΟΝ	N TE	CHN	IQU	ES	3	0	0	0	3
	Cours	se Ou	tcom	es											
								ourse,	the s	tuden	ts sh	ould	be able t	0	
CO1	Unders														K2
CO2	Unders			-	-		-								K2
CO3	Apply		-	ed optii	nizatio	on tech	niques	to solv	ve prol	olems					K4
	Pre-r	equisi	ite												
	NIL														
							CO/F	PO Ma	apping	g					
	(S/M/	W indi	icates	streng	th of c	orrela	tion)	S-5	Strong	, M-M	ediu	m. W-V	Weak		
	(nes(PO		, .,			
COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12							PSO2							
			105	101	105	100	107	100	107	1010		1011		1	1502
CO1	M	M	М											М	М
CO2	M	S	S											Μ	M
CO3	S	S	М	М	S									S	S
	Cours	e Ass	essme	nt me	thods										
		Direct								I	ndir	ect			
Written Case Stu	Assignme dies	ent					Cours	e end	survey	/					
Simulati															
MODU	LE 1													9 Ho	ours
	ction to zation –	-			-				•	-		ation -	- Nature	Inspi	red
		20110			C		51 ul		, cu					9 Ho	ours
		Optim	izatio	n – A	nt Col	ony C		zation	– Bee	es Algo	orith	m – Ai	tificial B		
-	ation – (Case S	tudies	5.											
MODU														9 Ho	ours
	o Search	Algo	rithm -	– Fire	fly Al	gorith	m - F	ish Sw	arm A	Algorith	nm –	Case S	Studies.		
MODU		•.•	D	<u>. 1</u>		A T				0	<u> </u>	1.		9 Ho	ours
	olf Algo	rithm	– Bat	Algori	thm –	- Ant I	_10n U	ptimiz	zation	– Case	Stu	dies.	0.11		
IODI		on $\Lambda 1_{\ell}$	Torithe	$n \in C_{r}$	ow Co	arch A	laorit	hm	Watar	Wave	Onti	mizati	9 Ho		20
			Southin	<u> - Cr</u>	ow se		agom		vv ater	wave			Hours: 4		
Flower	• 45 Hrc											- viai			
MODU Flower Theory	1	TREN	ICEC	•											
Flower Theory	REFI				isnire	d Onti	mizati	ion Al	gorith	ms Els	sevie	r 2016	5		
Flower	REFI Xin-Sl	he Yar	ng, Na	ture-Iı					0	ms, Els			5. Ispired A	lgoritł	ıms.

	\leq	Sant	-1	10
Signat	ure of E	OS chair	rman, M	ICE

3	Ke-Lin Du, M.N.S. Swamy, Search and Optimization by Metaheuristics, Techniques and
	Algorithms Inspired by Nature, Birkhauser, 2016.
4	www.ieeeexplore.org
5	www.elsevier.com
6	www.springer.com

	-	-		D	_
	<	>~	-	1	
Ciano	turn of	BOS ch	airman	MOR	
Signa	iture or i	DOS CI	annan	NUCE	

	Mechanics in Cricket	L	Τ	P	J	С
U18MCO0005	Mechanics in Cricket	3	0	0	0	3

Course OBJECTIVES

- 1. To encourage, support and motivate the students to learn and understand concepts with a real-time things or with a sports related activity
- 2. To know the design aspects and mechanics behind the sports equipment designs
- 3. To develop goal oriented synergetic approach by rectifying errors in the pressure situations
- 4. To develop team spirit and be a team worker.
- 5. To analyze and anticipate the changes in the game and thereby reacting according to the situation

Course Outcomes

After successful completion of this course, the students should be able to						
CO1:		K2				
	placement and umpiring signals					
CO2:	Interpret the technical knowledge in the aspects of cricket	K3				
CO3:	Illustrate and make use of material science concepts in the design of cricket equipments	K3				
CO4:	Apply and interpret the knowledge of solid mechanics and fluid mechanics in the batting and bowling aspects of cricket	K3				
CO5:	Discover and explain the applications of sensor and instrumentation in the game of cricket	K3				
Duo n	aguisita					

Pre-requisite

U17MET2003 Engineering Mechanics

						CO	PO M	apping	5					
		(S/M	I/W ind	licates s	strength	n of cor	relation) S-	-Strong	, M-Med	ium, W-V	Weak		
COa						Prog	ramme	Outcor	nes(PO	s)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1			М							М		М		
CO2	S	S	W							М		М	М	М
CO3	W	W	S							М		М	М	М
CO4	S	S	S							М		М	М	М
CO5	Μ	Μ	S							М		М	М	М
0			41	-										

DIRECT	INDIRECT	ſ
1. Continuous Assessment Test I, II	1. Course-end survey	
2. Assignments, Journal paper review, Group		
Presentation, Prototype or Product Demonstration		
Open book test, Quiz etc. (as applicable)		
3. End Semester Examination		
Introduction to the Game of Cricket		9 Hours
Introduction – Evolution of cricket – Basic rules and regu	lations – Various types or levels	of cricket – Ground,
Pitch and equipment's, Ground and pitch preparation, Ph	ysical conditioning for cricket, S	tamina improvement
exercises for batting, bowling and fielding		-
Batting – Batting posture - Stance, Bat lift, Position and	orientation of bat for various type	es of shots or strokes

Signature of BOS chairman, MCE

Dowling Dowling Doll and composition and its offects in the composition half S.	
Bowling - Bowling – Ball grip, seam position and its effects in trajectory of the ball – Se	
bowling – Various Slower delivery techniques - Naku Ball, Split Finger, Leg cutter, Off	cutter, Position and
orientation for various Spin Bowling – Leg Spin, Off Spin, Top spin, Chinaman, Googly	y, Carom ball
Various Aspects of Cricket Player and Umpire	9 Hours
Fielding – Fielding Positions, Judgments according to field positions, Field adjustments ac of bowlers, Catching – Low, Flat, High catches at different positions, Slip catching, The Flat, Long throw	
Wicket-keeping – Stance for spin and pace / seam bowling – Upto the stumps, Behind th Run-outs	e stumps, Stumping,
Umpiring – 42 laws of cricket – interpretation and its application, Different signals – Sta	nce and movements
for run-outs, Eligibility criteria, Calculations for Organizing a cricket tournament – Matc	
Material Science and Composite Materials in Cricket	9 Hours
Various types of cricket – Depends on ball usage – White, Red, Pink - SG, Kookaburra, design considerations in the design of cricket bats and balls – CNC Machines in design materials used for the design of cricket bat – Aluminum, Carbon composite, Graphite –	of bats - Various Handle materials –
Cane, Willow, Rubber, Polyurethane – Design modifications in Cricket Bat – Selection	of cricket bats –
Knocking of bats	
Solid Mechanics and Fluid Mechanics in Cricket	9 Hours
Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players	1 2 2
Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momental bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of	-
bodies, Curvilinear motion - Projectile motion - Ball validation related to Co-efficient of	restitution
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket	f restitution 9 Hours
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H	f restitution 9 Hours Hot Spot – Light
 bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone 	f restitution 9 Hours Hot Spot – Light
 bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – Heter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification 	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion - Ball validation related to Co-efficient ofSensor and Instrumentation in CricketGo and No-Go Gauges for ball circularity measurement - Hawk Eye - Snicko meter - HMeter - LED Stumps - Ball Speed Sensor - Bat Swinging Speed Sensor (Intel) - DroneBowling action verificationTheory: 45 HoursTo	f restitution 9 Hours Hot Spot – Light
bodies, Curvilinear motion - Projectile motion - Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement - Hawk Eye - Snicko meter - H Meter - LED Stumps - Ball Speed Sensor - Bat Swinging Speed Sensor (Intel) - Drone Bowling action verification Theory: 45 Hours To REFERENCES	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours REFERENCES 1. The Handbook of Cricket, K. V. Andrew	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES 1. Cricket – The Techniques of the Game, Andrew, Carter, Lenham	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES 1. Cricket – The Techniques of the Game, Andrew, Carter, Lenham 2. A History of Cricket, B. Green	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES 1. Cricket – The Techniques of the Game, Andrew, Carter, Lenham 2. A History of Cricket, B. Green 3. The MCC Cricket Coaching Book (Fourth Edition)	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion - Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement - Hawk Eye - Snicko meter - H Meter - LED Stumps - Ball Speed Sensor - Bat Swinging Speed Sensor (Intel) - Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES 1. Cricket - The Techniques of the Game, Andrew, Carter, Lenham 2. A History of Cricket, B. Green 3. The MCC Cricket Coaching Book (Fourth Edition) 4. Wisden Cricketers' Almanack (Printed Annually)	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES 1. Cricket – The Techniques of the Game, Andrew, Carter, Lenham 2. A History of Cricket, B. Green 3. The MCC Cricket Coaching Book (Fourth Edition) 4. Wisden Cricketers' Almanack (Printed Annually) 5. Test Cricket in Clubs and Schools (Available from NCA)	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES 1. Cricket – The Techniques of the Game, Andrew, Carter, Lenham 2. A History of Cricket, B. Green 3. The MCC Cricket Coaching Book (Fourth Edition) 4. Wisden Cricketers' Almanack (Printed Annually) 5. Test Cricket in Clubs and Schools (Available from NCA)	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -
bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification Theory: 45 Hours To REFERENCES 1. The Handbook of Cricket, K. V. Andrew 2. The Skills of Cricket, K. V. Andrew OTHER REFERENCES 1. Cricket – The Techniques of the Game, Andrew, Carter, Lenham 2. A History of Cricket, B. Green 3. The MCC Cricket Coaching Book (Fourth Edition) 4. Wisden Cricketers' Almanack (Printed Annually) 5. Test Cricket in Clubs and Schools (Available from NCA) 6. How to Coach Cricket, R. Dellor	f restitution 9 Hours Hot Spot – Light for Pitch Analysis -

				A
	<	Sa	- 1	
Sig	nature	of BOS ch	nairman, N	ICE

U18MCO0006	LOW COST AUTOMATION	L	Т	Р	J	С
	LOW-COST AUTOMATION	3	0	0	0	3

After	After successful completion of this course, the students should be able to							
CO1:	To provide basic knowledge to implement low cost Automation in various industries	K2						
CO2:	To study the pneumatics devices and circuits and its applications	K2						
CO3:	To understand the Hydraulic devices and circuits	K2						
CO4:	To configure the Automation assembly lines used in industries	K2						
CO5:	To know the Applications in material handling and packaging industries	K2						

Pre-requisite

U17MET2003 Engineering Mechanics

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COa						Prog	ramme	Outcor	nes (PC	Ds)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	S												S	Μ
CO2	S												S	М
CO3	S		М		М								S	М
CO4	S		М		М								S	М
CO5	S												S	М

Course Assessment methods:

DIRECT	INDIRECT	ſ
1. Internal Test I	Course end survey	
2. Internal Test II		
3. Assignment		
4. Group Presentation		
5. End semester exam		
INTRODUCTION TO AUTOMATION		5 Hours

Automated manufacturing systems, fixed /programmable /flexible automation, Need of automation, Basic elements of automated systems- power, program and control. Levels of automation; control systems: Continuous and discrete control; Low cost automation, Economic and social aspects of automation.

BASICS OF PNEUMATICS AND CIRCUIT DESIGN

Operational principles and application, air compressors, Pneumatic cylinders and air motors, Pneumatic valves, Design of pneumatic circuits: speed control, reciprocating, synchronization and sequencing circuits. Hydro-pneumatic, Electro pneumatic Control in pneumatic systems.

BASICS OF HYDRAULICS AND CIRCUIT DESIGN

12 Hours

12 Hours

Principles of hydraulics, Hydraulic fluids, Filtration technology, Hydraulic- pumps, valves, and actuators. Standards in circuit diagram representation, Power pack design layout, Basic hydraulic circuits.

		1	1
	Sa	-1	6
Signature	e of BOS ch	airman, M	CE

ASS	SEMBLY AUTOMATIC	N:	8 Hours					
Types and configurations, Parts delivery at workstations-Various vibratory and non-vibratory devices for								
	ling, hopper feeders, rotar	y disc feeder, centrifugal and orientation	, Product design for automated					
AP	PLICATIONS AND CAS	SE STUDIES:	8 Hours					
		oor opening- labelling Alignment metho locking and clamping devices.	d examples- Direction Change-					
	Theory: 45	Tutorials: 0 hour	Total Hours:45					
RE	FERENCES							
1.	Anthony Esposito, "Fluid	Power with applications", Prentice Hall inter	mational, 2014.					
2								
3	Kuo.B.C, "Automatic cont	rol systems", Prentice Hall India, New Delh	i, 2007.					
4	James A Sullivan, "Fluid p	ower Theory and Applications", 4th edition	, C.H.I.P.S, 2007.					
5	Mujumdar.S.R, "Pneumati	c System", Tata McGraw Hill 2009						
6.	.E.G. Phillips, "Pneumatic	conveying", 2017.						

				0
	\leq	Sau	-	P
Signa	ature of E	BOS cha	airman, N	ICE
20400	1000000	8 (00000000)	COVER DE LA	\$ 6500

U18MCO0007

MAGICS AND MECHANICS

L	Т	Р	J	C
2	0	1	0	3

Course OBJECTIVES

- 1. To understand the mechanical engineering terminologies related to electrical/control/instrumentation engineering.
- 2. To understand the Modes of Heat transfer.
- 3. To understand thermoelectric power generation.

Course Outcomes

After successful completion of this course, the students should be able to									
CO1:	Illustrate the mechanical terminologies and compare them with appropriate electrical								
	terminologies.								
CO2:	Find the resultant of force system, resolution of forces.								
CO3:	Solve the problems related to frictional losses.								
CO4:	Describe inertia and its effects on drive selection.								
CO5:	Analyze the heat transfer rate and thermoelectric power generation.								
-									

Pre-requisite

U17MET2003 Engineering Mechanics

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO		Programme Outcomes (POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	S	S			W					М	М	М	М	
CO2	S	S												
CO3	S	S										S		М
CO4	Μ													
CO5	Μ	М												

DIRECT	INDIRECT						
1. Continuous Assessment Test I, II	1. Course-end survey						
2. Assignments, Journal paper review, Group							
Presentation, Prototype or Product Demonstration							
Open book test, Quiz etc. (as applicable)							
3. End Semester Examination							
4. Classroom teaching.							
5. Magic Demonstrations.							
6. Peer learning.							
FORCE AND MECHANICS		12 Hours					
Engineering Mechanics, units and dimensions, mass, weight	, pressure, velocity, acceleration, ele	ectrical analogy,					
force and reaction, resultant, resolution of forces.							
THE MAGIC BALL AND THE NECESSARY EVIL		8 Hours					
Friction, laws of friction, calculation of frictional forces, loss	ses due to friction, Electrical analog	у.					

WILL THE DUSTER MOVE ALONG WITH PAPER?	10 Hours			
Mass, inertia, applications of inertia, inertial effect on drivers. Moment of inertia, Calculation	n of moment of inertia			
and inertial effects on drivers.				
WORK ENERGY AND POWER	4 Hours			
Moment, torque, work, energy, power, electrical analogy.				
INTRODUCTION TO HEAT TRANSFER AND THERMOELECTRIC POWER	11 Hours			
GENERATION				
Electrical heat generation, Modes of heat transfer, thermoelectric power generation.				
Theory: 45 Hours Total: 45 Hour				
TEXTBOOKS				
 Ferdinand P. Beer& E. Russell Johnston., "Vector Mechanics for Engineers, Statics a McGarw Hill 2017. 	and Dynamics",			
 Frank P. Incropera, David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine, "Prand Mass transfer", Wiley 2015. 	inciples of Heat			
REFERENCE BOOKS				
 David Halliday, Jearl Walker, and Robert Resnick, "Fundamentals of I Wiley.2015 	Physics",4th edition,			

				A
	<	5-	-	1_
Sign	nature o	f BOS c	hairman	, MCE

INDUSTRY OFFERING ELECTIVE

U18MCE0019

PRODUCT DESIGN AND DEVELOPMENT

L	Т	P	J	С		
3	0	0	0	3		

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Apply concepts of product development and outline product planning process						
CO2:	Apply relative importance of customer needs in establishing product specifications						
CO3:	Identify concept generation activities and summarize the methodology involved in concept						
	selection and testing						
CO4:	Outline supply chain considerations in product architecture and understand theindustrial						
	design process						
CO5:	Apply design for manufacturing concepts in estimating manufacturing costs						
CO6:	Apply principles of prototyping in product development economics and highlight						
	importance of managing projects						

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Prog	amme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ		Μ		Μ					W			Μ	
CO2			Μ										Μ	
CO3	М		Μ										S	
CO4			S			W				М	Μ		Μ	
CO5			S		М	М								S
CO6					М				М		S			S

Course Assessment methods:

Direct	Indirect					
1. Internal Test I	Course end survey					
2. Internal Test II						
3. Assignment						
4. Group presentation						
5. End semester exam						
INTRODUCTION - DEVELOPMENT PROCES	INTRODUCTION - DEVELOPMENT PROCESSES AND ORGANIZATIONS – 9 Hour					
PRODUCT PLANNING						
Characteristics of successful product development to Design and develop products, duration and						
cost of product development, the challenges of product development. A generic development						

cost of product development, the challenges of product development. A generic development process, concept development: the front-end process, adapting the generic product development process, the AMF development process, product developmentorganizations, the AMF organization. The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process.

IDENTIFYING CUSTOMER NEEDS - PRODUCT SPECIFICATIONS

Signature of BOS chairman, MCE

Gathering raw data from customers, interpreting raw data in terms of customer needs	
the needs into a hierarchy, establishing the relative importance of the needs and refle	-
results and the process. Specifications, establish specifications, establishing target s	pecifications
setting the final specifications.	
CONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING	9 Hours
The activity of concept generation clarify the problem search externally, search int	ernally,
explore systematically, reflect on the results and the process, Overview of metho	dology,
concept screening, concept scoring, caveats. Purpose of concept test, choosing a	survey
population and a survey format, communicate the concept, measuring customer re	sponse,
interpreting the result, reflecting on the results and the process.	
	0.77
PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN -	9 Hours
DESIGN FOR MANUFACTURING	1
Meaning of product architecture, implications of the architecture, establishing the	
variety and supply chain considerations, platform planning, related system level de	-
Assessing the need for industrial design, the impact of industrial design, industrial design,	
managing the industrial design process, is assessing the quality of industrial design	
estimation of manufacturing cost, reducing the cost of components, assembly	, supporting
production, impact of DFM on other factors.	
production, impact of D1 W on other factors.	
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING	9 Hours
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING	9 Hours
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING	
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS	Elements of
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes,	Elements of influence of
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs,	Elements of influence of senting task,
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, qualitative factors on project success, qualitative analysis. Understanding and repre- baseline project planning, accelerating projects, project execution, postmortem project	Elements of influence of senting task, evaluation.
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, qualitative factors on project success, qualitative analysis. Understanding and repre- baseline project planning, accelerating projects, project execution, postmortem project	Elements of influence of senting task, evaluation.
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, qualitative factors on project success, qualitative analysis. Understanding and repre baseline project planning, accelerating projects, project execution, postmortem project Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 H REFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", M	Elements of influence of senting task, evaluation. ours
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, qualitative factors on project success, qualitative analysis. Understanding and reprebaseline project planning, accelerating projects, project execution, postmortem project Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 H REFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", M 2015.	Elements of influence of senting task, evaluation. ours
PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, qualitative factors on project success, qualitative analysis. Understanding and repre baseline project planning, accelerating projects, project execution, postmortem project Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 H REFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", M 2015. 2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013. 3. Timjones, "New Product Development: An Introduction to a multifunctional put to the standard put	Elements of influence of senting task, evaluation. ours cGraw Hill,
 PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, qualitative factors on project success, qualitative analysis. Understanding and repre baseline project planning, accelerating projects, project execution, postmortem project Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 H REFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", M 2015. 2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013. 3. Timjones, "New Product Development: An Introduction to a multifunctional problement", 1997. 	Elements of influence of senting task, evaluation. ours cGraw Hill, rocess",
 PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, qualitative factors on project success, qualitative analysis. Understanding and repre baseline project planning, accelerating projects, project execution, postmortem project Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 H REFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", M 2015. 2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013. 3. Timjones, "New Product Development: An Introduction to a multifunctional pn Butterworth-Heinemann, 1997. 	Elements of influence of senting task, evaluation. ours cGraw Hill,

Signature of BOS chairman, MCE

		L	Т	Р	J	С	
U18MCE0020	PRODUCT LIFECYCLE MANAGEMENT	2	0	2	0	3	

After s	After successful completion of this course, the students should be able to							
CO1:	Apply concepts of product lifecycle management and visioning							
CO2:	Apply relative importance of product concepts, processes and workflow							
CO3:	Apply principles of collaborative product development							
CO4 :	Outline considerations in system architecture understand the industrial process							
CO5:	Apply product lifecycle management strategy and assessment							
CO6:	Apply the infrastructure assessment, assessment of current systems and applications.							
Pro_roc								

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Prog	amme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		Μ		Μ					W			Μ	
CO2			М										Μ	
CO3	М		Μ										Μ	
CO4			S			W				М	М		Μ	
CO5			S		М	М								S
CO6						М							М	

Course Assessment methods:

Direct	Indirect	
1. Internal Test I	Course end survey	
2. Internal Test II		
3. Assignment		
4. Group presentation		
5. End semester exam		

INTRODUCTION TO PRODUCT LIFE CYCLE MANAGEMENT6 HoursDefinition, PLM Lifecycle Model, Threads of Product Lifecycle Management, Need for Product
Lifecycle Management, Opportunities and Benefits of Product Lifecycle Management, Views,
Components and Phases of Product Lifecycle Management, Product Lifecycle Management
feasibility study, Product Lifecycle Management Visioning.

PLM CONCEPTS, PROCESSES AND WORKFLOW

Characteristics of Product Lifecycle Management, Environment Driving Product Lifecycle Management, Product Lifecycle Management Elements, Drivers of Product Lifecycle Management, Conceptualization, Design, Development, Validation, Production, Support of Product Lifecycle Management.

100 million (100 m	A
5	-1
Signature of BOS ch	airman MCE

COLLABORATIVE PRODUCT DEVELOPMENT	6 Hours
Engineering Vaulting, Product Reuse, Smart Parts, Engineering Change Managen	nent, Bill of
Materials and Process Consistency, Digital Mock-Up and Prototype Development	t, Designfor
Environment, Virtual Testing and Validation, Marketing Collateral.	
SYSTEM ARCHITECTURE	6 Hours
Introduction, Types of Product Data, Product Lifecycle Management systems,	
Features of Product Lifecycle Management System, System architecture, Product	
information models, Functionality of the Product Lifecycle Management Systems	
DEVELOPING A PLM STRATEGY AND ASSESSMENT	9 Hours
Strategy, Impact of strategy, implementing a PLM strategy, PLM Initiatives to Suppo	ort Corporate
Objectives, Infrastructure Assessment, Assessment of Current Systems and Application	18.
PRACTICAL:	30 Hours
1. Streamline collaboration to capture and manage the creation,	1
revision, release of CADdata simulation models and documentations	
2. Create, assign and mange task, setting priorities of task to the teams on trac	k,
3. Resolving issues (issue management)	
4. View and markup complex 3D product design	
5. Change management capabilities	
6. Customization and implementation of various industrial practices	
7. Conceptualization for Product Lifecycle Management	
8. Validation for Product Lifecycle Management	
9. Building Product information models	
Theory: 30 Tutorial: 0 Practical: 30 Project: 0 Total: 60 H	ours
10.	
Theory: 45Tutorial: 0Practical: 0Project: 0Total: 45 He	ours
REFERENCES:	
 Michael Grieves, Product Lifecycle Management: Driving the Next General Thinking, Mc Graw Hill, 2015. 	tion of Lean
 Martin Eigner, System Lifecycle Management – Engineering Digitalization 4.0), Springer Vieweg 2021. 	(Engineering
 Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McG 2015 	rawHill,
4. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013.	

		_	A	
	<	Sau	1	
Sign	nature of	BOS cha	irman, MCE	

			-0-
<	5	-	P
ure of E	BOS cha	airman,	MCE
	Sure of E		ure of BOS chairman,

Course	Outcomes
--------	----------

After successful completion of this course, the students should be able to					
CO1: Explain the applications of HMI's in various domains	K2				
CO2: Differentiate various communication protocols used in HMI Development	K2				
CO3: Describe car multimedia systems and the hardware, software evolution	K2				
CO4: Summarize various tools used for HMI development for automobile application	K2				
CO5: Explain the importance of user experience with a case study.					
CO6: Use various graphic tools and advanced techniques to create UI's	K3				

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ	W												Μ
CO2	Μ	S												Μ
CO3		Μ	Μ											Μ
CO4		S		М										Μ
CO5		Μ	Μ		Μ									Μ
CO6		Μ	Μ		Μ									Μ

Direct	Indirect					
1. Continuous Assessment Test I, II	Course end survey					
2. Open book test; Cooperative learning report,						
Assignment; Journal paper review, Group						
Presentation, Project report, Poster preparation,						
Prototype or Product Demonstration etc. (as						
applicable)						
3. End Semester Examination						
INTRODUCTION TO HMI AND AUTOMOTIVE ELECTRONICS						
HMI use cases for Automotive, Industrial, Consume	er Electronics, Medical and Aero - I	ECUs within				
car and their functionalities. Communication prot	car and their functionalities. Communication protocols for ECUs. (CAN, LIN, Most, FlexRay,					
Ethernet)						
CAR MULTIMEDIA 9 Hours						
Instrument Cluster, In Vehicle Infotainment, Professional	l Systems, Rear Seat Entertainment - Ev	volution of car				
multimedia, Overview, H/W, S/W and mechanics						
AUTOMOTIVE HMI		9 Hours				
HMI Architecture & Concepts, H/W Platform(intel,Qualcomm,i.MX6), S/W Platform(OS, Graphics libraries						
and Connectivity), Services(Navigation, map Engine, Alexa), Application Framework(Qt, Android sdk,						
CGISTUDIO, IAR SYSTEMS), HMI domain specific applications - HMI application components, Widgets,						
Framework, Framework model and state machine.	Framework, Framework model and state machine.					
UX AND UI		10 Hours				

< > Signature of BOS chairman, MCE

Introduction to UX design - stages, theory, Design thinking, UX Case Studies, Comparison of UX and UI, Interaction concepts, Graphic design with introduction to tools (Adobe Photoshop, Adobe XD, Blender) - Asset Design - Overview only, Guidelines and norms, 2D/3D rendering.

TRENDS AND ADVANCED TOPICS

10 Hours

Voice, Gesture, Vision, sensor based UI controls, Haptics, New technologies (eyegaze, gesture, dual display), SPI - android auto, car play, Smart City and Public Transport, ride sharing, personal, Virtual Reality, Augmented Reality and Mixed Reality, UI Analytics (Usage patterns), Debugging, Performance Profiling

Theory: 45 Hours

Total Hours: 45

REFERENCES:

- 1. Shuo Gao , Shuo Yan, Hang Zhao, Arokia Nathan, "Touch-Based Human-Machine Interaction: Principles and Applications", Springer Nature Switzerland AG; 1st edition,2021.
- 2. Robert Wells, "Unity 2020 By Example: A project-based guide to building 2D, 3D, augmented reality, and virtual reality games from scratch", Packt Publishing Limited, 2020.
- 3. Ryan Cohen, Tao Wang, "GUI Design for Android Apps", Apress, Berkeley, CA, 2014.

U18ECE0058	A dream and TINAT	L	Т	Р	J	C
	Advanced HMI	2	0	2	0	3

After successful completion of this course, the students should be able to	
CO1: Summarize HMI architecture and its subcomponents	K2
CO2: Develop real time automotive applications using tools such as Unity and Qt.	K3
CO3: Develop simple HMI using Android and Web app development tools	K3
CO4: Perform HMI testing and validation for the developed system	K3

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 Μ W Μ Μ S Μ CO2 CO3 Μ Μ Μ Μ S CO4 Μ Μ

Course Assessment methods:

Direct	Indirect				
4. Continuous Assessment Test I, II	Course end survey				
5. Open book test; Cooperative learning report,					
Assignment; Journal paper review, Group					
Presentation, Project report, Poster preparation,					
Prototype or Product Demonstration etc. (as					
applicable)					
6. End Semester Examination					
INTRODUCTION		2 Hours			
HMI Architecture & Concepts, HMI Subcomponen	HMI Architecture & Concepts, HMI Subcomponents				
GAMING ADVANCED 3D DEVELOPMENT		9 Hours			
Introduction to game development and advanced	3D development, Game Engine,	Unity 3D –			
installation -code editor - camera - game objects and	transform – Renderer – lighting – U	I-Scripting,			
Realtime 3D in Automotive world, HMI Developme	ent.				
QT		8 Hours			
History of QT, Why Qt? Supported Platforms, Qt Installation, Qt Creator, Qt Modules, Signals and					
slots, Event Processing.					
ANDROID AND WEB APP DEVELOPENT					
Android, PWA, HTML CSS JavaScript (Front End Frameworks)					

< Signature of BOS chairman, MCE

3 Hours

Introduction, elements of HMI, Challenges of HMI Testing, Verification and Validation

Theory: 30 Hours	Practical: 15 Hours	Total Hours: 45

REFERENCES:

- 1. Shuo Gao, Shuo Yan, Hang Zhao, Arokia Nathan, "Touch-Based Human-Machine Interaction: Principles and Applications", Springer Nature Switzerland AG; 1st edition,2021.
- 2. Robert Wells, "Unity 2020 By Example: A project-based guide to building 2D, 3D, augmented reality, and virtual reality games from scratch", Packt Publishing Limited, 2020.
- 3. Lee Zhi Eng , "Qt5 C++ GUI Programming Cookbook: Practical recipes for building crossplatform GUI applications, widgets, and animations with Qt 5, 2nd Edition, Packt Publishing Limited, 2019.
- 4. .Karim Yaghmour, "Embedded Android: Porting, Extending, and Customizing", First Edition, Shroff/O'Reilly, 2013
- 5. Louis J.Williams, "Basic Programming Android for beginners Handbook", IT Campus Academy, March 2016
- 7. Julie C. Meloni, "Sams Teach Yourself HTML, CSS, and JavaScript All in One", Pearson Education, 2011.
- 8. Arnon Axelrod, "Complete Guide to Test Automation by Arnon Axelrod", a Press, September 2018.

8.Dean Alan Hume, "Progressive Web Apps", Manning Publisher, December 2017.

LIST OF EXPERIMENT:

- 1. Setting up of Raspberry Pi with capacitive touch screen
- 2. Setting up the Unity environment.
- 3. Working with UI controls of Unity.
- 4. Qt Installation and configuration.
- 5. Creating Dialogs and Main windows using Qt programming.
- 6. Working with building blocks of practical web design using HTML
- 7. Webpage design with CSS and Form validation using JavaScript.

1
nan, MCE

MINOR SPECIALISATION

After	successful completion of this course, the students should be able to
CO7:	Discuss the basics concepts of 3D printing technology
CO8:	Explain the basics of computer graphics
CO9:	Develop CAD models for 3D printing
CO10	Select a specific material for the given application
CO11	Explain various method for designing and modeling for industrial applications
CO12	Import and Export CAD data and generate .stl file

Pre-requisite

	CO/PO Mapping											
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
COs					Prog	ramme O	utcomes	(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M											
CO2	S	W										
CO3	M	S	M		S							
CO4	M	S	M									
CO5	M	S	M		S				M			
CO6	М				S				M			

Course Assessment methods:

DIRECT	INDIRECT	INDIRECT		
Internal test I				
Internal test II	Course end survey			
End semester Examination				
Assignment				
INTRODUCTION		8 Hours		

INTRODUCTION

Introduction, Design considerations, Principles of 3D printing, Additive v/s Conventional Manufacturing processes, components – nozzle, plate, feeder heater

FUNDAMENTALS OF COMPUTER GRAPHICS

Computer Graphics - Co-Ordinate Systems- 2D And 3D Transformations Homogeneous Coordinates - Line Drawing -Clipping- Viewing Transformation.

CAD

Definitions, evolution, Product design and rapid product development, conceptual design, detail design, prototyping, 3D solid modeling and slicing software and their role in 3D printing, CAD Data formats, Data translation, Data loss, STL format, creation of STL file.

PRINTING MATERIALS

10 Hours

7 Hours

11 Hours

Materials - Plastics, Metals, Ceramics, Carbon fiber, Nitinol, Biological Tissues, Hydrogels, Graphene; Material Selection, Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties, Support Materials.

INDUSTRIAL APPLICA	TIONS	9 Hours
Product Models, manufacturin	ng – Printed electronics, Biopolymers, Pack	aging, Healthcare, Food
processing industry, Medical,	Biotechnology, Displays; Future trends.	
Theory: 45 Hours	Practical: 15 Hours.	Total Hours: 60
REFERENCE BOOKS		
1. Hod Lipson, Melba ku	rman, "Fabricated the new world of 3D prin	ting", John Wiley & sons, 2013.
2. CK Chua, Kah Fai Leo	ong, "3D Printing and Rapid Prototyping-	Principles and Applications", World
Scientific, 2017.		
	V. Rosen and Brent Stucker, "Additive M	Manufacturing Technologies: Rapid
Prototyping to Direct Di	igital Manufacturing", Springer, 2010.	
	derstanding Additive Manufacturing: Rapid	Prototyping, Rapid Tooling, Rapid
Manufacturing", Hanser	Publisher, 2011	
5. Khanna Editorial, "3D F	Printing and Design", Khanna Publishing Hou	ise, Delhi.
	g of Metals: Fundamentals and Testing of 3D	and 4D Printing by Hisham Abdel-
Aal		
LIST OF EXPERIN	IENTS	
1. 3D Modelling of a singl	*	
2. Assembly of CAD mode	1	
3. Exercise on CAD Data l	Exchange.	
4. Generation of .stl files.		

L	Τ	Р	J	С
3	0	0	0	3

After	After successful completion of this course, the students should be able to					
CO1:	Understand the fundamentals of additive manufacturing					
CO2:	Describe the operating principles of liquid based additive manufacturing process.					
CO3:	Describe the operating principles of solid based additive manufacturing process.					
CO4:	Explain the concepts of powder based additive manufacturing process.					
CO5:	Describe the principles of binder and LOM additive manufacturing process.					
CO6:	Understand the various types of post-processing in additive manufacturing process.					

Pre-requisite

U18MCR0001 - Fundamentals of 3D Printing

							0					
CO/PO Mapping												
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs					Prog	ramme O	utcomes	(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	W										
CO2	S	W										
CO3	М	S	Μ									
CO4	М	S	Μ									
CO5	М	S	Μ									
CO6	М	M	W									
2												

Course Assessment methods:

DIRECT	CT	
Internal test I Internal test II End semester Examination Assignment	Course end survey	
INTRODUCTION		7 Hours
Overview Designminiple need and advente	and of additive menufacturing. Decodures	

Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes.

LIQUID BASED A	AND SOLID BASED	ADDITIVE MA	NUFACTURING	10 Hours	
SYSTEMS					
Photo polymerization: Stereolithography Apparatus (SLA) - Materials -Process –Advantages Limitations-					

Applications. Digital Light Processing (DLP) - Materials – Process - Advantages - Applications. Extrusion Based System: Fused Deposition Modeling (FDM) - Process-Materials - Applications and Limitations.

POWDER BASED ADDITIVE MANUFACTURING SYSTEMS	9 Hours				
Powder Bed Fusion: Selective Laser Sintering (SLS): Process – Powder Fusion Mechanism – Process					
Parameters – Typical Materials and Application. Selective Laser Melting (SLM) and Electron Beam					
Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposition Process: Laser					
Engineered Net Shaping (LENS) - Process - Material Delivery - Process Parameters - Materials - Benefits -					
Applications.					

Signature of BOS chairman, MCE

BINDER AND LAMINATED OBJECT MANUFACTURING SYSTEMS

10 Hours

Binder Jetting: Three Dimensional Printing - Materials -Process - Benefits and Limitations. Material Jetting: Multijet Modeling- Materials- Process- Benefits. Sheet Lamination Process: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding – Thermal Bonding-Materials-Application and Limitation.

POST-PROCESSING IN ADDITIVE MANUFACTURING

9 Hours

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, Brief information on characterization techniques used in additive manufacturing, Applications of additive manufacturing in rapid prototyping, rapid manufacturing, rapid tooling, repairing and coating.

Total Hours: 45

REFERENCE BOOKS

- 1. CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2009.
- 2. Ali Kamrani, Emad Abouel Nasr, Rapid Prototyping Theory and Practice (Manufacturing Systems Engineering Series), Springer, 2006
- 3. Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011
- 5. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

	113			-1)
Sig	nature	of BOS	chairm	an, M	CE

U18MCR0003

MECHATRONICS IN 3D PRINTING

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Understand the fundamentals of mechatronics and its importance in 3D Printing						
CO2:	Describe the operating principles of 3D Printing actuators and Controllers						
CO3:	Describe the mechanical components in 3D Printing						
CO4:	Explain the different sensors used in 3D Printing						
CO5:	Classify the communication protocols.						

Pre-requisite

U18MCR0002 - Additive Manufacturing Processes

	CO/PO Mapping											
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs	Programme Outcomes(POs)											
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	M										
CO2	S	W										
CO3	М	S	Μ									
CO4	М	S	Μ		Μ							
CO5	М	S	Μ		Μ							
~												

Course Assessment methods:

DIRECT	INDIRECT				
Internal test I					
Internal test II	Course end survey				
End semester Examination					
Assignment					
INTRODUCTION		7 Hours			
Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics – 3 pillars of 3D printing, resolution, accuracy and repeatability					
ACTUATORS AND CONTROLLERS		10 Hours			
Types of Stepper and Servo motors – Construction – W	orking Principle – Advantages and Dis	sadvantages,			
motor drivers, Controller board, Screens and user interf	aces.				
MECHANICAL COMPONENTS IN 3D PRINT	ING	9 Hours			
Pulley, Timing belt, lead screw, Bearing, Guide ways, Coupling, Spring, Extruder, Cooling fan, Gears and					
types.					
SENSORS		10 Hours			
Principles of working - Construction-characteristics and limitations of Thermal Sensor or Temperature Sensor, Filament Sensor, Proximity sensor or bed levelling sensors, Thermistor, Thermocouple, RTD, Encoders.					

< Signature of BOS chairman, MCE

INDUSTRIAL COMMUNICATION PROTOCOLS

Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII & RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), IPP (Internet printing protocol) – Printing from mobile devices.

	Theory: 45 Hours	Practical: 15 Hours.	Total Hours: 60
REFE	RENCE BOOKS		
1. C	K Chua, Kah Fai Leong, "3D Printing and	Rapid Prototyping- Principles and	Applications", World
Se	cientific, 2009.		
2. A	li Kamrani, Emad Abouel Nasr, Rapid Pro	ototyping Theory and Practice (M	lanufacturing Systems
E	ngineering Series), Springer, 2006		
3. La	an Gibson, David W. Rosen and Brent S	Stucker, "Additive Manufacturing	Technologies: Rapid
Pı	rototyping to Direct Digital Manufacturing",	Springer, 2010.	
4. A	ndreas Gebhardt, "Understanding Additive]	Manufacturing: Rapid Prototyping,	Rapid Tooling, Rapid
М	Ianufacturing", Hanser Publisher, 2011		
5. K	hanna Editorial, "3D Printing and Design", I	Khanna Publishing House, Delhi.	
6. R	ichard Zurawski, "Industrial Communication	n Technology Handbook", CRC Pre	ess, 2nd Edition, 2017.
List	t of experiments:		
	Temperature measurement using Arduino		
	Data visualization with Arduino		
	Position measurement		
4.	Stepper motor control using Arduino		
5	Some motor control using Arduing		

- 5. Servo motor control using Arduino
- 6. UART and I2C Communication protocol

9 Hours

3D PRINTING LABORATORY

L	Т	Р	J	С
0	0	2	0	1

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Investigate on file Import and model configuration.
CO2:	Plan on setting orientation, slicing and tool path generation.
CO3:	Create components using 3D printer.
CO4:	Perform tensile and compression testing on part.

Pre-requisite

U18MCR0003 - Mechatronics in 3D Printing

					CO	/PO Maj	oping					
		(S/M/W	/ indicate	es strengt	h of corr	elation)	S-Str	ong, M-N	Medium,	W-Weak	X	
Cos					Prog	ramme O	utcomes	(Pos)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S								S	S		
CO2	S								S	S		
CO3	S								S	S		
CO4	S								S	S		

Course Assessment methods:

DIRECT	INDIRECT
Work book	Course end survey
Model Exam	
LIST OF EXPERIMENTS	
1. Importing and Configuring Model	
2. Build option and orientation setting	
3. Slicing setting and Correction	
4. Support and Tool path Generation	
5. Build a components without support material	
6. Build a component with support material	

Build a component with support material
 Mechanical testing (Tensile and Compression)

		-0-
\leq	Sau	P
Signature of E	OS chairman,	MCE

U18MCR0005		L	Т	Р	J	C
	PROJECT	0	0	0	6	3

After	successful completion of this course, the students should be able to
CO1:	Design, analyze, realize / simulate a physical system by using the technology they learnt during the
	program.
CO2:	Integrate various systems into one Mechatronics product.
CO3:	Work in a team with confined time duration.
CO4 :	Disseminate his work both in oral and written format.

Pre-requisite

					CO	/PO Maj	pping					
		(S/M/W	⁷ indicate	es strengt	h of corr	elation)	S-Str	ong, M-N	Medium,	W-Weak	K	
COs					Progr	amme O	utcomes	(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	S		Μ	Μ				S
CO2	S	S	S	S	S	М	М	М				S
CO3									S			
CO4										S	S	

Course Assessment methods:

DIRECT	INDIRECT
6. Interdisciplinary work	
7. Innovation	
8. Working model/ simulation result	1.Course end survey
9. Report with good referencing	
10. End Semester Viva Voice	
	· · · · · · · · · · · · · · · · · · ·

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a 3D printing project. However, special considerations can be given for interdisciplinary measurement and computer based simulation projects. This exception should be recorded and approved by the department committee. Management related projects will not be allowed. The interdisciplinary projects will carry more weightage.

Δ.
$C \downarrow$
Saul
Signature of BOS chairman, MCE
organization of the of the initiality in the

			0
<	5-	-	P
ure of	BOS ch	airman, I	MCE
	<pre>ure of</pre>	ure of BOS ch	Same of BOS chairman, I