KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

COIMBATORE - 641049

REGULATION 2018A(R18A)

(2021 Batch onwards)

SYLLABUS

1st to 8thSemesters

BE MECHATRONICS ENGINEERING

-		-D-
Signature of BOS	chairman	MCE

DEPARTMENT OF MECHATRONICS ENGINEERING

VISION

To achieve excel in academic and industrial automation research and innovative product development driven by mechatronics systems."

MISSION

- Impart the right blend of knowledge and skills to students and enable them to apply it in real life situations.
- Motivate the students towards interdisciplinary research to cater to the local and global needs.
- Achieve innovation in developing industrial products with social responsibility.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of Mechatronics Engineering Undergraduate Program are to prepare the students:

- **I.** To develop innovative and sustainable products with multidisciplinary Engineering expertise.
- **II.** Solve intricate engineering problems by identifying the crux from the mechatronics engineering fundamentals and engage in lifelong learning in their profession.
- **III.** To work or pursue higher education in multicultural, multilingual and multinational environment with competent oral and written communication.
- **IV.** To lead and contribute in a team entrusted with professional, social and ethical responsibilities.

PROGRAM OUTCOMES (POs)

Graduates of the Mechatronics Engineering Undergraduate Program should have the ability to:

PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

		-	-0-
	5	an	1
Signa	ture of BOS	S chairma	an, MCE

PO3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates of the Mechatronics Engineering Undergraduate Program will have the ability to:

PSO1. Design and develop Mechatronics systems to solve the complex engineering problem by integrating electronics, mechanical and computing systems.

PSO2. To analyze and provide solution for the real time engineering problems related to instrumentation, control, automation, and robotics.

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE – 641 049

REGULATIONS 2018

B.E. MECHATRONICS ENGINEERING

CURRICULUM

		Semes	ter I							D
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MAI1202	Linear Algebra and Calculus	Embedded - Theory & Lab	BS	3	0	2	0	4	-
2	U18CHI1202	Engineering Chemistry	Embedded - Theory & Lab	BS	3	0	2	0	4	-
3	U18ENI1202	Fundamentals of Communication I	Embedded - Theory & Lab	HS	2	0	2	0	3	-
4	U18MEI1201	Engineering Graphics	Embedded - Theory & Lab	ES	2	0	2	0	3	-
5	U18CSI1201	Problem solving and Programming using C	Embedded - Theory & Lab	ES	2	0	2	0	3	-
6	U18INI1600	Engineering Clinic I	Practical and Project	ES	0	0	4	2	3	-
					To	tal	Cre	edits	20	
			Total (Conta	ct H	Iou	rs/v	veek	26	

		Sen	nester II							-Dro roquisito
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MAI2201	Advanced Calculus and Laplace Transforms	Embedded - Theory & Lab	BS	3	0	2	0	4	U18MAI12 01
2	U18PHI2202	Engineering Physics	Embedded - Theory & Lab	BS	3	0	2	0	4	-
3	U18ENI2202	Fundamentals of Communication II	Embedded - Theory & Lab	HS	2	0	2	0	3	-
4	U18MET2003	Engineering Mechanics	Theory	ES	3	0	0	0	3	-
5	U18CSI2201	Python Programming	Embedded - Theory & Lab	ES	2	0	2	0	3	-
6	U18INI2600	Engineering Clinic II	Practical and Project	ES	0	0	4	2	3	-
								dits	20	
			Total (Conta	ct I	Iou	rs/w	veek	27	

		Semeste	er III							-
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre- requisite
1	U18MAT3101	Partial Differential Equations and Transforms	Theory	BS	3	1	0	0	4	_
2	U18MCI3201	Electronic Devices and Circuits	Embedded - Theory & Lab	ES	3	0	2	0	4	-
3	U18MCI3202	Electrical Machines	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT3103	Mechanics of solids	Theory	ES	3	1	0	0	4	-
5	U18MCT3104	Fluid Mechanics and Thermal Sciences	Theory	ES	3	1	0	0	4	-
6	U18INI3600	Engineering Clinic III	Practical and Project	ES	0	0	4	2	3	-
					To	tal	Cre	dits	23	
			Total (Conta	ct H	lou	rs/w	veek	28	

	 $-\theta$	
5-	 1	

		Semest	er IV							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MAT4101	Numerical Methods and Probability	Theory	BS	3	1	0	0	4	-
2	U18MCI4201	Hydraulics and Pneumatics	Embedded - Theory & Lab	PC	3	0	2	0	4	-
3	U18MCI4202	Sensors and Instrumentation	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT4103	Digital Electronics and Microprocessor	Theory	PC	3	1	0	0	4	U18MCI32 01
5	U18MCT4104	Theory of Machines	Theory	PC	3	1	0	0	4	-
6	U18INI4600	Engineering Clinic IV	Practical and Project	ES	0	0	4	2	3	-
7	U18CHT4000	Environmental Science and Engineering	Theory	MC						
8	U18VET4101	UHV-II	Theory	MC	2	1	0	0	3*	
							Cre		23	
			Total (Conta	ct E	Iou	rs/w	eek	28	
*Mand	latory Credit Co	urse								

-	^
<	P
Signature of BOS	 1-

	Semester V									
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MCI5201	Industrial Electronics and drives	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI3202
2	U18MCI5202	Manufacturing Technology	Embedded - Theory & Lab	PC	2	0	2	0	3	-
3	U18MCI5203	Programmable logic controller	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT5004	Control Engineering	Theory	PC	3	0	0	0	3	-
5	U18MCT5105	Design of Machine Elements	Theory	PC	3	1	0	0	4	U18MCT3103
6	U18MC00**	Open Elective I	Theory	OE	3	0	0	0	3	-
7	U18MCE00**	Professional Elective I	Theory	PE	3	0	0	0	3	-
			1	1	To	tal	Cre	dits	24	
			Total	Conta	ct H	Iou	rs/w	veek	30	

	-		0	-
<		-	1	

		Semest	er VI							Pre-requisite
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	1 re-requisite
1	U18MCI6201	Computer aided Manufacturing	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI5202
2	U18MCI6202	Robotics Engineering	Embedded - Theory & Lab	PC	3	0	2	0	4	-
3	U18MCI6203	Microcontroller and Embedded Systems	Embedded - Theory & Lab	PC	3	0	2	0	3	U18MCT4103
4	U18MCE00**	Professional Elective II	Theory	PE	3	0	0	0	3	-
5	U18MCE00**	Professional Elective III	Theory	PE	3	0	0	0	3	-
6	U18MCO0***	Open Elective II	Theory	OE	3	0	0	0	3	-
8	U18INT6000	Constitution of India	Theory	MC						
				1	To	otal	Cre	dits	20	
			Total	Conta	ct H	Iou	rs/w	veek	23	

		Semester V	VII									
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite		
1	U18MBT7001	Engineering Economics and Financial Management	Theory	HS	3	0	0	0	3	-		
2	U18MCT7001	Mobile Robotics	Theory	PC	3	0	0	0	3	-		
3	U18MCT7002	Image Processing and Computer Vision	Theory	PC	3	0	0	0	3	-		
4	U18MCE00**	Professional Elective IV	Theory	PE	3	0	0	0	3	-		
5	U18MCE00**	Professional Elective V	Theory	PE	3	0	0	0	3	-		
6	U18MCP7701	Project – Phase I	Project	PW	0	0	0	6	3	-		
				•	Tot	al (Crec	lits	18			
			Total	Conta	ct I	Iou	rs/w	veek	21			

 -		0
5-	-	1

	Semester VIII								
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С
1	U18MCP8701	Project – Phase II	Project	PW	0	0	0	24	12
				•	To	tal	Cre	dits	12
			Total	Conta	ct H	Iou	rs/w	veek	24
					To	tal	Cre	dits	160

		Programme Ele	ctives							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	
		Mechatronics Sy	stems							
1.	U18MCE0001	Automotive Electronics	Theory	PE	3	0	0	0	3	
2.	U18MCE0002	Condition Monitoring	Theory	PE	3	0	0	0	3	
3.	U18MCE0003	Micro Electro Mechanical Systems	Theory	PE	3	0	0	0	3	
		Computational Inte	elligence							
4.	U18MCE0004	Artificial Intelligence and Machine LearningTheoryPE300		0	3					
5.	U18MCE0005	Database Management System	ystem I heory		3	0	0	0	3	
6.	U18MCE0006	Soft Computing	Theory	PE	3	0	0	0	3	
7.	U18MCE0014	Underwater Robotics	Theory	PE	3	0	0	0	3	
Design and Manufacturing										
8.	U18MCE0007	Industrial IOT	Theory	PE	3	0	0	0	3	
9.	U18MCE0008	Statistical Quality Control	Theory	PE	3	0	0	0	3	
10.	U18MCE0009	Composite and Smart Materials	Theory	PE	3	0	0	0	3	
11.	U18MCE0010	Additive Manufacturing	Theory	PE	3	0	0	0	3	
12.	U18MCE0016	Finite Element Analysis	Theory	PE	3	0	0	0	3	
		Automation	1							
13.	U18MCE0011	Design of material handling systems	Theory	PE	3	0	0	0	3	
14.	U18MCE0012	Design for manufacturing and Assembly	Theory	PE	3	0	0	0	3	
15.	U18MCE0013	Precision manufacturing	Theory	PE	3	0	0	0	3	
16.	U18MCE0015	Operation Research	Theory	PE	3	0	0	0	3	
17.	U18MCE0017	Maintenance Engineering	Theory	PE	3	0	0	0	3	
18.	U18MCE0018	Medical Mechatronics	Theory	PE	3	0	0	0	3	

	-	-	-O-
	5	an	1
Signa	ture of BC	OS chairn	nan. MCE

		Open Electiv	ves						
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С
1.	U18MCO0001	Robotics for Engineers	Theory	OE	3	0	0	0	3
2.	U18MCO0002	Automation in Agriculture	Theory	OE	2	0	1	0	3
3.	U18MCO0004	Nature Inspired Optimization Techniques	Theory	OE	3	0	0	0	3
4.	U18MCO0005	Mechanics in Cricket	Theory	OE	3	0	0	0	3
5.	U18MCO0006	Low Cost Automation	Theory	OE	3	0	0	0	3
6.	U18MCO0007	Magics and Mechanics	Theory	OE	2	0	1	0	3

		INDUSTRY OFFERING	G ELECTI	IVE					
1	U18MCE0019	Product Design and Development	Theory	PE	2	0	2	0	3
2	U18MCE0020	Product Lifecycle Management	Theory	PE	3	0	0	0	3
3	U18ECE0057	Introduction to HMI	Theory	PE	3	0	0	0	3
4.	U18ECE0058	Advanced HMI	Theory	PE	2	0	2	0	3

	0
5	and
Signature of BO	S chairman, MCE

	Minor specialization in 3D Printing									
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	C	Pre-requisite
1	U18MCR0001	Fundamentals of 3D printing	Embedded - Theory & Lab	ES	3	0	2	0	4	-
2	U18MCR0002	Additive manufacturing processes	Theory	ES	3	0	0	0	3	U18MCR0001
3	U18MCR0003	Mechatronics in 3D Printing	Embedded - Theory & Lab	ES	3	0	2	0	4	U18MCR0002
4	U18MCR0004	3D Printing laboratory	Laboratory	ES	0	0	2	0	2	U18MCR0002
5	U18MCR0005	Project	Project	PW	0	0	0	6	5	-
		Total Cr	edits						18	

MINOR SPECIALISATION CURRICULUM

		D
5	···	1

SEMESTER I

	0
5	- P
Signature of BOS cl	hairman MCE

U18MAI1202	LINEAR ALGEBRA AND CALCULUS	L	Т	Р	J	С
010101411202	(Common to All branches except AI &DS)	3	0	2	0	4

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

CO1: Identify eigenvalues and eigenvectors, apply Cayley Hamilton theorem to Matrix Manipulation and apply orthogonal diagonalization to convert quadratic form to canonical form.	
CO2: Apply suitable techniques of differentiation and integration to various functions and identify the maxima and minima of functions of one variable.	
CO3: Solve first order ordinary differential equations and apply them to certain physical situations.	
CO4: Solve higher order ordinary differential equations arising in real world situations.	
CO5: Evaluate the total derivative of a function, expand the given function as series and locate the maximum and minimum for multivariate functions.	
CO6: Determine Rank, Inverse, Eigenvalues, Eigenvectors of the given matrix, solve Differential equations and locate Maxima-Minima of the function using MATLAB	

Pre-requisite: Basics of Matrices, Differentiation and Integration

	CO/PO Mapping S-Strong, M-Medium, W-Weak													
Cos	Cos Programme Outcomes(POs)							PS	0					
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	1	2
C01	S	S												
CO2	S	М												
CO3	S	М												
CO4	S	М			М									
C05	S	S												
C06					S							М		

Course Assessment methods:

DIRECT

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Open Book Test; Cooperative Learning Report, Assignment; Journal Paper Review, Group Presentation, Project Report, Poster Preparation, Prototype or Product
- 3. Demonstration etc (as applicable) (Theory component)
- 4. Pre/Post Experiment Test/Viva; Experimental Report for each Experiment (lab Component)
- 5. Model Examination (lab component)
- 6. End Semester Examination (Theory and lab components)

		-0-
5	an	1
Signature of BC	OS chairma	n, MCE

INDIRECT

1. Course-end survey

THEORY COMPONENT

MATRICES Rank of a matrix – Consistency of a system of linear equations - Rouche's theorem - Solution of a system of linear equations - Linearly dependent and independent vectors - Eigenvalues and Eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors – Cayley Hamilton theorem (excluding proof) - Orthogonal matrices - Orthogonal transformation of a symmetric matrix to diagonal form – Reduction of quadratic form to canonical form by orthogonal transformation

DIFFERENTIAL AND INTEGRAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules -Maxima and Minima of functions of one variable - Definite and Indefinite integrals - Techniques of Integration: Substitution rule, Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction.

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

Leibnitz's equation – Bernoulli's equation – Applications: Orthogonal trajectories and Electric Circuits

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Linear equations of second and higher order with constant coefficients - Euler's and Legendre's linear equations – Method of variation of parameters – First order Simultaneous linear equations with constant coefficients - Applications: Electric Circuits.

FUNCTIONS OF SEVERAL VARIABLES

Total derivative – Taylor's series expansion – Maxima and minima of functions of two variables – Constrained maxima and minima: Lagrange's multiplier method with single constraints – Jacobians

TEXT BOOKS :

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2014.
- 2. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 11th Reprint, 2010.
- 3. Kreyzig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley and sons, 2011.

	-		-D-
Signatur	e of BOS of	chairmar	1, MCE

11 Hours

6 Hours

9 Hours

10 Hours

9 Hours

REFERENCES

- Veerarajan T., "Engineering Mathematics (for First Year)", Tata McGraw Hill Pub. Co. Ltd., New Delhi, Revised 1. Edition, 2007.
- 2.
- Weir, MD, Hass J, Giordano FR, "Thomas' Calculus", Pearson education 12th Edition, 2015.
 G.B. Thomas and R.L. Finney, "Calculus and Analytical Geometry", 11th Edition, Pearson Education, 2006.
 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. 3.
- 4.

WEBSITES

1. https://www.khanacademy.org/math/integral-calculus

LAB (COMPONENT	30						
Hours	-							
	f MATLAB Programs:							
1.	Introduction to MATLAB.							
2.	Matrix Operations - Addition, Multiplication, Transpose, Inverse							
3.	3. Rank of a matrix and solution of a system of linear equations							
4.	4. Characteristic equation of a Matrix and Cayley-Hamilton Theorem.							
5.	5. Eigenvalues and Eigenvectors of Higher Order Matrices							
6.	Curve tracing							
7.	7. Differentiation and Integration							
8.	8. Solving first and second order ordinary differential equations.							
9.	9. Determining Maxima and Minima of a function of one variable.							
10.	. Determining Maxima and Minima of a function of two variables.							
Theory	: 45 Tutorial: 0 Practical: 30 Project: 0 Total: 75 Hours							

	A
5	- 1
Signature of BOS	chairman MCE

U18CHI1202

ENGINEERING CHEMISTRY (Common to All Branches)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Apply the basic principles of chemistry at the atomic and molecular level.
CO2:	Analyze the impact of engineering solutions from the point of view of chemical principles
CO3:	Apply the chemical properties to categorize the engineering materials and their uses
CO4:	Integrate the chemical principles in the projects undertaken in field of engineering and
	technology
CO5:	Develop analytical proficiency through lab skill sets to demonstrate in professional practice.

Pre-requisite

Nil

CO/PO Mapping

	(S/M/	W ind	icates	streng	gth of	correla	ation)	S-	Strong	g, I	M-Med	ium, W	/-Weak	
COs		Programme Outcomes(POs)												
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S	М		М										
CO3	S	М		S										
CO4	S	М		S										
CO5	М	S		S										

Course Assessment methods:

	DIDDOW	DIDIDECT
	DIRECT	INDIRECT
1.	Continuous Assessment TestI	
2.	Open book test; Cooperative learning	
	report, Assignment; Journal paper	1. Course-end survey
	review, Group, Presentation, Project	
	report, Poster preparation, Prototype or	
	Product Demonstration etc (as	
	applicable)	
3.	End Semester Examination	

	-		P
Signat	ure of BOS	chairman	T. MCE

ELECTROCHEMISTRY AND CORROSION	9 Hours				
Electrodes - Calomel and Glass electrode (Construction and working prin	nciples) - Electrode				
Potential – Nernst equation and problems - Electrochemical Series and its a	pplications.				
Corrosion: Mechanism of chemical and electrochemical corrosion - T	Types of corrosion				
(Metallurgically Influenced Corrosion, Mechanically Assisted	Degradation and				
Environmentally Induced Cracking - overview) - Factors influencing corros	ion.				
Corrosion control: Inhibitors - Cathodic protection (Sacrificial anodic pro-	otection, Impressed				
current cathodic protection) - Electroplating (Cu) and Electroless plating (N	Ni).				
SURFACE CHEMISTRY AND CATALYSIS	8 Hours				
Adsorption: Types and factors affecting adsorption - Adsorption isoth	erms: Freundlich's				
adsorption isotherm - Langmuir's adsorption isotherm - Applications	of adsorption on				
pollution abatement.					
Surface catalysis: Power law and Eley Rideal model and Langmuir-Hinshe					
Catalysis: Catalyst - catalytic poisoning and catalytic promoters - autocat	alysis acid base				
catalysis – enzyme catalysis. Applications of catalysis in industries.					
ENGINEERING MATERIALS	8 Hours				
Polymers: Introduction - Degree of polymerisation - Functionality - Prep	paration, Properties				
and Applications of PET, PVC and conducting polymers (Polyactylene and Polythiophene).					
Composites: Constituents of Composites and applications - Polymer Composites (PC) -					
Metal Matrix Composites (MMC) - Ceramic Matrix Composites (CMC)					
Lubricants: Classification (liquid, solid and semi solid) - Functions - Pro-	operties (viscosity				
index, flash and fire point, oiliness, carbon residue, aniline point, cloud po	int and pour point)				
– Synthetic lubricants.					
CHEMICAL BONDING	7 Hours				
Introduction - Types of bonding: Ionic, covalent, co-ordinate and metalli	c bonds - Van der				
Waal's forces of attraction and its types (dipole - dipole, dipole - induc	-				
dipole - induced dipole) - hydrophobic interaction - hybridization in organi	ic molecules				
(sp, sp ² , sp ³) - hydrogen bonding and its characteristics.					
THERMODYNAMICS	7 Hours				
Introduction - Thermodynamic process - Internal energy - Enthalpy	y – First law of				
thermodynamics - Second law of thermodynamics - Entropy - Free Energy	y – Helmoltz Work				
Function - Gibbs Helmholtz equation - Problems - Clausius-Clapeyron equ	ation – Maxwell's				
relations - Third law of thermodynamics – Zeroth law.					
WATER TECHNOLOGY	6 Hours				
Introduction - Hardness of water - Disadvantages of hard water in boilers	s: scale and sludge,				
priming and foaming, caustic embrittlement and boiler corrosion - Softer	•				
External treatment (Demineralisation process) - Internal treatment (co					
phosphate and calgon conditioning) - Desalination (Reverse osmosis, Elec	ctrodialysis) –				
Domestic water treatment.					
Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total	: 45 Hours				

4	<	P	-
Signature	of BOS ch	nairman, MC	E

REFERENCES

- 1. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, Reprint 2017.
- 2. Puri B.R., Sharma L.R., Pathania, M.S. Principles of physical chemistry, Vishal Publishing Co., 2017
- 3. Atkins, P. and de Paula, J., Atkin's Physical Chemistry, 9th ed., Oxford Univ. Press, 2009.
- 4. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East West Press Private Limited, 2007.
- 5. Samir Sarkar., Fuels and Combustion, 3rd Edition, Orient Longman, India, 2009.
- 6. Dara S.S. and Umare S.S., A text book of Engineering Chemistry, S.Chand and Company Limited, New Delhi, 2014.
- 7. Engineering Chemistry, Wiley India Editorial Team, Wiley, 2018.

LABORATORY COMPONENT

LIST OF EXPERIMENTS (Any 10 - Branch specific)

- 1. Preparation of Standard solutions
- 2. Conductometric estimation of mixture of acids vs strong base
- 3. Estimation of extent of corrosion of Iron pieces by Potentiometry
- 4. Estimation of the extent of dissolution of Copper / Ferrous ions byspectrophotometry.
- 5. Estimation of acids by pH metry.
- 6. Determination of total, temporary and permanent hardness by EDTA method.
- 7. Estimation of DO by Winkler's method
- 8. Estimation of Alkalinity by Indicator method.
- 9. Estimation of Chloride by Argentometric method
- 10. Estimation of Sodium and Potassium in water by Flame photometry.
- 11. Determination of Flash and Fire point of lubricating oil
- 12. Determination of Cloud and Pour point of lubricating oil
- 13. Determination of relative and kinematic viscosities of lubricating oil at different temperatures
- 14. Determination of corrosion rate on mild steel by Weight loss method
- 15. Morphological studies of corrosion on mild steel by microscopic techniques

Theory: 0 Tutorial: 0Practical: 30 Project: 0 Total: 30 Hours

REFERENCES

- 1. Jeffery G.H., Bassett J., Mendham J. and Denny R.C., Vogel's Text Book of Quantitative Chemical Analysis, Oxford, ELBS, London,2012.
- 2. Shoemaker D.P. and C.W. Garland., Experiments in Physical Chemistry, Tata McGraw-Hill Pub. Co., Ltd., London, 2003.

U18ENI1202

L	Т	Р	J	С
2	0	2	0	3

Course Objectives:
1) To communicate effectively by using appropriate grammar and technical parlance in a range of academic scenarios.
2) To interpret and critically evaluate discourses related to functional English.
3) To disseminate professional information through appropriate means of communication.
4) Use appropriate vocabulary and grammar and deliver a successful oral communication.

5) Discuss and respond to context of written text through the efficient use of the sub-skills of reading **Course Outcomes:**

After the course, the students will be able to:

CO1: Demonstrate their ability to write effectively with the optimum use of formats and writingstrategies of appropriate grammar and vocabulary.	A es n n
CO2: Develop active listening strategies to enhance language skills.	- N - tl
CO3: Speak fluently with effective delivery strategies.	d

Direct

- 1. Continuous Assessment of Skills
- 2. Assignment
- 3. Written Test
- 4. End Semester Examination

Indirect

1. Course-end survey

CO/PO Mapping:

		(S/M	/W ind	licates	streng)/PO N orrelat		-	g, M-Me	edium, W	-Weak	1	
COs					Prog	ramm	e Out	comes	(POs)					P S
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		O PSO2
C01									S	S		S		
CO2									S	S		S		
CO3									S	S		S		

UNIT - 1	12 Hours
Glimpses of Essential English for Engineers (General Overview) - Word Classification - Articles	
- Word Formation (Prefixes & Suffixes) – Different grammatical forms of the same word –Phrasal	
Verbs – Nominal Compounds	
Listening: Listening to Weather Forecast - Listening for Specific Information, Numbers, Time, D	uration
Speaking: Self-Introduction with goal setting and SWOT	

UNIT - 2	12 Hours
Sentences and its kinds (Framing Questions) - Cause and Effect Expressions - Purpose andFunction	
Expressions - Subject Verb Agreement - Writing Instructions - Mother Tongue Influence in relation to)
Pronunciation and Redundancy	
Listening: Listening to Social & Cultural Contexts - Listening to Facts & Opinions	
Speaking: Proverbs with prompts and cues	

UNIT - 3	12 Hours
Skimming & Scanning - Reading Passages, Newspaper articles, blogs - Reading Comprehension	
- Cloze test, Note-making - Summary Writing - Formal Letter writing (Enquiry, Complaint &	
Clarification, Invitation, Acceptance, Rejecting)	
Listening: Listening to Scientific Inventions	
Speaking: Pair Activity (Negotiation / Pitching opinion)	

UNIT - 4	12 Hours
Tenses - Voice - Reading Advertisement & Graphical representation - Creating Advertisements -Ema	il
Etiquettes, Structure, Writing and Responding to Emails	
Listening: Listening to News Story	
Speaking: Formal Presentation	

UNIT - 512 HoursDiscourse Markers - Preparing Checklist and Itinerary - Paragraph Writing (Descriptive,Compare &
Contrast, Narrative) - Blog Writing - Proof Reading (Spelling, punctuation, grammar)Istening: Listening to Documentary
Speaking: Integrated Speaking (Listening, Video & Reading)

L: 60 T: 0 Total: 60 periods

Reference:

- 1. Basic Communication Skills for Technology, by Andrea J Ruther foord, Pearson Publishers.
- 2. English Language Skills by Aruna Koneru, Tata Mc Graw Hills Publications.
- 3. Word Power Made Easy, by Norman Lewis, Simon and Schuster.
- 4. Effective Technical Communication, by Ashraf Rizvi, Tata Mc Graw Hills Publications.
- 5. English Grammar in Use, by Murphy, Raymond Ernst Klett Sprachen,
- 6. Oxford Guide to Effective Writing & Speaking by John Seely, Oxford University Press.
- 7. British Council Learn English teems website https://learnenglishteens.britishcouncil.org.

Signature of BOS chairman, MCE

ENGINEERING GRAPHICS

(Common to AE, AUE, CE, MCE, ME, EIE and EEE)

L	Т	Р	J	С	
2	0	2	0	3	

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Construct various plane curves.
CO2:	Construct projection of points and projection of lines.
CO3:	Develop projection of surfaces and solids.
CO4:	Solve problems in sections of solids and development of surfaces.
CO5:	Apply free hand sketching and concepts of isometric in engineering practice.
CO6:	Draw engineering drawing in AutoCAD with dimensions.

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S	S									W			
CO3	S	S									М			
CO4	S	S												
CO5	S	S												
CO6	S													

Course Assessment methods:

DIRECT	INDIRECT		
1.Continuous Assessment I			
2. Continuous Assessment II			
3.Assignment			
4.End semester			
PLANE CURVES, PROJECTION OF POINTS, LINES AND PLANES 10 Hou			

Importance of graphics in design process, visualization, communication, documentation and drafting tools, Construction of curves - ellipse, parabola, and hyperbola by eccentricity method only. Orthographic projection of points. Projections of straight lines located in first quadrant - determination of true length and true inclinations. Projections of plane surfaces - polygonal lamina and circular lamina, located in first quadrant and inclined to one reference plane.

PROJECTION AND SECTION	OF SOLIDS		10 Hours			
Projection of simple solids -	prism, pyramid, cylinder	and cone. Drawing vi	ews when the axis			
of the solid is inclined to one refere	1 0	1 1 1				
and cone. Obtaining sectional view	vs and true shape when the	axis of the solid is v	ertical and cutting			
plane						
inclined to one reference plane.			40.33			
DEVELOPMENT OF SURFACE FREE-HAND SKETCHING	ES, ISOME I RIC PROJE	CTIONS AND	10 Hours			
	ces of truncated pri	sms, pyramids,	cylinders and			
cones.Isometricprojection,Isometric			2			
cylinders and cones. Free hand sk		I I	1.			
pictorial views of objects, including		ing of ormographic				
PRACTICALS INTRODUCTIO			15 Hours			
Introduction to Drafting Software (A	AutoCAD) & its Basic Con	nmands. Introduction	to coordinate			
systems, object selection methods,						
polygon, rectangle and ellipse. Working with object snaps, layers and object properties. Editing						
polygon, rectangle and ellipse. Wo	rking with object snaps, lay	ers and object proper	ties. Editing			
theobjects-copy,move,trim,extend,	e i i i	<i>v</i> 1 1	0			
	workingwitharrays, mirror, s	<i>v</i> 1 1	0			
theobjects-copy,move,trim,extend,	workingwitharrays,mirror,s AUTOCAD able bed room house (section	cale,hatch,filletandch	amfer. 15 Hours			
theobjects–copy,move,trim,extend, ISOMETRIC VIEWS WITH A Building drawings – Single and dou	workingwitharrays,mirror,s AUTOCAD uble bed room house (section iews of simple solid blocks	cale,hatch,filletandch	amfer. 15 Hours			
theobjects-copy,move,trim,extend, ISOMETRIC VIEWS WITH Building drawings – Single and dou Motion path animation. Isometric v	workingwitharrays,mirror,s AUTOCAD uble bed room house (section iews of simple solid blocks	cale,hatch,filletandch onal Top view only). I S.	amfer. 15 Hours ntroduction to			
theobjects–copy,move,trim,extend, ISOMETRIC VIEWS WITH Building drawings – Single and dou Motion path animation. Isometric v Theory:30 Tutorial: 0	workingwitharrays,mirror,s AUTOCAD uble bed room house (section iews of simple solid blocks Practical:30 Pr	scale,hatch,filletandch onal Top view only). I 3. roject:0	amfer. 15 Hours ntroduction to Total : 60Hours			
theobjects–copy,move,trim,extend, ISOMETRIC VIEWS WITH A Building drawings – Single and dou Motion path animation. Isometric v Theory:30 Tutorial: 0 REFERENCES: 1. Basant Agrawal and CM Agrawa	workingwitharrays,mirror,s AUTOCAD uble bed room house (section iews of simple solid blocks Practical:30 Pr al, Engineering Drawing, N	scale,hatch,filletandch onal Top view only). I s. roject:0 IcGraw-Hill, New De	amfer. 15 Hours ntroduction to Total : 60Hours Ihi, First Edition,			
theobjects-copy,move,trim,extend, ISOMETRIC VIEWS WITH A Building drawings – Single and dou Motion path animation. Isometric v Theory:30 Tutorial: 0 REFERENCES: Basant Agrawal and CM Agrawa 2008. Venugopal K. and Prabhu Raja V Delhi,2008. 	workingwitharrays,mirror,s AUTOCAD uble bed room house (section riews of simple solid blocks Practical:30 Pr al, Engineering Drawing, M V., Engineering Graphics, N	scale,hatch,filletandch onal Top view only). I s. roject:0 IcGraw-Hill, New De New Age International	amfer. 15 Hours ntroduction to Total : 60Hours Ihi, First Edition, (P) Limited,New			
 theobjects-copy,move,trim,extend, ISOMETRIC VIEWS WITH A Building drawings – Single and dou Motion path animation. Isometric v Theory:30 Tutorial: 0 REFERENCES: 1. Basant Agrawal and CM Agrawa 2008. 2. Venugopal K. and Prabhu Raja V Delhi,2008. 3. Nataraajan K.V., Engineering Dr 4. Warren J. Luzadder and Jon. M. 	workingwitharrays,mirror,s AUTOCAD uble bed room house (section riews of simple solid blocks Practical:30 Pr al, Engineering Drawing, N V., Engineering Graphics, N rawing and Graphics, Dhan Duff, Fundamentals of Eng	scale,hatch,filletandch onal Top view only). I s. roject:0 IcGraw-Hill, New De New Age International alakshmi Publisher, C	amfer. 15 Hours ntroduction to Total : 60Hours Ihi, First Edition, (P) Limited,New Chennai,2005.			
 theobjects-copy,move,trim,extend, ISOMETRIC VIEWS WITH A Building drawings – Single and dou Motion path animation. Isometric v Theory:30 Tutorial: 0 REFERENCES: 1. Basant Agrawal and CM Agrawa 2008. 2. Venugopal K. and Prabhu Raja V Delhi,2008. 3. Nataraajan K.V., Engineering Dri 4. Warren J. Luzadder and Jon. M. India Pvt. Ltd., New Delhi, Eleve 	workingwitharrays,mirror,s AUTOCAD uble bed room house (section riews of simple solid blocks Practical:30 Pr al, Engineering Drawing, M V., Engineering Graphics, M rawing and Graphics, Dhan Duff, Fundamentals of Engenth Edition,2005.	scale,hatch,filletandch onal Top view only). I s. roject:0 IcGraw-Hill, New De New Age International alakshmi Publisher, C gineering Drawing, Pro	amfer. 15 Hours ntroduction to Total : 60Hours Ihi, First Edition, (P) Limited,New Chennai,2005. entice Hallof			
 theobjects-copy,move,trim,extend, ISOMETRIC VIEWS WITH A Building drawings – Single and dou Motion path animation. Isometric v Theory:30 Tutorial: 0 REFERENCES: 1. Basant Agrawal and CM Agrawa 2008. 2. Venugopal K. and Prabhu Raja V Delhi,2008. 3. Nataraajan K.V., Engineering Dr 4. Warren J. Luzadder and Jon. M. 	workingwitharrays,mirror,s AUTOCAD uble bed room house (section riews of simple solid blocks Practical:30 Pr al, Engineering Drawing, No V., Engineering Graphics, No rawing and Graphics, Dhan Duff, Fundamentals of Engenth Edition,2005. ag Drawing (Vol. I & II), Su	scale,hatch,filletandch onal Top view only). I s. roject:0 IcGraw-Hill, New De New Age International alakshmi Publisher, C gineering Drawing, Pro	amfer. 15 Hours ntroduction to Total : 60Hours Ihi, First Edition, (P) Limited,New Chennai,2005. entice Hallof			

PROBLEM SOLVING AND PROGRAMMING USING C

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Acquire knowledge on different problem-solving techniques.

CO2: Use appropriate data types and control structures for solving a given problem.

CO3: Execute different array and string operations.

CO4: Experiment with the usage of pointers and functions.

CO5: Organize data using structures and unions.

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М							W					
CO2	S	М							W	W				
CO3	S	W			W	W			W	W		W		
CO4	М	W	М	W	W	W			W	W		М		
CO5	М	W	М	W	W	W			W	W		М		

Course Assessment methods:

	DIRECT	INDIRECT
1.	Continuous Assessment Test I, II	
	(Theory Component)	
2.	Assignment (Theory Component)	
3.	Group Presentation (Theory Component)	1.Course-end survey
4.	Pre/Post - experiment Test/Viva; Experimental Report	
	for each experiment (lab component)	
5.	Model examination (lab component)	
6.	End Semester Examination (Theory and	
	lab component)	
ST	RUCTURED PROGRAMMING	6 Hours

Algorithms, building blocks of algorithms (instructions/statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration). Introduction to C Programming – Operators and Expressions – Data Input and Output – Control Statements

Statements								
ARRAYS ANI	ARRAYS AND STRINGS 6 Hours							
Defining an arr	Defining an array – Processing an array – Multidimensional Arrays Character Arithmetic – Defining a string							
– Initialization	- Initialization of Strings - Reading and Writing Strings - Processing Strings - Searching and Sorting							
of Strings								
FUNCTIONS,	STORAGE CLAS	SES			6 Hours			
Definingafunct	ion-Accessingafunc	tion-Functionprotot	ypes–Passingargument	stoafunction-	Passin			
functions – Fur	ction with string - R	Recursion – Storage c	classes					
POINTERS					7 Hours			
Pointer Fundan	nentals – Pointer De	claration – Passing F	Pointers to a Function –	Pointers and one-	-			
dimensional arr	ays - operations on	pointers-Dynamic	memory allocation.					
STRUCTURE	S AND UNIONS				5 Hours			
Structures and	Structures and Unions: Defining a Structure – Processing a Structure – User defined data types (Typedef)							
– Unions								
Theory: 30	Tutorial: 0	Practical: 0	Project: 0	Total:	30 Hours			

	CFERENCES:							
1.	ByronSGottfriedandJitendarKumarChhabra, "ProgrammingwithC", TataMcGraw							
	Hill Publishing Company, Third Edition, New Delhi, 2011.							
2.	Pradip Dey and Manas Ghosh, "Programming in C", Second Edition, Oxford Universit	у						
	Press, 2011.							
3.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition,							
	Pearson Education,2006							
	Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.							
5.	Reema Thareja, "Programming in C", Second Edition, Oxford University Press, 2011.							
LA	<u>AB COMPONENT CONTENTS</u>							
LI	ST OF EXPERIMENTS	30 Hours						
1.	Writing algorithms, flowcharts and pseudo codes for simple problems.							
2.	Programs on expressions and conversions							
3.	Programs using if, if-else, switch and nested if statements							
4.	Programs using while, do-while, for loops							
5.	Programs on one dimensional arrays, passing arrays to functions and array operations							
6.	Programs using two dimensional arrays, passing 2D arrays to functions							
7.	Programs using String functions							
8.	Programs using function calls, recursion, call by value							
9.	Programs on pointer operators, call by reference, pointers with arrays							
10.	Programs using structures and unions.							
	Theory: 0Tutorial: 0Practical:30Project: 0Total: 30H	lours						
RE	FERENCES							
1.	Byron S Gottfried and Jitendar Kumar Chhabra, "Programming with C", Tata McGrawHill							
	Publishing Company, Third Edition, New Delhi, 2011.							
2.	PradipDeyand ManasGhosh, "ProgramminginC", SecondEdition,OxfordUniversityPress, 2011.							
3.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, F	earson						
_	Education,2006							
4.	Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.							

L	Т	Р	J	С
0	0	4	2	3

Course Objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and teamwork
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Identify a practical problem and find a solution

CO2: Understand the project management techniques

CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Pro	gramm	e Outc	omes(l	POs)				
000	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1. Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce40%	
CONTENT:	

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide thestudentswithampleopportunitytobeinnovativeindesigningandbuildingarangeofproducts from toys to robots and flying machines. In the First semester, students will focus primarily on IOT with C programming using Arduino.

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific task, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

0.	The progress of the course is evaluated based		1 71
		l	Cotal 90 Hours

SEMESTER II

U18MAI2201

ADVANCED CALCULUS AND LAPLACE TRANSFORMS

(Common to All branches)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to C01: Evaluate double and triple integrals in Cartesian coordinates and apply them to calculate area and volume. C02: Apply various integral theorems for solving engineering problems involving cubes and rectangular parallelepipeds. C03: Construct analytic functions of complex variables and transform functions from z-plane to w-plane and vice-versa, using conformal mappings. C04: Apply the techniques of complex integration to evaluate real and complex integrals over suitable. closed paths or contours. C05: Determine solution of linear differential equations using Laplace transform technique. C06: Determine multiple integrals, vector differentials, vector integrals and Laplace transforms using. MATLAB.

Pre-requisite: Nil

	CO/PO MAPPING (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COn	PROCRAMME OUTCOMES (POs)								PSO					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S													
CO3	М	W												
CO4	W													
CO5	S	М												
CO6	М				М							S		

Course Assessment methods:

DIRECT

1. Continuous Assessment Test I, II (Theory component)

Open book test; Cooperative learning report, Assignment, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc (as applicable) (Theory component)

- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (lab component)
- 4. Model examination (lab component)
- 5. End Semester Examination (Theory and lab component)

INDIRECT

THEORY COMPONENT

MULTIPLE INTEGRALS

Double integration in Cartesian coordinates - Change of order of integration - Triple integration in Cartesian coordinates – Applications: Area as double integral and Volume as triple integral.

VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and Solenoidal vector fields -Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proofs) -Verification of theorem and simple applications.

ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions – Necessary and sufficient conditions in Cartesian coordinates, Cauchy- Riemann equations (excluding proofs)- Properties of analytic function -Construction of analytic function by Milne Thomson method – Conformal mapping : w = z + c, cz, 1/z – Bilinear Transformation.

COMPLEX INTEGRATION

Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Singularities – Residues – Residue theorem – Application of residue theorem for evaluation of real integrals – Contour Integration (excluding poles on the real axis).

LAPLACE TRANSFORMS

Definition - Properties: Superposition, Shift in t or Time Delay, Shift in s, Time Derivatives, Time Integral- Initial Value Theorem - Final Value Theorem - Transform of periodic functions - Inverse transforms - Convolution theorem – Applications: Solution of linear ordinary differential equations of second order with constant coefficients.

TEXT BOOKS

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2014.
- 2. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 11th Reprint, 2010.
- 3. Kreyzig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons, 2011.

REFERENCES

- Veerarajan T., "Engineering Mathematics (for First Year)", Tata McGraw Hill Pub. Co. Ltd., 1.
- New Delhi, Third Edition, 2011.
 Kandasamy P., Thilagavathy K., and Gunavathy K., "Engineering Mathematics", S. Chand & Co., New Delhi, (Reprint) 2014.
- 3. Venkataraman M.K., "Engineering Mathematics", The National Publising Co., Chennai, 2003.
- 4. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.

Signature of BOS chairman, MCE

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

LAB COMPONENT

List of MATLAB Programs :

- 1. Evaluating double integral with constant and variable limits.
- 2. Area as double integral
- 3. Evaluating triple integral with constant and variable limits
- 4. Volume as triple integral
- 5. Evaluating gradient, divergence and curl
- 6. Evaluating line integrals and work done
- 7. Verifying Green's theorem in the plane
- 8. Evaluating Laplace transforms and inverse Laplace transforms of functions including impulse.
- 9. Heaviside functions and problems based on convolution theorem .
- 10. Applying the technique of Laplace transform to solve differential equations.

Theory: 45	Tutorial: 0	Practical: 30	Project: 0	Total: 75 Hours
1 neur y: 45	Tutorial. V	Flactical: 50	Froject: 0	Total, 75 mours

				0
	<	5-	-	1_
Si	nature	of BOS ch	nairman	MCE

30 Hours

U18PHI2202

ENGINEERING PHYSICS (Common to AU, ECE, CE, MEC, ME)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Enhance the fundamental knowledge in properties of matter and its real timeapplications relevant to various streams of Engineering and Technology
CO2: Understand the phenomenon of heat and its transfer mechanism in engineering systems.
CO3: Acquire essential knowledge in the concepts of quantum mechanics and itsimpact on electron microscopy.
CO4: Analyse the concept of lasers, optical fibres, and their importance in diverse fields of engineering
CO5: Apply the principles of acoustic and ultrasonic techniques for engineering practice
CO6: Gain practical knowledge about the use of physics principles in a right way toimplement modern technology.

Pre-requisites:

High School Education

COs	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak COs Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S										М
CO2	S	М	М									S
CO3	S	М										
CO4	S	S	М	М								S
CO5	S			М								М
CO6	М	S							М			S

5. Signature of BOS chairman, MCE

Course Assessment methods

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Video presentation, Group activities, Project report, E-Poster preparation,
- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab component)

Indirect

1. Course-end survey

Theory Component content:

PROPERTIES OF MATTER9 HoursHooke's Law - Elastic moduli - Relation between elastic constants - Poisson's Ratio - Stress -
Strain Diagram and its uses - factors affecting elastic modulus - Bending of beams - Expression
for bending moment and depression - Cantilever - Depression of a cantilever - experimental
determination of Young's modulus by Non uniform bending - I shape girders.9 Hours

THERMAL PHYSICS

Hours

9

Transfer of heat energy – conduction, convection and radiation – thermal expansion of solids and liquids – expansion joints – bimetallic strips – theory of heat conduction in solids – rectilinear flow of heat – determination of thermal conductivity of a bad conductor - Lee's & Charlton's disc method - Thermal Insulation – classification and properties – heat exchangers -applications – domestic refrigerator – microwave oven.

	0
5.	- f
Signature of BOS c	hairman, MCE

MODERN PHYSICS	9 Hours					
Planck's concept (hypothesis) - Compton effect - Expression for Compton shift (Theory and						
Experiment) - Concept of matter waves - Physical significance of wave function - Schrödinger's						
wave equation - Time independent and time dependent equation - Eigen values and Eigen						
function - Particle in a box (one dimension) - Scanning Electron Microscope (SEM) -						
Transmission Electron Microscope (TEM).						
APPLIED OPTICS	9 Hours					
LASERS: Absorption and emission - Spontaneous emission - Stimulated emission - Popul						
inversion - Sources of excitation - Active medium - Resonant cavity - Einstein's theorem						
stimulated emission - Nd-YAG laser - CO ₂ laser - Semiconductor lasers - Application						
holography, cutting, welding and drilling.						
FIBER OPTICS: Structure of optical fibre - principle and propagation of light in optical fibres						
-Numerical aperture and acceptance angle - Types of optical fibres (material, refractive in						
mode) – Applications - fibre optic communication system, fibre endoscope.						
ACOUSTICS AND ULTRASONICS	9 Hours					
ACOUSTICS: Classification of sound - characteristics of musical sound -loudness -W	eber-					
Fechner law -decibel - Reverberation - Reverberation time - Sabine's formula (Derivation) -						
Absorption coefficient and its determination - Factors affecting the acoustics of the buildings and						
their remedies.						
ULTRASONICS: Production of ultrasonic waves - Magneto-striction and Piezoelectric meth-	ods -					
Properties - Detection - Thermal and Kundt's tube methods, Determination of velocit	y of					
ultrasonic waves in liquids using acoustic grating – application - A, B, C- scan.						

Theory: 45Tutorial: 0Practical: 0Project: 0Total: 45 Hours

Lab component Contents:

LIST OF EXPERIMENTS

- 1. Non-uniform bending Determination of Young's modulus
- 2. Compound pendulum Determination of acceleration due to gravity
- 3. Spectrometer Determination of wavelength of mercury source using grating
- 4. Air wedge Determination of thickness of thin sheet
- 5. Semiconductor laser:
 - a. Determination of wavelength of laser
 - b. Determination acceptance angle and numerical aperture of an optical fibre.
 - c. Determination of particle size
- 6. Melde's string Determination of frequency of a tuning fork
- 7. Determination of band gap of a semiconductor
- 8. Determination of efficiency of solar cell
- 9. Determination of thermal conductivity of a bad conductor Lee's Disc method
- 10. Determination of magnetic susceptibility of a solid material B-H curve apparatus.

Experiments for Demonstration:

- 1. Hall effect
- 2. Spin coating unit for thin film fabrication
- 3. Four probe experiment
- 4. Ultrasonic interferometer Determination of velocity of sound and compressibility of aliquid.

Theory: 0 Tutorial: 0 Practical: 30 Project: 0 Total: 30 Hours

Textbook:

1. A textbook of Engineering Physics, M N Avadhanulu, P.G. Kshirsagar and TVS ArunMurthy, S. Chand Publications 11th edition, 2018.

2. Concepts of Modern Physics, Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury,

7thEdition, Mc-Graw Hill Education, New Delhi, 2017.

3. Engineering Physics, G. Senthil Kumar, VRB Publishers Ltd., Chennai. 2018.

Reference books:

- 1. Properties of matter, Brij Lal and Subrahmanyam, S. Chand & Co Ltd., New Delhi,2014.
- Heat Thermodynamics and Statistical Physics, Brij Lal & Subrahmanyam, S. Chand &Co Ltd, New Delhi, 2012.
- 3. Quantum Mechanics, Satya Prakash, Pragati Prakashan Publishers, 2015.
- Lasers: Fundamentals and Applications, Springer Science & Business Media, K. Thiagarajan, Ajoy Ghatak, 2010.
- Introduction to Fibre Optics, K. Thyagarajan, Ajoy Ghatak, Second Edition, SpringerNew York Dordrecht Heidelberg London, 2010.
- Ultrasonics: Fundamentals, Technology, Applications, Second Editon, Marcel Dekker, New York, 1988.
- Practical Physics and Electronics, C. C. Ouseph, U. J. Rao, V. Vijayendran S. Viswanathan (Printers & Publishers), Pvt., Ltd. 2009
- Laboratory Manual of Engineering Physics, Dr. Y. Aparna & Dr. K. Venkateswara Rao, V.G.S Publishers. 2015

		-		0
	\leq	>~	-	Ľ
Signa	ture of	BOS ch	airman, I	MCE

U18ENI2202	FUNDAMENTALS OF COMMUNICATION II	L	Т	Р	J	С
UIOENI2202	(Common to all branches of Engineering and Technology)	2	0	2	0	3

Course Objectives:

- 1. To strengthen theory and practice of writing and speaking in academic context.
- 2. To hone written and spoken competencies leading to effective communication.
- 3. To comprehend, use and explain technical data and information.
- 4. To facilitate the application of advanced writing strategies in professional scenario.
- 5. To enhance the use of rhetorical strategies in professional situation.

Course Outcomes

After successful completion of this course, the students should be able to						
CO1	Read, listen, understand, and interpret material on technology.					
CO2	Communicate knowledge and information through oral and written medium.					
CO3	Reflect on effective use of formats and tactics in writing and speaking.					

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	amme	Outco	omes(l	POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		М		М					S	S		S		
CO2		М		М					S	S		S		
CO3		М		Μ					S	S		S		

DIRECT	INDIRECT
1. Continuous Assessment of Skills	
 Assignment Written Test 	1. Course-end survey
4. End Semester Examination	

< Signature of BOS chairman, MCE

UNIT - 1	12 Hours
Describing a place, event - Preparing Brochures, Flyers, Handouts (Layout & Drafting a proposal for an event - Writing Circular, Agenda, Minutes Listening: Listening to Presentation with Numerical Data - Listening to P Speaking: Picture Connect (Narrating story).	of Meeting
UNIT - 2	12 Hours
Transcoding Graphics (Graphs, Charts, Tables, Process Writing) - Writing a Reperdent, College Event) - Drafting permission letter and report for Industrial Vistorianing) Listening: Listening to Advertisement - Listening to Product Descriptions Speaking: Extempore	
	Hours
Reading Reviews - Review Writing (Movie, Product, Short Story, Article) - Writing a Cover Letter and Resume Writing, Creating Online Profile. Listening: Listening to Interviews Speaking: Situational Discussion (Pair Activity)	
	Hours
Aptitude Questions Practice (Synonyms, Antonyms, Jumbled Sentences, Verbal Interview Questions (Goal setting, strength and weakness, contribution to societ transformation of challenges into opportunities) Listening: Listening to Panel / Group Discussion Speaking: Event Management (Group Activity) UNIT - 5	ty / nation, narrating
Persuasive and Argumentative Writing - Writing Picture perception - Problem Sc	
andCaselets / Case Studies Listening: Listening to TED / TECH Talks - Listening to Success Stories Speaking: Group Discussion (Interview Based) Reference Books:	
1. Effective Technical Communication, by Ashraf Rizvi, Tata McGraw Hill Pu	ublications.
 Technical Communication – English Skills for Engineers, by Meenakshi Raman & Sangeeta Sharma, Oxford Higher Education. 	
3. Talk like TED, by Carmine Gallo, St. Martin's Press.	
4. Basic Communication Skills for Technology, by Andrea J Rutherfoord, Pear	rson Publishers.
5. Word Power Made Easy, by Norman Lewis, Simon and Schuster.	
6. Life Skills and Leadership for Engineers, by David Goldsberg, University of	of

 Sal
Signature of BOS chairman, MCE

Skinois, TataMcGraw Hill.

- 7. Oxford Guide to Effective Writing & Speaking by John Seely, Oxford University Press
- 8. British Council LearnEnglish Teens Website https://learnenglishteens.britishcouncil.org/

< > Signature of BOS chairman, MCE

U18MET2003	ENGINEERING MECHANICS		Т	
		3	0	

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Apply the fundamental concepts in determining the effect of forces on a particle.						
CO2:	Make use of various principles in the determination of effect of forces in a rigid body.						
CO3:	Determine the geometry dependent properties of solids and sections						
CO4:	Solve problems in static friction.						
CO5:	Identify motion and determine the velocity and acceleration of a particle.						
CO6:	Apply the principles of kinetics in solving problems in dynamics.						

Р

0

J

0

С

3

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Prog	gramm	e Outc	omes(l	POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S						W						Μ	
CO2	S						W						М	
CO3	S						W						М	
CO4	М						W						М	
CO5	М						W						М	
CO6	М						W						М	

DIRECT	INDIRECT				
1. Continuous Assessment Test I,II	1.Course-end survey				
2. Assignment					
3. End Semester Examination					

< Signature of BOS chairman, MCE

THEORY COMPONENT CONTENTS	
STATICS OF PARTICLES	9 Hours
Introduction - Laws of Mechanics, Parallelogram and triangular Laws of forces - C	Coplanar Forces -
Resolution and Composition of forces - Free body diagram - Equilibrium of a parti	icle – Lami's
theorem – Equilibrium of a particle in space.	
STATICS OF RIGID BODIES	9 Hours
Principle of transmissibility - Moment of force about a point - Varignon's theorem	
couple - Equivalent couple - Moment of force about an axis - Coplanar non-cor	
on rigid bodies - Resultant and equilibrium - Resolution of a given force into fe	orce couple system –
Equilibrium in three dimensions – Reactions and supports.	
GEOMETRY DEPENDANT PROPERTIES	9 Hours
Centre of gravity, Centre of mass and Centroid – Moment of Inertia of simple and complex	x areas – Transfer
formula - Radius of gyration - Polar moment of inertia - Product of inertia - Mass momen	t of Inertia of simple
solids.	
FRICTION	9 Hours
Laws of friction - coefficient of friction - Dry friction - wedge friction - ladder fri	ction – rolling
resistance.	
KINEMATICS OF PARTICLES	3 Hours
Kinematics – Rectilinear and curvilinear motion – projectile motion	
KINETICS OF PARTICLES	6 Hours
Kinetics - Newton's second law - D'Alembert's Principle - Work Energy method	– Principle of
Impulse momentum – Impact of Elastic Bodies	
Theory: 45 Hours Tutorial: 0 Practical: 0 Project:0	Total:45
Hours	
REFERENCES:	
1. Beer F P and Johnson E R, "Vector Mechanics for Engineers, Statics and Dynam	nics", TataMc-Graw
Hill Publishing Co. Ltd., New Delhi, 2006.	
2. Hibbeller, R.C., Engineering Mechanics: Statics, and Engineering Mechanics: D	ynamics,
13th edition, Prentice Hall, 2013.	
3. J.L. Meriam & L.G. Karige, Engineering Mechanics: Statics (Volume I) and Eng	gineering
Mechanics: Dynamics (Volume II), 7th edition, Wiley student edition, 2013.	200 0
4. P. Boresi& J. Schmidt, Engineering Mechanics: Statics and Dynamics, 1/e, Ceng	
5. Irving H. Shames, G. Krishna Mohana Rao, Engineering Mechanics - Statics and Edition – PHI / Pearson Education Asia Pvt. Ltd., 2006.	a Dynamics, Fourth
 6. Rajasekaran S and Sankarasubramanian G, "Engineering Mechanics-Statics and 	Dynamics" Vikas
Publishing House Pvt. Ltd., New Delhi,2006	Dynamics, vikas

	A
5-	al.
Signature of BOS c	hairman, MCE

PYTHON PROGRAMMING

(Common to All Branches)

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO1:	Classify and make use of python programming elements to solve and debug simple	K4				
	logical problems. (K4,S3)					
CO2:	Experiment with the various control statements in Python. (K3,S2)	K3				
CO3:	Develop Python programs using functions and strings.(K3,S2)	K3				
CO4:	Analyze a problem and use appropriate data structures to solve it. (K4,S3)	K4				
CO5:	Develop python programs to implement various file operations and exception	K3				
	handling. (K3,S2)					

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	amme	Outco	omes(I	POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S			Μ					Μ		Μ		
CO2			Μ							Μ		Μ		
CO3			Μ							Μ		Μ	Μ	
CO4	S	S	Μ		Μ					Μ		Μ	Μ	
CO5			Μ							М		М		

	DIRECT	INDIRECT
1.	Continuous Assessment Test I, II (Theory	
	component)	
2.	Open Book Test, Assignment	1.Course-end survey
3.	Viva, Experimental Report for each	
	Experiment (lab Component)	
4.	Model Examination (lab component)	
5.	End Semester Examination (Theory and lab	
	components)	

				0
	<		-	P
Sign	ature o	of BOS c	hairma	MCE
Sign	atureu	10030	nairma	IL WICL

THEORY COMPONENT CONTENTS	
BASICS OF PYTHON PROGRAMMING	6 Hours
Introduction-Python Interpreter-Interactive and script mode -Values and types, expressions, statements, precedence of operators, Multiple assignments, comm	
CONTROL STATEMENTS AND FUNCTIONS IN PYTHON	6 Hours
Conditional (if), alternative (if-else), chained conditional (if-elif-else)-Iteration break, continue, pass – Functions - Introduction, inbuilt functions, user defined passing parameters, return values, recursion, Lambda functions.	
DATA STRUCTURES: STRINGS, LISTS and SETS	7 Hours
Strings-String slices, immutability, string methods and operations -Lists-creating lists methods, mutability, aliasing, cloning lists, list and strings, list and functions-list proc comprehension, searching and sorting, Sets-creating sets, set operations.	essing-list
DATA STRUCTURES: TUPLES, DICTIONARIES	5 Hours
Tuples-Tuple assignment, Operations on Tuples, lists and tuples, Tuple as retu Dictionaries-operations and methods, Nested Dictionaries.	rn value-
FILES, MODULES, PACKAGES	6 Hours
Files and Exception-Text files, reading and writing files, format Operator-Mod Modules-Creating own Python Modules-packages, Introduction to exception h	
Theory: 30 Tutorial: 0 Practical:0 Project: Total: 30Hou	urs
REFERENCES:	
 Ashok Namdev Kamthane, Amit Ashok Kamthane, "Programming and Probl Python", Mc-Graw HillEducation,2018. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Updated for Python 3, Shroff / O'Reilly Publishers,2016. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Program An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd., Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Priv Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Charles Dierbach, "Introduction to Computer Science using Python: A Comp 	Secondedition, ming inPython: 2016. ate Ltd.,2015. E Learning,2012.
Solving Focus", Wiley India Edition,2013. E BOOKS AND ONLINE LEARNING MATERIALS	
 www.mhhe.com/kamthane/python Allen B. Downey, Think Python: How to Think Like a Computer Scientist, Updated for Python 3, Shroff / O'Reilly Publishers, 2016(http://greenteapres. python/) LAB COMPONENT CONTENTS 	

		A-
\leq	Sau	1
Signature of	BOS chair	man MCF
Signature of	DOS chai	initian, wice

LIST OF EX	XPERIMENTS			30 Hours
1. Impleme	ent simple python	programs using inter-	active and scripti	node.
2. Develop	python programs	using id() and type()	functions	
3. Impleme	ent range() function	on inpython		
4. Impleme	ent various contro	l statements inpython		
5. Develop	python programs	to perform various st	ring operations l	ike concatenation, slicing,
Indexing	д.	-		_
6. Demons	trate string function	ons usingpython.		
7. Impleme	ent user defined fu	inctions usingpython.		
8. Develop	python programs	to perform operation	s onlist	
9. Impleme	ent dictionary and	set inpython		
	programs to worl			
11. Create p	rograms to solve	problems using variou	is data structures	inpython.
12. Impleme	ent python program	n to perform fileoper	ations.	
13. Impleme	ent python program	ns using modules and	lpackages	
Theory: 0	Tutorial: 0	Practical: 30	Project:0	Total: 30Hours
ONLINE C	OURSES AND V	IDEO LECTURES	:	
http://nptel.a	ac.in			
https://www	.edx.org/course/ir	troduction-to-python	-fundamentals-1	
https://www	edx.org/course/cou	omputing-in-python-i	i-control-structur	ces-0
https://www	edx org/course?s	earch query=Compu	ting+in+Python+	III%3A+Data+Structures

U18INI2600

ENGINEERING CLINIC - II

L	Т	Р	J	С
0	0	4	2	3

Course Objectives:

- \Box To help the students look into the functioning of simple to complex devices and systems
- \Box To enable the students to design and build simple systems on their own
- $\hfill\square$ To help experiment with innovative ideas in design and teamwork
- $\hfill\square$ To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to

	-
CO1	Identify a practical problem and find a solution
CO2	Understand the project management techniques
CO3	Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				
a		4	41	1										

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1.Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce40%	
Content:	

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the Second semester, students will focus primarily on Raspberry pi-based controllers with Python programming

Signature of BOS chairman, MCE

GUIDELINES:

1. Practical based learning carrying credits.

- 2. Multi-disciplinary/ Multi-focus group of 5-6students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group
- as well as individual students.
- 5. Students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

		0
<	Sau	1
Signature	of BOS chairr	man MCE

SEMESTER III

			-D-
	S.		T
Signatu	re of BOS	chairman	MCE

U18MAT3101

PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS (Common to AE/AUE/CE/ME/MCE/EEE)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After successful completion of this course, the students should be able to							
CO1:	Form partial differential equations and solve certain types of partial differential equations	K2					
CO2:	Determine the Fourier Series and half range Fourier Series of a function.	K2					
CO3:	Solve one dimensional wave equation, one dimensional heat equation in steady state using Fourier series.	К3					
CO4:	Apply Fourier series to solve the steady state two-dimensional heat equation in cartesian coordinates.	K2					
CO5:	Identify Fourier transform, Fourier sine and cosine transform of certain functions and use Parseval's identity to evaluate integrals.	K3					
CO6:	Evaluate Z-transform of sequences and inverse Z-transform of functions and solve difference equations.	K2					

Pre-requisite

Nil

۲															
- 1	CO/PO Mapping														
_ L	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	COs	Programme Outcomes(POs) Programme Specific										nme Specific			
		Outcomes(PSOs)									mes(PSOs)				
L		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	S	S												
	CO2	S	M												
	CO3	S													
	CO4	S	М										М		
	CO5	S	М										М		
	CO6	S											М		

Course Assessment methods:

Direct

- 1) Continuous Assessment Test I & II
- 2) Open Book Test cooperative learning report, Assignment: Journal Paper Review, Group Presentation, Project Report, Poster Preparation, Prototype or product demonstration etc. (as applicable)
- 3) End Semester Examination

Indirect

1. Course-end survey

12.53	A-
5.	- 1
Signature of BOS	chairman, MCE

PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Solution of PDE by variable separable method - solution of standard types of first order partial differential equations (excluding reducible to standard types) - Lagrange's linear equation - Linear homogeneous partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES

Dirichlet's conditions - General Fourier series - Odd and Even functions - Half range sine series - Half range cosine series - Parseval's identity - Harmonic Analysis.

BOUNDARY VALUE PROBLEMS – ONE DIMENSIONAL EQUATIONS 5+2 Hours Classification of second order quasi linear partial differential equations - Solution of one dimensional wave equation - One dimensional heat equation (excluding insulated ends) - Fourier series solutions in Cartesian coordinates.

BOUNDARY VALUE PROBLEMS – TWO DIMENSIONAL EQUATIONS 4+1 Hours Steady state solution of two dimensional heat equation (Insulated edges excluded) - Fourier series solutions in Cartesian coordinates.

FOURIER TRANSFORM

Statement of Fourier integral theorem - Infinite Fourier transforms - Sine and Cosine Transforms -Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z –TRANSFORM

Z-transform - Elementary properties - Convolution theorem- Inverse Z - transform (by using partial fractions, residues and convolution theorem) - Solution of difference equations using Z - transform.

Tutorial: 15 Hours

Theory	•	45	Hours
I HEOLY	٠	40	nours

Text Books:

- 1. Veerarajan T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, Second reprint, 2012.
- 2. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2014.

References:

- 1. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics Volume III", S. Chand & Company ltd., New Delhi, 2006.
- 2. Ian Sneddon., "Elements of partial differential equations", McGraw Hill, New Delhi, 2003.
- 3. Datta K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt. Ltd., Delhi, 2013.
- 4. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 11th Reprint, 2010.

< . /	V
	1
Signature of BOS chairman, I	MCE

9+3 Hours

9+3 Hours

9+3 Hours

Total:60 Hours

9+3 Hours

ELECTRONIC DEVICES AND CIRCUITS

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Use passive elements and basic theorems to solve electric circuits.	K2
CO2:	Understand the basic principles of semiconductor devices.	K2
CO3:	Use diode to construct regulators, rectifiers, and other applications.	K3
CO4 :	Analyze small signal amplifiers and oscillators constructed using transistors.	K2
CO5:	Apply op-amp to construct various applications.	K3

Pre-requisite

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO6 PO7 PO8 PO1 PO2 PO3 PO4 PO5 PO9 PO10 PO11 PO12 PSO1 PSO2 S М CO1 S Μ **CO2** М S S CO3 S Μ S М **CO4** S S Μ S S S CO5 Μ

DIRECT	INDIRECT	
1. Continuous Assessment Test I,II	1.Course end survey	
2. End Semester Examination		
3. Assignment		
CIRCUIT THEORY INTRODUCTION		9 Hours
Network Theorems: Kirchhoff's laws – Thevenin's Superposition theorem – Maximum power transfer t		
THEORY OF SEMICONDUCTOR DEVICES		9 Hours
PN junction – diode equation (Derivation not require	ed) – forward and reverse bias – Die	ode dc and ac
resistances – Zener diode–Bipolar Junction Transisto		
transistor; fixed bias, self-bias – FET – Common sou	arce and drain characteristics of JFET a	and MOSFET.

Sau	1
Signature of BOS chair	man, MCE

Wave rectifier and Full Wave rectifiers – Filters with Capacitor and Inductors - Clippers a age Multipliers – Voltage regulators – Zener, series and shunt types. PLIFIERS AND OSCILLATORS mon Emitter configuration - h parameter model for low frequencies – Small signal amplifi ifiers, differential amplifier – Oscillators – Barkhausen stability criterion - Hartley oscillat lators RATIONAL AMPLIFIERS l characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentia ger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator ory:45 Hours Total F FERENCES: Agarwal, Anant, and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5) Albert Malvinoand BatesJ., Electronic Principles, Tata McGraw-HillPub. Comparator	nd Clampers –
PLIFIERS AND OSCILLATORS mon Emitter configuration - h parameter model for low frequencies – Small signal amplifi ifiers, differential amplifier – Oscillators – Barkhausen stability criterion - Hartley oscillat lators RATIONAL AMPLIFIERS l characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentia ger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator ory:45 Hours Practical:30Hours FERENCES: Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	
mon Emitter configuration - h parameter model for low frequencies – Small signal amplifi ifiers, differential amplifier – Oscillators – Barkhausen stability criterion - Hartley oscillat lators RATIONAL AMPLIFIERS l characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentia ger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator ory:45 Hours Practical:30Hours Total F SERENCES: Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	
ifiers, differential amplifier – Oscillators – Barkhausen stability criterion - Hartley oscillat lators RATIONAL AMPLIFIERS 1 characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentiater – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator Ory:45 Hours Practical:30Hours Total F CERENCES: Agarwal, Anant, and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	9 Hours
Bators RATIONAL AMPLIFIERS 1 characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentiate er – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator Ory:45 Hours Practical:30Hours Total F SERENCES: Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	ers -cascading
RATIONAL AMPLIFIERS 1 characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentiation ger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator ory:45 Hours Org:45 Hours Practical:30Hours Total F SERENCES: Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	ors and Colpitts
l characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentia ger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator Practical:30Hours Total F FERENCES: Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	
ger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator ory:45 Hours Practical:30Hours Total F FERENCES: Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	9 Hours
Practical:30HoursTotal FFERENCES:Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	tor – Schmitt
ERENCES: Agarwal,Anant,and JeffreyH.Lang.FoundationsofAnalogandDigitalElectronicCin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	
Agarwal, Anant, and Jeffrey H. Lang. Foundations of Analog and Digital Electronic Cin Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	Iours: 75
Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 97815586 2, 3, 4, 5)	
2, 3, 4, 5)	cuits.San
	507354(Unit: 1,
Albert Malvinoand BatesL, Electronic Principles, Tata McGraw-HillPub, Compa	
	any Ltd., 9th
Edition, 2020	
MillmanJ., HalkiasC.C. and SatyabrataJit, Electronic Devices and Circuits, TataMcGr	awHill,
New Delhi, 2nd edition, 2008.	
Thomas L. Floyd, Electronic Devices, Pearson Education Asia, 10th edition, 200	
WilliamHayt, KemmerlyJ. and Durban S.M., Engineering Circuit Analysis, 9th E	Edition, Mc
GrawHill Education, 2020.	
Sudhakar, Shyammohan and Palli S., Circuits and Networks: Analysis & Synthes	sis, Tata McGrav
Hill, New Delhi, 5th edition, 2015.	
SalivahananS., SureshkumarN. And VallavarajA., Electronic Devices and Circui	ts, Tata Mc
Graw Hill publishing company, New Delhi, 4 th edition, 2016	4.1 1
Roy ChowdhuryD. and Jain ShailB., Linear Integrated Circuits, NewAgeInt.Pub.	,4thedition,
2017.	
ST OF EXPERIMENT:	
. Characteristics of PN junction diode and Zener diode using breadboard and MU	LTISIM.
2. Input and Output characteristics of BJT using breadboard and MULTISIM	
Characteristics of JFET using breadboard and MULTISIM	
. Frequency response of CE amplifier using breadboard and MULTISIM	
5. Clipper and Clamper using breadboard and MULTISIM	
5. Phase shift and Wein Bridge oscillators using OP-AMP using breadboard and M	
Astable multivibrator using OP-AMP using breadboard and MULTISIM	IULTISIM
8. Voltage Regulator (Zener diode, Transistor series and shunt) using breadboard a	

- 9. Half-wave and Full-wave Rectifier with and without filter using breadboard and MULTISIM
- 10. Printed Circuit Board design using software for simple circuits.

< >. Signature of BOS chairman, MCE

ELECTRICAL MACHINES

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Describe the construction, principle of operation and performance of DC motors.	K2
CO2:	Elucidate the construction, principle of operation and performance of Induction Machines	K2
CO3:	Summarize the speed control methods of electrical machines	K2
CO4:	Explain the construction, principle of operation and performance of special machines and Permanent magnet machines.	K2
CO5:	Select suitable motor for simple applications	K3

Pre-requisite Nil

						CO/P	'O Map	oping						
	((S/M/W	indica	ates stre	ength of	f correl	ation)	S-St	trong, N	M-Medi	ium, W	-Weak		
COs						Progra	umme C	Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										М	
CO2	М												М	
CO3	М												М	
CO4	М		М										М	
CO5											М		М	

DIRECT	INDIRECT	
1. Continuous Assessment Test I,II	1.Course end survey	
2. End Semester Examination		
3. Assignment		
DC MACHINES		12 Hours
DC machines: Principle of working -Construction, -T	ypes of DC machines based on	
construction-Back emf, voltage equations, torque equ	ation-Characteristics of DC motors -	
Speed control of DC series and Shunt motors -Armat	ure and Field control.	
AC MACHINES		12 Hours
Three phase induction motor: Principle of working -c	onstruction - Production of RMF - Torq	ue-slip
characteristics, torque equation - cogging - crawling	- Speed control of three phase induction	motor -
Voltage Control-Voltage/frequency control-slip powe	er recovery scheme	

< >. Signature of BOS chairman, MCE

PERMANENT MAGNET MACHINES	6 Hours
PMDC motors: Construction, principle of operation -Permanent magnet and variable reluctance type:	Construction,
principle of operation. BLDC motors: Construction, principle of operation.	
SPECIAL MACHINES	6 Hours
Stepper motors: Construction, principle of operation Servo motors: Types of servo motors -Servo Med Construction of AC and DC servo Motors	chanism-
SELECTION OF A MOTOR	9 Hours
Factors influencing the selection of a motor - Motor Application Requirements - Velocity profi	iles – Current
Density - Heat flow in a Motor - Fatigue and Lubrication tests - trends in test automation Ca	ASE STUDY:
Selection of a motor for an industrial applications.	
Theory:45 Hours Practical:30Hours Total Hours:	75
REFERENCES:	
1. Theraja B.L and Theraja A.K, "A Textbook of Electrical Technology", Volume 2: AC and	d DC
machines, student edition, S. Chand Publications, 23/e, 2013.	
2. JANARDANAN, E.G SPECIAL ELECTRICAL MACHINES. India, PHI Learning, 2014	4.
3. Nagrath I J and Kothari DP., "Electrical Machines", 5th Edition, Tata McGraw-Hill, New I	Delhi, 2017.
4. Pillai SK, "A first course on Electric drives", Wiley Eastern Limited, 3 rd edition 2012.	
5. Stephen Chapman, "Electric Machinery Fundamentals", McGraw-Hill Series in Electrical	and
Computer Engineering 7th edition, 2020	
6. UnivProf. DrIng., Dr. H.C. Gerhard Henneberger, "Electrical Machines I Basics, Desig	gn, Function,
Operation", Aachen University, 2002.	
LIST OF EXPERIMENT:	
1. Study of Two point starter	
2. Study of Three point starter	
3. Load test on DC series motor	
4. Load test on DC Shunt motor	
5. Speed control of DC shunt motor using Armature Control	
6. Speed control of DC shunt motor using Field Control	
7. Open circuit characteristics of DC Generator	

8. Load Test on Three Phase Squirrel Cage Induction motor9. Speed control of three phase slip ring induction motor

				0
	<	Sau	-	L
Signs	ature of	BOS cha	airman.	MCE

U18MCT3103

MECHANICS OF SOLIDS

 L
 T
 P
 J
 C

 3
 1
 0
 0
 4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Recognize the elastic response of the materials and calculate the stresses and deflection in simple and compound bars	K2
CO2:	Calculate the thermal stresses and the material response due to temperature variations	K2
CO3:	Find the stresses in bi-axial load system and strain energy for different loads	K2
CO4:	Develop the shear force, bending moment diagram and locate maximum values of shear force and bending moments induced in various types of beams.	K2
CO5:	Estimate the slope and deflection of beams under various loading conditions and crippling load for a column with different end conditions.	K3
CO6:	Determine the power transmitting, torque carrying capacities of the circular shafts and required thickness of the pressure vessel for a given internal pressure.	K2

Pre-requisite

U18MET2001 Engineering Mechanics

						CO/P	'O Map	oping						
	((S/M/W	indica	ates stre	ength of	f correl	ation)	S-S	trong, N	M-Medi	ium, W	-Weak		
COs						Progra	umme C	Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										S	М
CO2	S		М										S	М
CO3	М		М										S	
CO4	М		М										S	W
CO5	S		М										S	W
CO6	S		S										S	М

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	1.Course end survey
 Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	

< >. Signature of BOS chairman, MCE

ELASTIC RESPONSE OF MATERIALS	12 Hours
Introduction to elastic response - stresses (tensile, compressive, shear & bending) & strer	igth – strain and
deformation, stress-strain curve for steel. Stresses and deformation of simple and comp	ound bars under
axial loads - Elastic constants and their relations -Thermal stresses and creep.	
BI-AXIAL STRESSES AND STRAIN ENERGY	12 Hours
Principal stresses - Introduction, significance, calculation of principal stresses - Mohr's cir	cle to find
principal stresses. Strain energy in gradually applied loads, suddenly applied loads and Imp	pact loads
STRESSES IN BEAMS	12 Hours
Types of beams: supports and loads – Cantilever, simply supported and Overhanging beam and bending moment diagrams. Stresses in beams – theory of simple bending and its actual conditions effect of shape of beams on stress induced - Bending stress and flexural s	applicability for
DEFLECTION OF BEAMS	12 Hours
Elastic curve- Evaluation of beam: Double integration method & Macaulay's method. Col-	umns: End
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra	umns: End
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns	umns: End nkine's formula
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS	umns: End nkine's formula
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness	umns: End nkine's formula 12 Hours – Bars of solid
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress	umns: End nkine's formula 12 Hours – Bars of solid ses.
Elastic curve- Evaluation of beam: Double integration method & Macaulay's method. Colconditions, equivalent length - Euler's equation and its limitations - slenderness ratio - Rafor columnsTORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELSAnalysis of torsion of circular bars - shear stress distribution - twist and torsional stiffnessand hollow circular sections. Thin cylinders and shells - Hoop stress and longitudinal stressTheory:45HoursPractical:30Hours	umns: End nkine's formula 12 Hours – Bars of solid ses.
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Colconditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Rafor columnsTORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELSAnalysis of torsion of circular bars – shear stress distribution – twist and torsional stiffnessand hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stressTotalHoursREFERENCES:	umns: End nkine's formula 12 Hours - Bars of solid ses. s: 75
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stres Theory:45Hours Practical:30Hours TotalHours REFERENCES: 1. Ramamrutham S, "Strength of materials", 14 th Edition, Dhanpat Rai Publishing Co	umns: End nkine's formula 12 Hours - Bars of solid ses. s: 75
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Colconditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Rafor columnsTORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELSAnalysis of torsion of circular bars – shear stress distribution – twist and torsional stiffnessand hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stressTotalHoursREFERENCES:	umns: End nkine's formula 12 Hours - Bars of solid ses. s: 75
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stres Theory:45Hours Practical:30Hours TotalHours REFERENCES: 1. Ramamrutham S, "Strength of materials", 14 th Edition, Dhanpat Rai Publishing Co	umns: End nkine's formula 12 Hours - Bars of solid ses. s: 75 mpany, 2014.
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress Theory:45Hours Practical:30Hours REFERENCES: 1. Ramamrutham S, "Strength of materials", 14 th Edition, Dhanpat Rai Publishing Co 2. Rattan S S, "Strength of materials", 3 rd edition, McGraw Hill, 2016.	umns: End nkine's formula 12 Hours - Bars of solid ses. s: 75 mpany, 2014.
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress Theory:45Hours Practical:30Hours REFERENCES: 1. Ramamrutham S, "Strength of materials", 14 th Edition, Dhanpat Rai Publishing Co 2. Rattan S S, "Strength of materials", 3 rd edition, McGraw Hill, 2016. 3. Ferdinand Beer and Russell Johnston Jr., "Mechanics of materials", 8 th edition, Tat	umns: End nkine's formula 12 Hours – Bars of solid ses. s:75 mpany, 2014. a McGraw Hill
Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Col conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Ra for columns TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stress Theory:45Hours Practical:30Hours TotalHours REFERENCES: Ramamrutham S, "Strength of materials", 14th Edition, Dhanpat Rai Publishing Co Rattan S S, "Strength of materials", 3rd edition, McGraw Hill, 2016. Ferdinand Beer and Russell Johnston Jr., "Mechanics of materials", 8th edition, Tat 2020. 	umns: End nkine's formula 12 Hours – Bars of solid ses. s:75 mpany, 2014. a McGraw Hill

				-A-
	\leq	Sau	-	L
Siana	ture of	BOS ch	airman,	MCE

U18MCT3104

FLUID MECHANICS AND THERMAL SCIENCES

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Describe the properties of fluids and its importance in selection of fluid for suitable application.	K2
CO2:	Apply the concept of fluid statics to determine the pressure and forces on plane and curved surfaces.	K2
CO3:	Differentiate the types of flow with its characteristics and also calculate the flow rate by applying concept of fluid kinematics and dynamics.	K2
CO4:	Identify the major and minor losses involved in the fluid flow through pipes.	K2
CO5:	Explain the concept of boundary layer and methods of preventing the boundary layer separation.	K3
CO6:	Summarize the laws of thermodynamics and concept of heat transfer mechanisms in energy interactions.	K2

Pre-requisite

Nil

						CO/I	PO Maj	pping						
		(S/M/V	V indic	ates str	ength c	of corre	lation)	S-S	trong, I	M-Medi	um, W-	Weak		
COs						Progra	amme (Dutcom	es(POs	;)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М													
CO2	S													W
CO3	S	М												W
CO4	S	S												W
CO5	W													
CO6	М				W									W

DIRECT	INDIRECT
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1.Course end survey
PROPERTIES OF FLUIDS AND FLUID STATICS	14 Hours
Fluid-definition, distinction between solid and fluid-U density, specificweight, specificvolume, specificgravit	

				A
	\leq	>	-	Ľ
Signa	ture of E	OS cha	irman, M	ACE

	d statics: Pascal law - Hydrostatic law - Pressure me	
	s on immersed plane and curved surfaces – Buoyanc	y – Meta-
centre - Stability of floating and submerged boo		1
FLIUD KINEMATICS AND FLUID DY		10 Hours
	y and acceleration - continuity equation. Fluid dy	
equations of motion - Euler's equation along meter, Orifice meter, Pitot tube	g streamline - Bernoulli's equation – Application	ns - Venturi
FLUID FLOW AND BOUNDARY LAY	ER CONCEPTS	12 Hours
	ch equation - Friction factor – Major and minor	
	. Types of Boundary layer thickness – Boundary	03
separation – Methods of preventing the bou		luyer
LAWS OF THERMODYNAMICS	indary rayer separation.	12 Hours
	g temperature, Thermal expansion, absorption of	
and liquids First law of thermodynamics	First law applied to flow and non-flow process.	Second law of
	Thist law applied to now and non-now process.	Second law of
thermodynamics – Entropy HEAT TRANSFER MECHANISMS		10 11
		12 Hours
	ourier's Law, thermal resistance. Convection – N	
	f's law, Stefan-Boltzmann law. Heat exchangers	– LMID –
NTU – Fins.		
<i>.</i>	Tutorials:15Hours Tot	alHours:60
REFERENCES:		
1. White FM., "Fluid Mechanics", 6 th E	Edition, Tata McGraw-Hill, New Delhi, 2018.	
2. CengelYA., CimbalaJM., "FluidMech education, 2019.	hanics",4 th Edition, McGraw Hill higher	
Publisher and Distributors, 2019	Fluid Mechanics Including Hydraulics Machine	
 Bansal RK., "Fluid Mechanics and H Ltd., New Delhi, 2011. 	Iydraulics Machines", 9 th edition, Laxmi publica	tions (P)
Sons, Delhi, 2006.	nd Hydraulics and Fluid Machines", Dhanpat Ra	ai and
6. Nag P.K., "Engineering thermodynam	nics", Tata McGraw hill, 6 th edition, 2017.	
	, , , ,	
7. Rajput R.K., "Heat and Mass transfer"		

		-	0
	0	2	P
		are	1
Signat	ure of BOS	S chairn	nan, MCE

U18INI3600

ENGINEERING CLINIC - III

L	Т	Р	J	С
0	0	4	2	3

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Identify a practical problem and find a solution.	K2
CO2:	Understand the project management techniques	K2
CO3:	Demonstrate their technical report writing and presentation skills	K2

Pre-requisite

Nil

CO/PO Mapping

	((S/M/W	indica	ates stre	ength of	f corre	lation)	S-St	trong, N	M-Medi	ium, W	-Weak		
COs						Progra	umme C	Outcom	es(POs))				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	
2. Workbook report 10%	1. Course Exit Survey
3. Demonstration & Viva-voce 40%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines. In the third semester, students will focus primarily on design project combining concepts learnt in Engineering clinics I and II

				A
	\leq	Sau	-	L
Signa	ture of	BOS ch	airman,	MCE

GUIDELINES:

1. Practical based learning carrying credits.

2. Multi-disciplinary/ Multi-focus group of 5-6 students.

3. Groups can select to work on a specific task, or projects related to real world problems.

4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.

5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

7. Multi-disciplinary/ multi-focus group of 5-6 students.

Total Hours: 90

1000	A
5-	-1
Signature of BOS ch	airman, MCE

SEMESTER IV

< Signature of BOS chairman, MCE

U18MAT4101

NUMERICAL METHODS AND PROBABILITY (Common to

AE/AUE/CE/ME/MCE/EEE)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

Cours	e outcomes
After	successful completion of this course, the students should be able to
CO1:	Apply various numerical techniques for solving non-linear equations and systems of linear equations.
CO2:	Analyze and apply the knowledge of interpolation and determine the integration and differentiation of the functions by using the numerical data.
CO3:	Predict the dynamic behaviour of the system through solution of ordinary differential equations by using numerical methods.
CO4:	Solve PDE models representing spatial and temporal variations in physical systems through numerical methods
CO5:	Apply the concepts of probability to random variables
CO6:	Construct probabilistic models for observed phenomena through distributions which play an important role in many engineering applications.
D	

Pre-requisite

Nil

		(S/M/V	V indie	ates stre	ngth of	correlat			Iapping g, M-Me	edium, W	-Weak			
Cos						Prog	ramme	Outcom	es(POs)				PS	Os
	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	S	s			М						М			
CO2		S		М			М							
CO3	S				М									
CO4	S			М	М									
CO5		S		М						М				
CO6		S		М										

< >. Signature of BOS chairman, MCE

COURSE ASSESSMENT METHODS

Direct	
1.	Continuous Assessment Test I, II
2.	Open book test; Cooperative learning report, Assignment; Journal paper review, Group
3. End	Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) d Semester Examination
Indirec	t
1. Cours	se-end survey

SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS

Linear interpolation method - Iteration method - Newton's method - Solution of linear system by Gaussian elimination and Gauss-Jordan methods - Iterative methods: Gauss Jacobi and Gauss - Seidel methods - Inverse of matrix by Gauss - Jordan method - Eigenvalues of a matrix by Power method.

INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEGRATION 9+3 Hours Lagrange's and Newton's divided difference interpolation - Newton's forward and backward difference interpolation - Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal and Simpson's rules.

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9+3 Hours

Single step methods: Taylor's series method - Euler and Improved Euler methods for solving a first order equations - Fourth order Runge-Kutta method for solving first and second order equations - Multistep method: Milne's predictor and corrector method.

BOUNDARY VALUE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS 9+3 Hours

Finite difference techniques for the solution of two-dimensional Laplace's and Poisson's equations on rectangular domain-Solution of one dimensional heat equation using Bender Schmidtand Crank Nicholson difference schemes -Solution of one dimensional wave equation by explicit scheme.

PROBABILITY AND RANDOM VARIABLES

Axioms of probability - Conditional probability - Total probability - Bayes' theorem - Random variable Distribution function - properties - Probability mass function-Probability density function - moments -Binomial Poisson and Normal distributions - Properties.

Theory: 45 Hours Tutorials: 15 Hours **Total: 60 Hours**

			-0-
	5.	·	1
Signatu	re of BOS	chairma	an, MCE

9+3 Hours

9+3 Hours

TEXT BOOKS

- Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science, Khanna Publishers, 10th Edition, New Delhi, 2015.
- Johnson R.A. and Gupta C.B., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.

REFERENCES

- Gerald C. F. and Wheatley, P. O., "Applied Numerical Analysis", 7th Edition, Pearson Education Asia, New Delhi, 2007.
- 2. Sastry, S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th Edition, 2015.
- 2015.
 Jain M.K, Iyengar S.R.K., Jain. R.K, "Numerical Methods- Problems and solutions", New age International Publishers, 3rd Edition, 2020.
- Walpole R.E., Myers R.H., Myers S.L., and Ye K, "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th Edition, 2017.

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Describe the concept of fluid power and different types of fluid power systems.	K2
CO2:	Explain the working principles of different types of hydraulic pumps.	K2
CO3:	Discuss the working principles of different types of hydraulic actuators.	K2
CO4:	Summarize the working principles of compressors and pneumatic components.	K2
CO5:	Design hydraulic and pneumatic circuits for simple applications.	K3
CO6:	Explain the concept of fluid logic control systems, maintenance of fluid power systems.	K2

Pre-requisite

Nil

						CO	/PO M	apping	5					
		(S/M/	W indi	cates st	trength	of corr	elation) S	-Strong	g, M-Me	dium, V	V-Weak		
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	М													М
CO2	М	М												М
CO3	М													М
CO4	М													М
CO5	S	М			S								М	М
CO6	М													М

DIRECT	INDIRECT
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1. Course end survey
FUNDAMENTALS OF FLUID POWER	6 Hours
	uid power, Application of fluid power system. Types of fluid – General types of fluids. Fluid power symbols.

	A
<	Saul
Signature of	BOS chairman, MCE

HYDRAULIC SYSTEM AND COMPONENTS	10 Hours
Pumping theory – Pump classification – Gear pump, Vane Pump, piston pump, construction and pumps – pump performance – Variable displacement pumps. Linear hydraulic actuators – Types	of hydraulic
cylinders–Single acting, Double acting special cylinders like tandem, Rodless, Telescopic-Con	structionand
application.Cushioningmechanism,Rotaryactuators-Gear,VaneandPistonmotors-SelectionofPump	
and actuators.	
HYDRAULIC VALVES, ACCUMULATORS AND CIRCUITS	10 Hours
Directional control valve $-3/2$ way valve $-4/2$, $4/3$ way valve $-$ Shuttle valve $-$ check valve. Pre	ssure
control valves, Flow control valve - Fixed and adjustable, electrical control solenoid valves. Type	es of
accumulators, Accumulators circuits, Intensifier - Circuit and Application, Speed control circuits	,
synchronizing circuit and industrial application circuits – copying circuit and press circuit.	
PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS	10 Hours
Properties of air - Compressors - Filter, Regulator, and Lubricator Unit - Air control valves, Qui	ck exhaust
valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple ap	plications
using cascade method, Karnaugh – Veitch Mapping method.	
FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE	9Hours
Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportion	onal valves.
Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Fa	ilure and
trouble shooting in fluid power systems.	ilure and
	ilure and
trouble shooting in fluid power systems.	ilure and
trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES:	
trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016.	
trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012.	
trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013.	
trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: . . . 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. . 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. . 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. . 4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012 .	
trouble shooting in fluid power systems. Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES: 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013.	

P
airman, MCE

Pneumatic Experiments

- 1. Design of simple pneumatic circuit to control the direction and speed of single acting/double acting cylinder using push button DCV/lever operated DCV and flow control valve.
- 2. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function).
- 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pilot operated DCV and roller operated DCV.
- 4. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors.
- 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multiple pneumatic cylinders.
- 6. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multiple pneumatic cylinders.
- Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascade method.
- 8. Design of Electropneumatic circuit for sequential operation of multiple cylinders using PLC.

Hydraulic Experiments

- 9. Design of Hydraulic circuit to control the speed and direction of a hydraulic motor.
- 10. Design of Hydraulic circuit for sequential operation of two hydraulic cylinders using pressure sequence valve.
- 11. Study of the working of Counterbalance valve, Accumulator, Proportional control valve.

Software Experiments

12. Design and Simulation of hydraulic and pneumatic circuits using Automation Studio software.

		0	
	5.	- P	
Signatu	ure of BOS of	chairman, MC	E
Signatu	ure of BOS of	chairman, MC	E

U18MCI4202

SENSORS AND INSTRUMENTATION

Course Outcomes

r		
After s	uccessful completion of this course, the students should be able to	
CO1:	Classify the transducers and instruments based on their working principles, characteristics a	K2
	nd order of the system.	
CO2:	Describe the working principle and characteristics of non-electrical transducers	K2
	(Displacement, Velocity, Temperature, Radiation Pyrometer, Humidity measurement)	
CO3:	Discuss brief about the Non-electrical transducers of another measurements(Force, strain	K2
	gauge, Vacuum, Light , Acoustics and Nuclear radiation measurement)	
CO4:	Discuss about the construction, working principles and characteristics of bio	K2
	medical sensors.	
CO5:	Brief the signal conditioning parameters used in measurement system.	K2
CO6:	Illustrate the importance of data acquisition system	K2
	1 1 2	

Pre-requisite

Nil

CO/PO Mapping

		(S/M/	/W indi	icates s	trengtl	n of co	rrelatio	n)	S-Stroi	ng, M-N	ledium,	W-Wea	ık	
CO -		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S			W									W	
CO2	S			М	М								М	
CO3	S			М	М								М	
CO4	S	М	S	S	М								S	М
CO5	М	М	S	S	М								S	М
CO6	М	М		S	S								S	

Course Assessment methods:

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	
2. Assignment: Group Presentation, Project	
report, Prototype or Product Demonstration etc.	1.Course end survey
(as applicable)	
3. End Semester Examination	
MEASUREMENT SYSTEMS	9 Hours
Generalized Measurement System – Performance Characte	ristics: Static and Dynamic Characteristics – Errors in

Measurements – statistical Analysis of errors - Calibration and Standards – Generalized Performance of Zero Order, First Order and Second Order Systems – Classifications of Transducers.

MEASUREMENT OF NON-ELI	ECTRICAL PARAMETERS-1		9Hours
Linear and angular displacem	ent: Resistive, capacitive, induct	ive types and Optics (encoders)	, proximity
sensors			, F <i>j</i>
Velocity measurement: tachorr	neters, tacho generators and resol	vers	
	Contact type: Bimetallic, RTD, Th		on- Contact
type:		1	
Radiation Pyrometer – Optical F	vrometer		
Humidity: Capacitive and resist			
Other sensors: Fire, smoke and			
MEASUREMENT OF NON-E		3-2	9 Hours
	type strain gauges: Bridge config	gurations, Temperature compen	sation, Load
cells,			
	onductor strain gauges- Piezo ele		
Vacuum Measurement: McLeo	od Gauge, Thermal Conductivity	Gauge – Ionization Gauge.	
Airflow: Anemometers			
Light: UV, IR, Light emitter and	d detector		
Introduction to Acoustics and	acoustic sensors: Ultrasonic sen	sor- Types and working of Mic	crophones
	meters- Nuclear radiation sensor		
MEASUREMENT OF BIO SI	GNALS		9 Hours
Basic transducer principle Type	s – source of bioelectric potential	ls - electrode – electrolyte inter	face.
	action potential – electrodes for the		,
SIGNAL CONDITIONING A			9 Hours
	conversion – Linearization - But	ffering – Sample and Hold circu	
Quantization –	conversion Enternzation Du	sample and fiold circl	an
	nalog to Digital converter – Digi	ital to Analog converter- I/P an	d D/I
	plifier-V/F and F/V converter- D		41/1
	n to Digital Transmission system		
Theory:45Hours	Practical:30Hours	Total Hours:75	
REFERENCES:			
1. ErnestODoebelin,"Measu	arementSystems-Applicationsand	dDesign", TataMcGraw-Hill, 20	12.
2. Patranabis D, "Sensors and	nd Transducers", 2 nd Edition, PH	I, New Delhi,2010.	
3. JohnTurner and MartynH ,2009	lill,"InstrumentationforEngineers	andScientists",OxfordScienceF	ublications
4. Sawney A K and Puneet			
		1 1 1 1 1 1	, ,• 1

	0
5	- P
Signature of BOS c	hairman MCF

LIST OF EXPERIMENTS

- 1. Design and testing of Voltage to frequency converter and frequency to voltage converter
- 2. Design and testing of sample and hold circuit.
- 3. Displacement measurement using potentiometer and LVDT and plotting the characteristic curves and interface with ARDINUO Board
- 4. Study of Characteristics and calibration of strain gauge and Load Cell
- 5. Measurement of strain using resistive type strain gauges with temperature compensation and various bridge configurations interface with ARDINUO Board.
- 6. Temperature measurement using Thermocouple, Thermistor and RTD and comparing the characteristics interface with ARDINUO Board.
- 7. Comparison of capacitive and resistive type transducer for humidity measurement with their characteristics
- 8. Measurement of sound using microphones and sound level meter.
- 9. Measurement of temperature, strain, displacement, acceleration using NI DAQ and RIO cards.
- 10. Signal conditioning the physical signals using LABVIEW.

0.000	A
5-	-l
Signature of BOS ch	nairman, MCE

DIGITAL ELECTRONICS AND MICROPROCESSOR

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Use number systems, Boolean algebra and explain various digital logic families.	K2					
CO2:	Apply basic logic gates to design simple circuits and simplify logic circuits using K- Map	K3					
CO3:	Design various combinational and sequential circuits	K3					
CO4:	Explain the architecture of 8085 microprocessor	K2					
CO5:	Develop assembly language program for 8085 for the given application.	K3					
CO6:	Construct interface for memory and I/O devices.	K3					

Pre-requisite

U18MCI3201-Electronics devices and circuits

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М												М	
CO2	S	W	S										S	
CO3	М	S	S										М	М
CO4	М												S	М
CO5	М				S								М	S
CO6	М		S		S								М	S

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	
2. Assignment: Group Presentation, Project report, Prototype or Product Demonstration	1.Course end survey
etc.(as applicable)	
3. End Semester Examination	

< Signature of BOS chairman, MCE

NUMBER SYSTEMS, DIGITAL LOGIC FAMILIES AND BOOLEAN LOGIC					
Introduction to Number systems: Binary, Octal, Hexadecimal, BCD, Gray code, Excess 3 code -Binary arithmetic: 1's complements, 2's complements, and Code conversions -Digital Logic Families: TTL, CMOS, NMOS, ECL- Performance comparison of various logic families- Boolean algebra: Basic					
Postulates and theorems, switching functions, Canonical forms, Logic gates- Simplification maps and Implementation using logic gates.	n using K-				
COMBINATIONAL CIRCUITS	9 Hours				
Problem formulation and design of combinational circuits: adder, subtractor, Parallel adder Subtractor- Carry look ahead adder- BCD adder, Magnitude Comparator, parity checker En decoder, Multiplexer/Demultiplexer, codeconverters, Functionrealizationusinggates and multi Implementation of Combinational circuits using Multiplexers and Demultiplexers- Memor and PLAs.	ncoder , plexers.				
SEQUENTIAL CIRCUITS	9 Hours				
General model of sequential circuits: Latch, Flip Flops, Level triggering, Edge triggering,					
MICROPROCESSOR 8085	9 Hours				
Organization of 8085: Architecture, Internal Register Organization and Pin Configuration - Set of 8085 – addressing modes - instruction and machine cycles with states and timing dia assembly language programming					
MEMORY AND I/O INTERFACING	9 Hours				
Address space partitioning – address map – Address decoding – Designing decoder circuit address map -I/O Interfacing- Peripheral ICs*: 8255, 8279 and 8251 A. * Emphasis to be given on architecture with simple applications.	for the given				
Theory:45Hours Tutorials:15Hours TotalHours:60					
REFERENCES:					
 Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of Inc NewDelhi,2008 					
 Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Applications", 8th edition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special Indian Edition, 2014. 					
 Salivahanan S. and Arivazhagan S., "Digital Circuits and Design", 5th edition, oxford university press,2018 					
 4. Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications we 6th edition, Penram International (India),2013. 5. Aditya P Mathur, "Introduction to Microprocessor", 3rd edition, Tata McGraw Hill, 					
 5. Aditya P Mathur, "Introduction to Microprocessor", 3rd edition, 1ata McGraw Hill, Delhi,2003 6. <u>Floyd</u>, "<u>Digital electronics</u>" Pearson Education India, 2005 	, inew				

<>. Signature of BOS chairman, MCE

U18MCT4104	THEORY OF MACHINES	L	Т	Р	J	С
010101014104	THEORY OF MACHINES	3	1	0	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Apply concepts of mechanisms to achieve desired motion transformation	K2					
CO2:	Choose appropriate gear train and friction drives for a given application	K3					
CO3:	Calculate various forces acting on rigid bodies under static and dynamic conditions	K3					
CO4:	Solve balancing problems related to rotating and reciprocating masses.	K2					
CO5:	Apply the fundamental concepts of vibrating system to predict the natural frequency and force transmitted	K3					

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progra	imme C	Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S												S	М
CO2	М													М
CO3	М		М										М	
CO4	S		W										М	
CO5	S		W										М	

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	
 Assignment: Group Presentation, Project report, Prototype or Product Demonstration etc. (asapplicable) End Semester Examination 	1.Course end survey

)—
	5.	-1	_
Signa	ture of BOS	chairman, MC	E

ANALYSIS OF ME	CHANISMS		13 Hours					
		natic links, pairs, chain, machine a						
0		. Kinematic inversions of four-bar						
		es, follower motion. Velocity and a	acceleration					
GEAR AND FRICT	chain and single slider crank mech	lanism.	12 Hours					
tooth profile. Gear n		gearing, spur gear terminology. I s, simple compound gear trains a nd Brake (Concept only).						
FORCE ANALYSIS	12Hours							
D'Alemberts princip		ons of motion Static force analys – Inertia force and Inertia torque –						
BALANCING								
Balancing of reciprod VIBRATION Types of vibration, fr	requency of undamped and damped used by unbalance-Support motion	asses rotating in different planes. I aying couple, Tractive force. d system. Response to periodic for a - Force transmissibility and ampli	14 Hours rcing - Harmonic					
Theory:45Hours	Tutorials:15Hours	Total Hours:60						
REFERENCES:								
Delhi,2019.	-	Tata McGraw-Hill Publishing Cor						
Ltd.,2017.	-	chinery", Tata McGraw Hill Publis	shing Company					
	Theory of Machines", Lakshmi pu	-						
4. Singiresu S.R.	ao, "Mechanical Vibrations", Pears	son,2017.						
5. Thomas Bever	n, "Theory of Machines", CBS Pul	blishers and Distributors 3rd editi	2012					
		onshers and Distributors, sid call	on,2013.					

	<	-	P	Ĩ
Cianat	ure of BC	S chaim	nan, MCE	2

Course objectives

•	To help the students look into the functioning of simple to complex devices and systems
•	To enable the students to design and build simple systems on their own
•	To help experiment with innovative ideas in design and teamwork
•	To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to					
CO1:	Identify a practical problem and find a solution	K2			
CO2:	Understand the project management techniques	K3			
CO3:	Demonstrate their technical report writing and presentation skills	K3			

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
 Project reviews50% Workbook report10% Demonstration & Viva-voce40% 	1. Course Exit Survey

Content:

The course will offer the students with an opport unity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample

opportunity to be innovative in designing and building a range of products from toys to robots and flyingmachines.Inthefourthsemester,studentswillfocusprimarilyonreverseengineeringprojectto improve performance of a product

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

Course	t Outcomes					
After s	After successful completion of this course, the students should be able to					
CO1:	Analyze the impact of engineering solutions in a global and societal context.					
CO2:	Discuss contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems.					
CO3:	Highlight the importance of ecosystem and biodiversity.					
CO4:	Consider issues of environment and sustainable development in his/her personal and professional undertakings.					
CO5:	Paraphrase the importance of conservation of resources.					
CO6:	Play an important role in transferring a healthy environment for future generations.					

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progra	umme C	Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		Μ					S		Μ					Μ
CO2						Μ				Μ				
CO3							Μ							
CO4						Μ	S							
CO5							S							
CO6			W				S					М		

Course Assessment methods:

DIRECT	INDIRECT
1. Internal Test I	
2. Internal Test II	
3. Assignment	1.Course end survey
4. End semester	
INTRODUCTION TO ENVIRONMENTAL STU	DIES AND NATURAL 14 Hours
RESOURCES	
Definition, scope and importance – Need for public a	wareness – Forest resources: Use and over-

Definition, scope and importance – Need for public awareness – Forest resources: Use and overexploitation, deforestation, case studies – Timber extraction, mining, dams and their effects on forests and tribal people.

Water resources: Use and overutilization of surface and ground water, conflicts over water, damsbenefits and problems – Water conservation, rain water harvesting, watershed management. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.

Signature of BOS chairman, MCE

Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, case studies.

Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources, case studies.

Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification, Wasteland reclamation – Role of an individual in conservation of natural resources.

ECOSYSTEMS AND BIODIVERSITY 9 Hours **ECOSYSTEM:** Concept of an ecosystem – Structure and function of an ecosystem: Producers, consumers and decomposers, Food chain, Food web, Energy flow in the ecosystem and Ecological pyramids Ecological succession characteristic Introduction, types, features. _ structure and function of the (a) Forestecosystem (b) Grasslandecosystem (c) Desertecosystem(d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries). BIODIVERSITY: Introduction to Biodiversity - Definition: genetic, species and ecosystem diversity classification – Value Bio geographical of India of biodiversity: consumptive use. productive use, social, ethical, aesthetic values - India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts -Endangered and endemic species of India-Conservation of biodiversity:In-situ and Ex-situ conservation of biodiversity. **ENVIRONMENTAL POLLUTION** 8 Hours Definition - Causes, effects and control measures of: (a) Air pollution - Organic and inorganic pollution - cyclone separator, electrostatic precipitator (b) Water pollution (c) Heavy metal pollution (d) Noise pollution (e) Thermal pollution (f) Nuclear hazards - Role of an individual in prevention of pollution -Pollution case studies - Solid waste and hazardous Management: Causes, effects and control measures from factories, small scale and large scale industries - Waste minimization - Disaster management: floods, earthquake, cyclone and landslides. SOCIAL ISSUES AND THE ENVIRONMENT 7 Hours From Unsustainable to Sustainable development - Urban problems related to energy - Resettlement and rehabilitation of people; its problems and concerns, case studies – Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion - Environment Production Act - Air (Prevention and Control of Pollution) Act - Water (Prevention and control of Pollution) Act - Wildlife Protection Act – Forest Conservation Act - Issues involved in enforcement of environmental legislation - Human Rights. HUMAN POPULATION AND THE ENVIRONMENT 7 Hours Population growth and explosion - Welfare Program - Environment and human health - Communicable disease - Role of Information Technology in Environment and human health - Case studies. **Theory:45Hours Practical:0Hours Total Hours:45 REFERENCES:** 1. Spoolman, Scott, and Miller, G. Tyler. Environmental Science. United States, Cengage Learning, 2018. 2. Gilbert M. Masters and Wendell P. Ela, 'Introduction to Environmental Engineering and Science', Third Edition, Pearson Education, 2013. 3. Bharucha, Erach. The Biodiversity of India. India, Mapin Pub., 2002. Trivedy, R K, and Goel, P K. An Introduction to Air Pollution. India, BSP Books Pvt. 4.

Limited, 2016..

- 5. Trivedy, R. K.. Handbook Of Environmental Laws, Acts, Guidelines, Compliances & Standards, 2 Vol. Set, 3Rd Ed.. India, BS Publications, 2010.
- 6. Cunningham, W.P.Cooper and T.H.Gorhani, 'Environmental Encyclopedia', Jaico Publication House, Mumbai, 2011.
- 7. WagerK.D., 'EnvironmentalManagement', W.B.SaundersCo., Philadelphia, USA, 1998ColinR
- 8. Townsend, Michael Begon and John L. Harper, 'Essentials of Ecology', Third Edition, Blackwell Publishing, 2008.

		0
<	5	- P
Signature	of BOS cl	hairman, MCE

			_		ERSA		-		-		-	L	Τ	P	J	С
U18	18VET4101			UNDERSTANDING HARMONY (Common to all UG branches from 2020-2024 batch onwards)							2	1	0	0	3	
COUR	RSE O	OUTC	OMI	ES:												
After s	ucces	sful c	ompl	etion	of thi	s cou	urse, 1	the stu	udent	s sha	ll be a	ble	to			
CO 1:		Develop a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.														
CO 2:		dersta l natur			lop cla	arity)	of the	e harn	nony i	in the	humai	ı bei	ng, t	famil	y, so	ciety
CO 3:	Stre	engthe	en the	ir self	-reflec	ction.										
C O 4 :	Dev	velop	comm	nitmer	nt and	coura	age to	act.								
)	misite	es: - N	one. I	Unive	rsal H	uman	Valu	ies 1 (Desir	able)						
	-		SSMI	•••	-PO A MET		00	PSO	MAF	PPIN	G:					
Direct 1. As 2. Se 3. So	RSE A t ssessm lf-asse ocially	ent by essmer releva	y facul nt nt pro	ENT	MET: entor Group	HOI	DS:				G:					
Direct 1. As 2. Se 3. So 4. En	RSE A t ssessm lf-asse ocially nd Sem	ent by essmer releva	y facul nt nt pro	ENT	MET: entor Group	HOI	DS:				G:					
Direct 1. As 2. Se 3. So 4. En Indirect 1. Ass	RSE A t ssessm lf-asse ocially nd Sem	ent by essmer releva	y facul nt int pro Exam	ENT	MET: entor Group n	HOI	DS: vities/	/Assig	nmen	ts						
Direct 1. As 2. Se 3. So 4. En Indirect 1.	RSE A t ssessm lf-asse ocially nd Sem	ent by essmer releva	y facul nt int pro Exam	ENT	MET: entor Group	HOI	DS: vities/	/Assig	nmen Aapping S-St	ts g rong, M				Weak		PSOs
Direct 1. As 2. Se 3. So 4. En Indirect 1. Ass ess men t by	RSE A t ssessm lf-asse ocially nd Sem ect	ent by essmer releva	y facul nt int pro Exam	ENT	MET: entor Group n	HOI	DS: vities/	(Assig O/PO M elation)	nmen Aapping S-St	ts g rong, M		n, PO1		-Weak PO12	PSO	
Direct 1. As 2. Se 3. So 4. En Indire 1. Ass ess men t by peer s	RSE A t ssessm lf-asse ocially nd Sem ect	ent by essmer releva nester	y facul nt int pro Exam (S/M	ENT	MET: entor Group n	HOI Activ	DS: vities/	(Assig O/PO M elation) Outcom	nmen Aappin S-St nes (POs	ts g rong, M s)	I-Mediun		1 F			
COUR Direct 1. As 2. Se 3. So 4. En Indirect 1. Ass ess men t by peer s (Sur	RSE A t ssessm lf-asse ocially nd Sem ect	ent by essmer releva nester	y facul nt int pro Exam (S/M	ENT	MET: entor Group n	HOI Activ	DS: vities/ <u>Contemporation</u>	(Assig O/PO M elation) Outcom PO7	nmen Aappin S-St ies (POs	g rong, M s) PO9	I-Mediun		II F	PO12	PSO	I PSO
COUR 1. As 2. Se 3. So 4. En Indire 1. Ass ess men t by peer s	RSE A t ssessm lf-asse ocially nd Sem ect COs	ent by essmer releva nester	y facul nt int pro Exam (S/M	ENT	MET: entor Group n	HOI Activ	DS: vities/ <u>Co</u> of correction ramme PO6 M	Assig O/PO M PO7 M	nmen Aappin S-St ies (POs	ts g rong, M s) PO9 S	I-Mediun PO10		II F	PO12 M	PSO	I PSO

	<	-	-	ρ—
Signa	ture of B	OS chai	irman, N	ICE

COURSE CONTENTS:

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I.
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 1. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.
- 2. Understanding the needs of Self ('I') and 'Body' happiness and physical facility.
- 3. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).
- 4. Understanding the characteristics and activities of 'I' and harmony in 'I'.
- 5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.
- 6. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- 1. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 2. Understanding the meaning of Trust; Difference between intention and competence
- 3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- 4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships.

	0
5	- P
Signature of BOS c	hairman MCE

Discuss with scenarios. Elicit examples from students' lives.

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 1. Understanding the harmony in the Nature
- 2. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature.
- 3. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space.
- 4. Holistic perception of harmony at all levels of existence.
- 5. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 1. Natural acceptance of human values
- 2. Definitiveness of Ethical Human Conduct
- 3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 4. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 5. Case studies of typical holistic technologies, management models and production systems
- 6. Strategy for transition from the present state to Universal Human Order:
 - a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers
 - b. At the level of society: as mutually enriching institutions and organizations
- 7. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. To discuss the conduct as an engineer or scientist etc.

COURSE DURATION:

5	-1
Signature of BOS ch	airman, MCE

No	MODULE	HOURS
1	Module 1	[7 Theory+ 3 Tutorial] 10 Hrs
2	Module 2	[6 Theory+ 3 Tutorial] 9 Hrs
3	Module 3	[7 Theory+ 3 Tutorial] 10 Hrs
4	Module 4	[5 Theory+ 3 Tutorial] 8 Hrs
5	Module 5	[5 Theory+ 3 Tutorial] 8 Hrs
	Total	45

Theory: 30 Hours	Tutorial:15	Practical: 0	Project: 0	Total: 45 Hours
Incory. So mours	I utor fullers	I fucticult 0	I I UJCCU U	

TEXT BOOK:

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS:

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)
- 14. <u>https://www.youtube.com/watch?v=E1STJoXCXUU&list=PLWDeKF97v9SP_Kt6jqzA3p</u> Z3yA7g_OAQz
- 15. <u>https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ</u>
- 16. https://www.uhv.org.in/uhv-ii

5	P
Signature of BOS chairman,	MCE

SEMESTER V

0
$C \downarrow$
Saul
Signature of BOS chairman, MCE

INDUSTRIAL ELECTRONICS AND DRIVES

L

3

Course Outcomes

After successful completion of this course, the students should be able to	
CO1: Relate the basic semiconductor physics to the properties of real power semiconductor.	K2
CO2: Describe the concept of operation of AC-DC converters.	K2
CO3: Identify the operating the single phase and three phase inverter circuits	K3
CO4: Describe the various PWM techniques.	K2
CO5: Identify DC equipment with changing DC voltage and choppers for simple electrical application	K3
CO6: Describe the speed control method in DC to DC converter	K2

Pre-requisite

U18MCI3202- Electrical Machines

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
Cos	Programme Outcomes(Pos)													
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S				М					М			S	
CO2	S												М	
CO3	S				М								М	
CO4	S	S	S										W	
CO5		М	S		М						М		S	
CO6	S				М					М			S	

Direct	Inc	lirect
1. Continuous Assessment Test I,II		
2. Assignment: Group Presentation, Project report,		
Poster preparation, Prototype or Product	1. Course end survey	
Demonstration etc. (as applicable)		
3. End Semester Examination		
POWER SEMICONDUCTOR DEVICES	·	9 Hours
Thyristors - Volt-Ampere Characteristics - Switch	ning Characteristics-Po	wer MOSFET – Volt-
AmpereCharacteristics-SwitchingCharacteristics-Pov	werIGBT-Volt-Amper	eCharacteristics
Switching Characteristics	-	

AC to DC CONVERTERS	9 Hours
Diode Rectifiers – Single phase Bridge – R, RL – Thyristor Converter – S	ingle phase bridge – RL
– Three phase fully controlled converter -R-RL Load.	
INVERTERS	9 Hours
Single-phase VSI – Half-bridge – Centre tapped inverter – Full bridge inv	erter -Three-phase VSI -
Square-wave-Control of induction motor by voltage source inverter.	-
PWM TECHNIQUES	9 Hours
PWM Inverter – fundamental concepts of PWM – naturally sampled PWM	A - PWM analysis by
duty cycle variation	
DC- DC CONVERTER	9 Hours
DC Chopper - Step Down Converter - Step Up Converter - Buck Boost Co	onverter – Introduction -
Fly Back converter-speed control of PMDC motor.	
Theory:45Hrs Practical:30Hrs	Total Hours: 75
REFERENCES:	
1. Bimbhra P S, "Power Electronics" Tata McGraw Hill, 2012	
2. Rashid M H, "Power Electronics – Circuits Devices and Application",	4 th Edition, Prentice
Hall International, New Delhi, 2013.	
3. Dubey G K., Doradia S R., Joshi A. and Singh, R.M., "Thyristorised Po	ower Controllers", 2 nd
Edition, Wiley Eastern Limited, 2010.	
4. Joseph Vithayathil, "Power Electronics – Principle and Applications", 7	Tata McGraw-Hill Inc,
New Delhi, 2010.	
5. Bimal K Bose "Modern power electronics and AC Drives" Prentice Ha Delhi, 2001.	ll International, New
6. D. Grahame Holmes, Thomas A. Lipo "Pulse Width Modulation for Po	ower Converters:
Principles and Practice", John Wiley & Sons, 2003.	
LIST OF EXPERIMENTS:	
1. Voltage-Current characteristics of SCR	
2. Voltage-Current characteristics of IGBT/MOSFET	
3. AC-DC uncontrolled converter	
4. AC-DC converter for half wave controlled using phase control met	hod
5. Speed control of PMDC motor using three phase fully controlled co	onverter
6. DC Voltage control using DC – DC Converter	
7. Buck – boost converters	
8. Single phase IGBT based PWM inverter	
9. Speed control of three phase induction motor using AC to AC volta	ige control
10. Speed control of BLDC/servo motor	

	0
\leq	Saul
	OS chairman, MCE

MANUFACTURING TECHNOLOGY

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to				
CO1:	Select and justify appropriate casting methods.	K2			
CO2:	Summarize various bulk deformation processes and the explain the working machineries.	K2			
CO3:	Describe the working principles of machines and various machining processes.	K2			
CO4:	Choose a suitable metal joining process for a given application.	K2			
CO5:	Perform various lathe and drilling operation for a given drawing.	K2			
CO6:	Perform machining operation in special purpose machine.	K2			
n	• •/				

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М					Μ							W	М
CO2	Μ												W	Μ
CO3	М												W	Μ
CO4	М					Μ							W	Μ
CO5	М								М	М			W	М
CO6	М								М	М			W	М

Course Assessment methous.						
DIRECT	INDIRECT					
1. Internal test I						
2. Internal test II						
3. End semester Examination	1.Course end survey					
4. Assignment						
FOUNDRY TECHNOLOGY	FOUNDRY TECHNOLOGY 7 Hour					
Pattern and Core making – Melting furnaces: Cupola and	d Induction furnaces – Special casting	g processes –				
Shell, Investment, Die casting – Defects in casting.						
FORMING PROCESSES 7 H						
Hot and Cold Working - Rolling - Introduction - Rolling Mills - Rolling Operations - Forging-						
Introduction-ForgingOperations-Dropforging-Extrusio	Introduction–ForgingOperations–Dropforging-ExtrusionandDrawing-ExtrusionPractice–Hot,					

	-	- <u>A</u> -
<	Sau	1
Signature o	f BOS chair	man, MCE

Cold, Impact and Hydrostatic extrusion. Drawing Process – Defects and Residual Stresses Equipment.	– Drawing
CONVENTIONAL MACHINING PROCESS	8 Hours
Lathes and Lathe Operations, Drilling and Drilling Machines, Reaming and Reamers, Tapping	g and Taps
- Tool nomenclature, cutting speed, feed. Milling, Shaping and Grinding Machines and opera	tions.
PRINCIPLES & APPLICATIONS OF JOINING PROCESSES	8 Hours
Gas welding, Basic Arc Welding Processes, Thermit Welding, Ultrasonic Welding, Friction W	/elding,
Resistance Welding and Explosive Welding. Principles and applications of Brazing and Solder	ring.
Theory: 30 Hours Practical: 30 Hours Total Hours: 60	
•	
REFERENCES:	
 KalpakjianS., "Manufacturing Engineering and Technology",8th edition, Pearson educat 2020. 	ion India,
2. Hajra Choudhury S K. and Hajra Choudhury A K., "Elements of Workshop Technology	", Volume I
and II, Media Promoters and Publishers Private Limited, Mumbai,2008.	
3. Paul Degarma E, Black J T. and Ronald A Kosher, "Materials and Processes in Manufac	cturing", 8 th
edition, Hall of India, 2008.	
4. Sharma P C., "A Textbook of Production Technology", S. Chand and Co., Ltd., 2009.	
LIST OF EXPERIMENTS	
1. Study on measurement (Linear and angular measurements)	
2. Step Turning	
3. Taper Turning	
4. Thread cutting operation	
5. Knurling operation	
6. Boring operation	
7. Surface Milling operation	
8. Gear Cutting operation	
9. Grinding operation (surface, cylindrical and centerless)	

10. Shaping operation(Dove tail and slotting operation)

	\leq	-	-	ρ—
Signat	ure of BC	S chair	man, N	ICE

PROGRAMMABLE LOGIC CONTROLLERS

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Outline the importance of PLC, DCS, SCADA in industrial automation	K2					
CO2:	Describe the architecture of PLCs with the analogy of relay logic components	K2					
CO3:	Develop ladder logic program for applications	K3					
CO4:	Integrate PLCs with electro-mechanical systems	K3					
CO5:	Classify the communication protocols	K2					
CO6:	Design SCADA system for industrial applications	K3					

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progra	umme (Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	М	М		М	S					S			S	М
CO4	М	М	М		S								М	
CO5	М												М	
CO6	М	М	Μ	М	S					S			S	S

Course Assessment methous.						
DIRECT	INDIRECT					
1. Continuous Assessment Test I,II						
2. Assignment: Group Presentation, Project report,						
Poster preparation, Prototype or Product	1.Course end survey					
Demonstration etc. (as applicable)						
3. End Semester Examination						
INTRODUCTION		6 Hours				
Role of automation in industries, Benefits of automation -	-Introduction to automation tools: Low cost	automation,				
PLC, DCS, SCADA - Automation strategy evolution.						
PLC HARDWARE MODULES AND PROGI	RAMMING	6 Hours				
CPU – processor function – processor operating modes –	PLC system memory and application memory	ory – input				
modules - output modules - module selection - PLC inte	rnal operation and signal processing - input	and output				
processing.		_				
PROGRAMMING OF PLC SYSTEM		11 Hours				
Introduction to IEC 61131 - System functions – sequence control – ladder logic – programming sequences –						
limitation of ladder programming – logic instruction sets – standard PLC functions – special function relays – data						
handling instructions – arithmetic instructions – data man	ipulation - program subroutines -programm	ning				
examples.						

<Signature of BOS chairman, MCE

INDUSTRIAL COMMUNICATION PROTOCOLS

Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII & RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), Foundation Fieldbus (H1&HSC). Comparison of Foundation Fieldbus, Modbus, Device net, Profibus, Industrial Ethernet.

SCADA SYSTEMS

Concept of SCADA systems, Programming techniques for: Creation of pages, Sequencing of pages, creating graphics & animation, Dynamos programming with variables, Trending, Historical data storage & Reporting, Alarm management, reporting of events and parameters, Comparison of different SCADA packages, Interfacing PLC and SCADA using communication links, Development stages involved for PLC based automation systems, Application Development using SCADA system.

Theory:45 HoursPractical:30HoursTotal Hours: 75

REFERENCES:

- 1. John W Webb and Ronald A Reis, "Programmable logic controllers: Principles and Applications", 5th Edition, Prentice Hall India, 2002.
- 2. Michael P Lukas, "Distributed Control systems", Van Nostrand Rein fold Company, 1995.
- 3. Frank D Petruzella, "Programmable Logic Controllers", 5thedition, McGraw-Hill Companies, March 2019.
- 4. Ian G Warnock, "Programmable Controllers Operation and Application", Prentice Hall International, UK, 1992.
- 5. Krishna kant, "Computer Based Industrial Control", 2nd revised edition, Prentice Hall of India, 2011.

LIST OF EXPERIMENTS

- 1. Construct a circuit to control a simple process using Relay and Timer module.
- 2. Design a T-junction traffic light controller using PLC
- 3. Design a PLC Program for automating bottle filling systems
- 4. Develop a PLC system to control a simple conveyor system
- 5. Study of industrial process automation and communication network architecture
- 6. Develop an HMI design for a simple pump tank system.
- 7. Develop a simple SCADA application using Dynamos.
- 8. Develop a SCADA panel to control a PLC based system.
- 9. Design a PLC ladder logic program to control the Speed of a motor
- 10. Design a PLC ladder logic program to control the Position of a servomotor.

$\subset I$
Signature of BOS chairman, MCE

11 Hours

11 Hours

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CONTROL ENCINEEDING	L	Т	Р	J	C
	U18MCT5004	CONTROL ENGINEERING		0	0	0	4

Course Outcomes

After	successful completion of this course, the students should be able to	
	Know the significance to control engineering and the basic construction of control systems.	K2
CO2	Develop mathematical equations for model mechanical, electrical systems and can able to compute transfer function using block diagram and signal flow graph methods	К3
CO3	Analyze the 1st and 2nd order systems in time domain for various test signals and Calculate steady state errors and derive generalized error series in the time domain analysis	К3
CO4	Analyze the 1st and 2nd order systems in frequency domain using Bode and Polar plots	K3
	Calculate the stability of the system using Routh Hurwitz, Nyquist and Root Locus techniques.	K3
	Explain about PID control and tuning, time delay responses and also discuss sequence control in process industry	K2

Pre-requisite

U18MAT3101 Partial differential Equations and Transforms

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S												М	
CO3	S		М										М	
CO4	S			М										
CO5			М	М										
CO6	S				М									

Direct	Indirect
1. Continuous Assessment Test I,II	
2. Assignment: Group Presentation, Project report,	1.Course end survey
Poster preparation, Prototype or Product	· · · · · · · · · · · · · · · · · ·
Demonstration etc. (as applicable)	
3. End Semester Examination	

0 >-Signature of BOS chairman, MCE

INTRODUCTION	12Hours
Open loop and closed loop systems - Examples - Elements of closed lo	pop systems - Transfer function
of elements - Modeling of physical systems - Mechanical systems - Tr	anslational and Rotational
systems - Electrical networks - Block diagram - Signal flow graph - M	lason's gain formula. Transfer
function - Transfer function of DC servomotor, AC servomotor.	
TIME DOMAIN ANALYSIS	12Hours
Standard Test signals – Time response of second order system - Time	
criteria - Types of systems - Steady state error constants - Generalized	
FREQUENCY RESPONSE OF SYSTEMS	12Hours
Frequency domain specifications - correlation between time and frequ	ency response for second order
systems-Bode plots- Polar Plot -Assessment of stability - Gain Margir	and phase Margin Assessment
- Lead, lag and Lead lag compensation using Bode Plot. Tutorials: B	ode plot and polar plot using
MATLAB.	
STABILITY OF CONTROL SYSTEMS	12Hours
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis	t stability - Nyquist stability
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab	t stability - Nyquist stability cusconcept-RootLocus
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo	t stability - Nyquist stability cusconcept-RootLocus
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab systems using MATLAB	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab	t stability - Nyquist stability cusconcept-RootLocus lity analysis of higher order 12Hours
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours ng - Feed forward Control
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin Ratio Control - Time Delay Systems and Inverse Response Systems u	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours ng - Feed forward Control
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin Ratio Control - Time Delay Systems and Inverse Response Systems u	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours ng - Feed forward Control
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials: Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin Ratio Control - Time Delay Systems and Inverse Response Systems u Theory:60 Hrs Total Hours: 60	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours ng - Feed forward Control sing MATLAB tool.
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials: Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin Ratio Control - Time Delay Systems and Inverse Response Systems u Theory:60 Hrs Total Hours: 60 REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th editi Delhi, 2009.	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours ng - Feed forward Control sing MATLAB tool.
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials: Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin Ratio Control - Time Delay Systems and Inverse Response Systems u Theory:60 Hrs Total Hours: 60 REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th editional control Systems Control System	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours ng - Feed forward Control sing MATLAB tool.
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials: Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin Ratio Control - Time Delay Systems and Inverse Response Systems u Theory:60 Hrs Total Hours: 60 REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th editi Delhi, 2009.	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours ng - Feed forward Control sing MATLAB tool. on, Prentice Hall of India, New ce Hall India, 2011.
STABILITY OF CONTROL SYSTEMS Characteristic equation - Routh Hurwitz criterion of stability - Nyquis criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials: Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tunin Ratio Control - Time Delay Systems and Inverse Response Systems u Theory:60 Hrs Total Hours: 60 REFERENCES: Nagrath I J. and Gopal M., "Control Systems Engineering", 5th editid Delhi, 2009. Katsuhiko Ogata, "Modern Control Engineering", 5th edition, Prent 	t stability - Nyquist stability cusconcept-RootLocus ility analysis of higher order 12Hours og - Feed forward Control sing MATLAB tool. on, Prentice Hall of India, New ce Hall India, 2011. Pearson India, 2014.

Sal)
Signature of BOS chairman, MO	CE

U18MCT5105

DESIGN OF MACHINE ELEMENTS

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After successful completion of this course, the students should be able to					
CO1	Recognize the design process and the factors influencing it and design the simple components for static loading	K3			
CO2	Apply the basic concepts of design to Estimate the life of the components subjected to varying loads.	K3			
CO3	Design the circular shafts based on strength and rigidity, keys and couplings for power transmitting elements	K3			
CO4	Apply the basics of power transmission to select the belts	K3			
CO5	Design the welded joints, threaded joints and springs subjected to static and dynamic loads.	K3			
CO6	Select the rolling contact bearings for static and cyclic loads	K3			
Dro n	aquicita	-			

Pre-requisite

	(S	S/M/W	indicat	es strei	ngth of	correla	tion)	S	-Strong	g, M-M	ledium	,W-We	ak				
		Programme Outcomes(POs)															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
C01	S		М		М								М	W			
CO2	S				М								М				
CO3	S												М				
CO4	М												W				
CO5	S												М				
CO6	М												W				
Course	Assess	sment	metho	ds:				Course Assessment methods:									

	Direct	Indirect
1.	Continuous Assessment Test I,II	
2.	Assignment: Group Presentation, Project	
	report, Poster preparation, Prototype or	1.Course end survey
	Product Demonstration etc. (as applicable)	5
3.	End Semester Examination	

				A
	<	Sau	-	L
Sian	ature of	BOS cha	airman, I	MCE

DESIGN PROCESS AND DESIGN FOR STATIC LOAD	9 Hours
Machine Design – Design Process – Factors influencing design – Calculation of stresse	s for various
load combinations - theories of failure – Factor of safety – Design of curved beams – C	rane hook
and 'C' frame – Design of levers	
DESIGN OF FLUCTUATING LOAD	8 Hours
Stress concentration – causes & remedies – fluctuating stresses – fatigue failures – S-N	curve –
endurance limit – notch sensitivity – endurance strength modifying factors – design	
infinite life - cumulative damage in fatigue failure - Soderberg, Gerber, Goodm	an, Modified
Goodman diagrams – Fatigue design of components under combined stresses	
DESIGN OF POWER TRANSMITTING ELEMENTS	8 Hours
Shaft design on the basis of strength, torsional rigidity and lateral rigidity and A.S.M.E	code –
Design of keys and splines – Design of flange coupling and flexible bushed pin couplin	g – Belt drives:
Selection of Flat belts, V-belts and ribbed belts.	
DESIGN OF JOINTS AND SPRINGS	10 Hours
Threaded fasteners – Bolts of uniform strength – Bolts under tension – Eccentrically los	aded bolted
joints Welded joints – Welding symbols – Stresses in butt and fillet welds, Design of V	Velded Joints
for static loads - Axially loaded unsymmetrical welded joints, Eccentric load in the pl	ane of welds
- theory of bonded joints	
Design of springs	
Types – applications and materials for springs – Stress and deflection equations	
compressions prings-Style of ends-Design of helical compression and tension springs-Springer (Springer) and the springer (Springer) and the	gsin series
and parallel-Introduction to Concentric helical springs, Helical torsion Spring, Multi-	
leaf springs – Surge in springs	10.11
ROLLING CONTACT AND SLIDING CONTACT BEARINGS	10 Hours
Types of rolling contact Bearings - Static and dynamic load carrying capacities, Stribe	
Equivalent bearing load – Load-life relationship – Selection of rolling contact bearing	
cyclic loads and speed – mounting of bearings – Types of failure in rolling contact bear	ings – causes
and remedies.	45
Theory:45 Hrs Total Hours	:45
REFERENCES:	
1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill Publi	
	cation Co.
Ltd., 2020.	cation Co.
Ltd., 2020. 2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, Mc	
2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, Mc	Graw Hill
 Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, Mcc International, 2020. Prabhu T J, "Fundamentals of Machine Design", Bharat Institute of Science and Tec 2010. 	Graw Hill hnology,
 Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, McG International, 2020. Prabhu T J, "Fundamentals of Machine Design", Bharat Institute of Science and Tech 	Graw Hill hnology,

5.	p—
Signature of BOS chairman, M	ACE

U18INI5600	ENGINEERING CLINIC - V	L	Т	Р	J	C
	ENGINEERING CLINIC - V	0	0	4	2	3
Comment of the stimule						

Course objectives

- To help the students look into the functioning of simple to complex devices and systems •
- To enable the students to design and build simple systems on their own •
- To help experiment with innovative ideas in design and teamwork •
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Identify a practical problem and find a solution

CO2: Understand the project management techniques

CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	Μ	W		S			S	S	М
CO2											S		S	М
CO3										S			S	М

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	
2. Workbook report10%	1. Course Exit Survey
3. Demonstration & Viva-voce 40%	
Content:	

C

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the fifth semester, students will focus primarily on design project combining concepts learnt in Engineering clinics I and II

Signature of BOS chairman, MCE

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real worldproblems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group aswell as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end ofsemester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

	0
\leq	Saul
Signature of E	OS chairman, MCE

SEMESTER VI

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to								
CO1:	Describe the fundamentals of Computer Aided Design.	K2							
CO2:	Describe the basic and constructional features of CNC machines.	K2							
CO3:	Develop a CNC part programming for the basic turning and milling operation.	K3							
CO4:	Explain the importance of group technology and computer aided process plan.	K2							
CO5:	Generate CNC part program for a given components.	K3							
CO6:	Draft, model and assemble a given dimensional engineering components.	K3							

Pre-requisite

1. U17MCT2001 – Manufacturing Technology

						CO/I	PO Maj	pping						
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COa						Progra	mme O	utcome	es(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S									W				
CO2	М												W	
CO3	М	М	М		М								М	
CO4	М		W											
CO5	М				S									
CO6	S				S					М			S	

DIRECT	11	NDIREC T							
 Internal Test I Internal Test II End semester Examination Assignment 	e end survey								
FUNDAMENTALS OF COMPUTER GRAPHICS									
Product Cycle- Design Process- Sequential And Concurrent Engineering- – CAD System Architecture- Computer Graphics – Co-Ordinate Systems- Transformations- Homogeneous Coordinates – Line Drawing -Clipping-	2D And 3D	-							
INTRODUCTION TO CNC	x	8 Hours							
History - Classification, Introduction to NC machine - Introduction to Con Features of CNC Machines - Different types of CNC machines – Advanta machines DNC and Adaptive control - Maintenance features of CNC Mac	ges and disadvan								

COMPONENTS OF CNC MACHINES AND TOOLING	0 Hours
Description of CNC components: Structure, Drive Mechanism, gearbox, Main drive	e, feed drive, Spindle
Motors, Axesmotors-Spindlebearing-Slideways-Recirculatingballscrews-Backlashn	neasurement and
compensation, linear motion guide ways - Tool magazines, ATC, APC, Chip c	onveyors - Types of
measuring systems in CNC machines –Magnetic Sensors for Spindle	
Orientation. Qualified and pre-set tooling – Principles of location – Principles of	of clamping – Work
holding devices. Retrofitting of Conventional Machine Tools.	
CNC PART PROGRAMMING AND MAINTENANCE	11 Hours
Part Program Terminology- G and M Codes – Types of interpolation Methods of Cl	
programming-Manual part programming: Fixed cycle, canned cycle-Computer Ass	1
programming – APT language – CNC part programming using CAD/CAM-Introduced	
Automated Part Programming. Factors influencing selection of CNC Machines - Pra	actical aspects of
introducing CNC machines in industries.	
Group Technology and CAPP	7 Hours
Introduction, part families, part classification and coding systems: OPITZ, PFA, Ber	
technology. Approaches to Process Planning, Different CAPP system, application a	nd benefits. Flexible
Manufacturing System(FMS) – Components – Layout.	
Theory:45 HrsPracticals:30 HrsTotal	Hours: 75
REFERENCES	
1. Radhakrishnan P., "Computer Numerical Control Machines", New Central Be	ook Agency, 2013.
2. Groover M P., "Automation, Production Systems and Computer Integrated M	
Prentice Hall, 2007.	
3. YoremKoren, "Computer Control of Manufacturing Systems", Pitman, Londo	on, 2017.
4. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and	Manufacturing
management "Second Edition, Pearson Education, 1999	
5. Ibrahim Zeid, Sivasubramanian R, "CAD/CAM: Theory & Practice" 2 nd editi	on, McGraw Hill,
Singapore, 2009.	
LIST OF EXPERIMENTS:	
1.Drafting	
2. Modeling	
3. Assembly	
4. Part Programming - CNC Turning Centre	
i) Step and Taper Turning	
ii) Thread cutting	
iii) Drilling	
5. Part Programming - CNC Milling Centre	
i) Contouring	
ii) Drilling iii) Pockating	
iii) Pocketing	

5. Signature of BOS chairman, MCE

L	Т	Р	J	С
3	0	2	0	4

11 Hours

Course Outcomes

After successful completion of this course, the students should be able to								
CO1:	Explain the robotic terminologies for various configurations	K2						
CO2:	Select an appropriate gripper for a given application and use a gripper for pick and place application	K3						
CO3:	Calculate the forward kinematics, inverse kinematics and Jacobian for a serial robot	K3						
CO4:	Apply Lagrangian and Newton-Euler methods to analyze dynamic characteristics of a robot	K3						
CO5:	Describe various robot motion planning algorithm and robot interfaces	K2						
CO6:	Explain and practice various programming techniques used in industrial robots	K3						

Pre-requisite

Nil

CO/PO Mapping

((S/M/W indicates strength of correlation)								– Stro	ong, M	– Med	lium, V	W –Wea	ık
Cos		Programme Outcomes (PO's)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S			W					М	Μ			М	М
CO3	S	М	М		М				М	Μ			М	М
CO4	S	Μ	М										М	М
CO5	М													W
CO6					S				М	М			М	М

Course Assessment methods:

Direct	Indirect				
1. Continuous Assessment Test I,II					
 Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1.Course end survey				
INTRODUCTION		6 Hours			
		0 0 0 10			
Brief History, Types of robots, Overview of robot	t subsystems, resolution, repeatabil	ity and			
accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace,					
Mechanisms and transmission - Applications.					
KINEMATICS OF ROBOTS	9 Hours				

Introduction - Matrix Representation - Homogeneous transformation matrices – Forward and Inverse kinematics Equations: Position and Orientation -Denavit- Hardenberg Representation of forward kinematics equations of robots- Degeneracy and Dexterity.

DYNAMICS OF ROBOTS

Introduction- Differential motions of a frame – Jacobian – Singularities – Lagrangian and Newton-Euler formulations – Basics of Trajectory Planning..

Signature of BOS chairman, MCE

ROBOT MOTION PLANNING AND ROBOT INTERFACES	5 Hours
Robot Motion Planning: Cartesian Space vs Configuration space, Introduction to mo algorithms. Robot interfaces: Low level interfaces, IO digital signals, Fieldbuses – D and connections	
END EFFECTORS	4 Hours
End effectors and Different types of grippers, vacuum and other methods of gripping	g - Grippers
force analysis-Gripper Design-Simple problems	
ROBOT PROGRAMMING	10 Hours
Robot programming: Introduction; On-line programming: Manual input,	lead through
programming, teach pendant programming; Off-line programming languages - Simu	ilation.
Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving the ro	bot in Gazebo,
Manipulation with MoveIt, - Simulation.	
	Hours:75
REFERENCES:	
1. Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of India,20)11.
 Mikell P Groover, "Industrial Robots - Technology, Programming and Applica McGraw Hill, New York, 2008. 	ations",
3. Norberto Pires, 'Industrial Robots programming: Building Applications for the	e Factories of
the Future', 1 st edition, Springer, 2012	
4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003.	
5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and son	s,2008.
 Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Inte McGraw Hill International, 1987 	elligence",
7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New York, 200	06.
8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burg	
Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Algorithm	ns, and
Implementations", Prentice Hall of India,2005.	
 Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective Robotics with ROS', 3rd Edition, Packt, 2016. 	s Programming
LIST OF EXPERIMENT:	
1. Study of different type of robotics simulation software	
2. Modeling forward and inverse kinematics for robotic arm using Mathematical So	ftware
3. Offline programming of an Industrial robot using a Robotics simulation Software	
4. Setup and program a robot with object profile tracking using a Robotics simulation	on Software
5. Develop a trajectory planning for a robot using a simulation software.	
6. Setup and program an Industrial Robot with a pneumatic vacuum gripper for a sin and place operation	nple pick
7. Writing and verifying a Program for point to point operations	
8. Robot programming and simulation for Shape identification	
9. Setup and Program a robot to avoid obstacles	
10. Robot Simulation using Robot Operating System (ROS) and Gazebo	-

Sau Signature of BOS chairman, MCE

U18MCI6203

MICROCONTROLLER AND EMBEDDED SYSTEMS

L	Τ	Р	J	C
3	0	2	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Compare various cores of embedded systems K2						
CO2:	Brief the architecture, instruction set and interrupts of microcontroller	K3					
CO3:	Describe the features of ARM Cortex-M4 controller	K2					
CO4:	Interface the peripherals of ARM Cortex-M4 controller	K3					
CO5:	Develop embedded systems through hardware and software integration	K3					
CO6:	Explain the concepts of real time operating systems	K2					

Pre-requisite

1. U18MCT4103- Digital Electronics and Microprocessor

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progra	amme	Outcor	nes(Po	s)				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		Μ										М	М
CO2	М		S	М	S								S	S
CO3	W		Μ										М	М
CO4	Μ		S		S								S	S
CO5	W	Μ	S		S								S	S
CO6	S	S	М	М									М	М

Direct	Indirect						
1. Continuous Assessment Test I,II							
2. Assignment; Group Presentation, Project							
report, Poster preparation, Prototype or Product 1.Course end survey							
Demonstration etc. (as applicable)							
3. End Semester Examination							
INTRODUCTION TO EMBEDDED SYSTEM	MS	3 Hours					
Embedded system overview and applications, feature	es - Brief introduction to embedd	ed					
microcontroller cores: CISC, RISC, ARM and DSP.							
THE MICROCONTROLLER ARCHITECT	URE	9 Hours					
Introduction to 8051 Microcontroller: Architecture, I	Pin configuration, Memory organ	ization, Input					
/Output Ports, Counter and Timers, Serial communic	ation and Interrupts, Instruction	set,					
INTRODUCTION TO TIVA ARM CORTEX	M4	9 Hours					
Key Features – Functional Block Diagram - Pin Configuration –I/O pin multiplexing, pull							
up/down registers, GPIO control, Memory Mapped Peripherals, programming System registers,							
Watchdog Timer, need of low power for embedded systems, System Clocks and control,							
Hibernation Module on Tiva, Active vs Standby current consumption. Introduction to Interrupts,							
Interrupt vector table, interrupt programming.							

	IPHERALS OF TIVA ARM CORTEX	9 Hours
	r, Basic Timer, Real Time Clock (RTC), Timing generation and measurements	
	acing and data acquisition: ADC, Analog Comparators, DMA, Motion Control	Peripherals:
	1 Module & Quadrature Encoder Interface (QEI)	
	RDWARE/SOFTWARE INTEGRATION:	6 Hours
	and Target Machines. Getting Embedded Software into Target System: Program	mmers,
	ay, Keyboard, Relay, Stepper and DC Motor Interfacing	
REA	L TIME OPERATING SYSTEMS	9 Hours
Surve	ey of Software Architectures, Tasks and Task States, Tasks and Data, Semapho	res and Shared
Data,	Message Queues, Mailboxes and Pipes, Timer functions, Events, Memory Ma	nagement and
Interr	rupt Routines in RTOS Environment. Study of embedded product design with r	eal time
conce	epts using RTOS.	
The	ory: 45 Hrs Practicals: 30 Hrs. Total Hours: 75	
BF 1	FERENCES:	
		addad System
1.	Kenneth J Ayala and Dhananjay V Gadre, "The 8051 Microcontroller & Emb	edded System
2.	using Assembly and C" Cengage Learning (India edition), 2010 Jonathan W Valvano, "Introduction to Arm Cortex -M Microcontrollers", 201	2
<u>2.</u> 3.		
	Steve Furber, "ARM System-on-Chip Architecture", Pearson Education, 2009 David E Simon, "An Embedded Software Primer", Pearson Education Asia, N	
э.	Rajkamal," Embedded Systems: Architecture, Programming and Design", Tat Hill, New Delhi, 2017	a McGraw-
6.	Mazidi M A, Mazidi J G. and McKinlay R D., "The 8051 Microcontroller & I	Embedded
	systems", 2 nd Edition, Pearson, 2011	
8.	Shibu K V., "Introduction to Embedded Systems" McGraw Hill, 2016.	
9.	Andrew N Sloss, Dominic Symes and Chris Wright, "ARM system developer	's guide",
	Elsevier, 2010.	-
List	of Experiments	
)51 F	Program using Assembly Language	
	1. Basic programming using 8051 ALP (addition, subtraction, multiplication, div	vision, ascendir
	descending etc.)	
	2. 8051 peripheral programming (ADC,DAC,TIMER)	
	3. Motor control using 8051(DC motor and stepper motor)	
rogra	am using Embedded C	
1.	LED programming	
	Interface with Relay, Buzzer, Seven segment display, LCD.	
	Interface and control the speed of a DC Motor.	
4.	Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.	
5.	Interface DAC and generate waveforms.	
6.	Measure Ambient temperature using LM35 TEMPERATURE SENSOR and AD	С

5. Signature of BOS chairman, MCE

CONSTITUTION OF INDIA

L	Т	Р	J	С
2	0	0	0	0

(Mandatory course)

Course Outcomes

U18INT6000

|--|

CO1: Gain Knowledge about the Constitutional Law of India

CO2: Understand the Fundamental Rights and Duties of a citizen

CO3: Apply the concept of Federal structure of Indian Government

CO4: Analyze the Amendments and Emergency provisions in the Constitution

CO5: Develop a holistic approach in their life as a Citizen of India

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
0.05	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						Μ			W			S		
CO2						S		S				Μ		
CO3									М	S		W		
CO4								W	М			Μ		
CO5						Μ		М				S		
CO6														

DIRECT	INDIREC	ſ					
1. Group Activity / Quiz/ Debate / Case studies	1. Surveys						
2. Class test /Assignment							
THEORY COMPONENT CONTENTS							
MODULE.1: INTRODUCTION TO INDIAN (4 Hours						
Meaning of the constitution law and constitutionalism - Historical perspective of the Constitution - Salient features and characteristics of the Constitution of India							
MODULE.2: FUNDAMENTAL RIGHTS	8 Hours						
Scheme of the fundamental rights - Right to Equal	lity - Fundamental Right und	er Article 19 -					
Scope of the Right to Life and Liberty - Fundament	ntal Duties and its legal status	s - Directive					
Principles of State Policy – Its importance and imp	plementation						
MODULE.3: FEDERAL STRUCTURE		8 Hours					
Federal structure and distribution of legislative and financial powers between the Union and the States -							
Parliamentary Form of Government in India - The constitutional powers and status of the President of							
India							
MODULE.4: AMENDMENT TO CONSTITUT	6 Hours						

Signature of BOS chairman, MCE

Amendment of the Constitutional Powers and Procedure - The historical perspectives of the constitutional amendments in India						
MODULE.5: EMERGENC	Y PROVISIONS			4 Hours		
National Emergency, Presider	nt Rule, Financial	Emergency Local S	elf Governmen	nt —		
Constitutional Scheme in Ind	ia					
Theory:30 Tutorial:0	Practical:0	Project:0	Total:3	30		
Hours						
REFERENCES:						
1. Constitution of India - N	Ministry of Law &	Justice – PDF form	nat			
awmin.nic.in/coi/coiaso	n29july08.pdf					
2. Introduction to the Con	stitution of India b	y Durgadas Basu				
3. The Constitution of Ind	3. The Constitution of India – Google free material -					
www.constitution.org/cons/india/const.html						
4. Parliament of India – PDF formatdownload.nos.org/srsec317newE/317EL11.pdf						
5. The Role of the President of India – By Prof. Balkrishna						
6. Local Government in India – E Book - Pradeep Sachdeva						
https://books.google.com/books//Local_Government_in_In						

SEMESTER VII

ENGINEERING ECONOMICS AND FINANCIAL MANAGEMENT

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Evaluate the economic theories, Cost concepts and pricing policies	K2
CO2:	Analyze the market structures and integration concepts	K2
CO3:	Apply the concepts of national income and understand the functions of banks and concepts of globalization	K2
CO4:	Apply the concepts of financial management for project appraisal and working capital management	K2
CO5:	Understand accounting systems	K2
CO6:	Analyze financial statements using ratio analysis	K2
D		•

Pre-requisite

NIL

CO/PO Mapping															
	(S/M/W indicates strength of correlation)									S – Strong, M – Medium, W –Weak					
	Programme Outcomes (PO's)														
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		Μ				М					М		W		
CO2											М		W		
CO3				М		М					М				
CO4											S				
CO5						М					S				
CO6			М		М						S				
Cours	se Asse	essmen	t metł	nods:											
Direct									Indirect						
	1. Internal Test I														
2. Internal Test II							1	1 Course End Summer							
 Assignments End Semester Exam 							1.	1.Course End Survey							
Cour	Course Content:														

< >. Signature of BOS chairman, MCE

ECONOMICS, COST AND PRICING CONCEPTS	9 Hours
Economic theories – Demand analysis – Determinants of demand – Demand forecast Actual Cost and opportunity Cost – Incremental Cost and sunk Cost – Fixed and v MarginalCosting–TotalCost–ElementsofCost–Costcurves–Breakevenpointandbreakevence	variable Cost –
 Limitations of break even chart – Interpretation of break even chart – Contribution – P volume ratio or relationship – Price fixation – Pricing policies – Pricing methods. 	
CONCEPTS ON FIRMS AND MANUFACTURING PRACTICES	9 Hours
Firm – Industry – Market – Market structure – Diversification – Vertical integration – Me – Horizontal integration.	
NATIONAL INCOME, MONEY AND BANKING, ECONOMIC ENVIRONMENT	9 Hours
National income concepts – GNP – NNP – Methods of measuring national income – Infla – Deflation – Kinds of money – Value of money – Functions of bank – Types of bank – E liberalization – Privatization – Globalization	
CONCEPTS OF FINANCIAL MANAGEMENT	9 Hours
Financial management – Scope – Objectives – Time value of money – Methods of apprais profitability – Sources of finance – Working capital and management of working capital	sing project
ACCOUNTING SYSTEM, STATEMENT AND FINANCIAL ANALYSIS	9 Hours
Accounting system – Systems of book-keeping – Journal – Ledger – Trail balance – Finar statements – Ratio analysis – Types of ratios – Significance – Limitations.	ncial
Theory:45hoursTutorials:0hourTotal Hours: 45	
REFERENCES:	
1. Prasanna Chandra, "Financial Management (Theory & Practice),"TMH	
2. Weston & Brigham, "Essentials of Managerial Finance"	
3. Pandey, I. M., "Financial Management"	
4. James C. Van Horne. Fundamentals of Financial Management	
 Bhaskar S. "Engineering Economics and Financial Accounting", (2003) Anuradha A Chennai 	gencies,
6. James C. Van Horne Financial Management & Policy	
7. Management Accounting & Financial Management	
8. M. Y. Khan & P. K. Jain Management Accounting Principles & Practice -P. Saravan	
 Ramachandra Aryasri. A., and Ramana Murthy V.V., "Engineering Economics & Fin Accounting"-Tata McGraw Hill, New Delhi, 2006. 	nancial
 10. Varshney R.L., and Maheshwari K.L.," Managerial Economics" – Sultan Chand & S Delhi, 2001 11. Samvelson and Nordhaus," Economics"-Tata McGraw Hill, New Delhi, 2002 	Sons, New

Sa Signature of BOS chairman, MCE

U18MCT7001	MOBILE ROBOTICS	L	Т	Р	J	С	
	MOBILE ROBOTICS	3	0	0	0	3	
Course Outcomes							

After successful completion of this course, the students should be able to			
CO1: Explain different types of mobile robot locomotion	K2		
CO2: Apply mobile robot kinematics and constraints	K2		
CO3: Choose sensors for the perception of mobile robots.	K2		
CO4: Implement robot localization techniques			
CO5: Explain planning and navigation in robotics			
CO6: Apply obstacle avoidance techniques in mobile robots	K3		

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Prog	ramme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													Μ
CO2	S	М	M		М									S
CO3	S				М								М	S
CO4	S				М									S
CO5	S												М	S
CO6	S				М								М	S
Cours	Course Assessment methods:													
	Direct Indirect													
1. Co	1. Continuous Assessment Test I,II													
2. Assignment; Group Presentation, Project 1. Course end survey														
rep	port, P	oster p	repara	tion, P	rototyp	be or								
		Demo			(as app	olicable	e)							
	3. End Semester Examination													
LOC														Iours
				•					• 1	es of Lo		00		
	wheeled mobile robots – aerial mobile robots – stability - robot maneuverability – controllability.													
	MOBILE ROBOT KINEMATICS9 Hours													
	Forward and inverse kinematics, holonomic and nonholonomic constraints, kinematic models of													
simple car and legged robots, simulation of mobile robots														
ROB	ROBOT PERCEPTION9 Hours													
Propri	Proprioceptive/Exteroceptive and passive/active sensors, performance measures of sensors, sensors													
for mo	for mobile robots like global positioning system (GPS), Doppler effect-based sensors, vision-based													
sensor	sensors, uncertainty in sensing, filtering.													

sensors, uncertainty in sensing, filtering.

< >. Signature of BOS chairman, MCE

MOBILE ROBOT LOCALIZATION	9 Hours			
Introduction to localization – challenges in localization – localization and navigation – belief				
representation - map representation - probabilistic map-based localization - Markov lo	ocalization,			
Kalman localization				
PATH PLANNING AND NAVIGATION	9 Hours			
Introduction to planning and navigation - planning and reacting - path planning algorit	thms based			
on A-star, Dijkstra, Voronoi diagrams – obstacle avoidance techniques				
Theory:45Hours Tota	al Hours: 45			
REFERENCES:				
1. Roland Seigwart, IllahReza Nourbakhsh, and Davide Scaramuzza, "Introduction to autonomous mobile robots", Second Edition, MIT Press, 2011.				
 Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, LydiaE.Kavraki,SebastianThrun, "PrinciplesofRobotMotion:Theory,Algorithms,and Implementations", A Bradford Book, 2005. 				
3. Gregory Dudek and Michael Jenkin, "Computational Principles of Mobile Robotics", Second Edition, Cambridge University Press, 2010.				
4. Peter Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Tracts in Advanced Robotics, 2011.	Springer			
5. S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006.				

Sa Signature of BOS chairman, MCE

IMAGE PROCESSING AND

U18MCT7002

COMPUTER VISION

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to		
CO1: Summarize the fundamentals of digital image processing	K2	
CO2: Apply image enhancement techniques in spatial and frequency domain.		
CO3: Apply image segmentation and clustering techniques		
CO4: Describe 3D vision concepts		
CO5: Choose appropriate techniques for different applications	K4	

Pre-requisite

Ν	il	

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO12 PSO1 PSO2 PO11 CO1 S W S CO2 S W М S Μ Μ CO3 М Μ S S W М CO4 S S М Μ М CO5 S S S S S S S

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. End semester Examination	
4. Assignment	

< Signature of BOS chairman, MCE

FUNDAMENTALS OF IMAGE PROCESSING	7 Hours				
Introduction to Image processing and Computer Vision; Digital image representation;	elements of				
digital image processing systems; Structure of the human eye; a simple image model;	brightness				
adaptation and discrimination; Electromagnetic Spectrum. Image Sensing and Acquis	ition. Some				
Basic Relationships Between Pixels.					
IMAGE ENHANCEMENT	10 Hours				
Basic gray level transformations-histogram equalization- Arithmetic/logic Operations	-Basics of				
spatial filtering-comparison between smoothing and sharpening spatial filters. 2D Fou	urier				
transform -Smoothing & sharpening Frequency domain filters (Ideal, Butterworth, Ga					
SEGMENTATION AND CLUSTERING	10 Hours				
Segmentation – Thresholding, Edge detection and Region growing, watershed, Binary					
and grey morphology operations. boundary descriptors-chain codes -Fourier descript	ors –region				
descriptors, moments Clustering: K-means Clustering. Pattern recognition.					
3D VISION GEOMETRY	9 Hours				
3D vision tasks, Basics of projective geometry, A single perspective camera, Scene	reconstruction				
from multiple views, Two cameras stereopsis, Three cameras and trifocal tensor, 3D					
vision, 2D view based representations of a 3D scene					
APPLICATIONS	9 Hours				
Industrial automation and quality inspection, Object detection; Gesture Recognition;	Finger print				
recognition, Vision for robot control-Selection of camera based on applications.					
Theory:45Hrs Total Hours:45					
REFERENCES:					
1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6th Indian Reprint,					
Pearson Education Asia/Addison Wesley publishing company, 2017.					
2. William K Pratt, "Digital Image Processing", 2 nd edition, Wiley-Inter Science Publication, 1991.					
3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Brooks/Cole, Singapore,2008.					
4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012.					
	5. Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 2011.				
	ıbridge				

PROJECT PHASE I

L	Т	Р	J	С
0	0	0	6	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Design, analyze, realize / simulate a physical system by using the technology they learnt during the program.

CO2: Integrate various systems into one Mechatronics product.

CO3: Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO₂ CO1 S Μ Μ S S S S S S S CO2 S S S S S Μ Μ Μ S S S CO3 S CO4 S S

Course Assessment methods:

Direct	Indirect
1. Interdisciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing	
5. End Semester Viva Voice	

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer based simulation projects. This exception should be recorded and approved by the department committee. Management related projects will not be allowed. The interdisciplinary projects will carry more weightage.

Signature of BOS chairman MCE

SEMESTER VIII

	PROJECT PHASE II /	L	Т	Р	J	С
U18MCP8701	INTERNSHIP	0	0	0	24	12

After successful completion of this course, the students should be able to

CO1: Design, analyze, realize / simulate a physical system by using the technology they learnt during the program.

CO2: Integrate various systems into one Mechatronics product.

CO3: Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes/POs)

COs		Programme Outcomes(POS)												
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	S	S	S	S		Μ	Μ				S	S	S
CO2	S	S	S	S	S	М	Μ	Μ				S	S	S
CO3									S					
CO4										S	S			

Course Assessment methods:

Direct	Indirect
1. Inter disciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing	
5. End Semester Viva Voice	

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer-based simulation projects. This exception should be recorded and approved by the department committee. Management related project swill not be allowed. The interdisciplinary projects will carry more weightage.

Signature of BOS chairman, MCE

PROGRAMME ELECTIVES

U18MCE00	01

AUTOMOTIVE ELECTRONICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to											
CO1:	Explain the basics concepts of automobile engines	K2									
CO2:	Describe the components of Engine Control system	K2									
CO3:	State the working principle of automotive sensors.	K2									
CO4:	Describe the principle of vehicle network protocols	K3									
CO5:	Explain the working of various comfort system embedded in automobile	K2									
CO6:	Describe the working principle of automobile safety systems	K2									

Pre-requisite

U18MCI4202 - Sensors and Instrumentation

	CO/PO Mapping														
(S/M/	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	Programme Outcomes(POs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C01	S						М					W			
CO2	S					W	W	М					М	М	
CO3	S	М											W	М	
CO4	S	М	М	W		W		W					S	М	
CO5	S		М		М	W	М					W		М	
CO6	S		М		М	М	М	W				W	S	S	
Cours	e Asse	essmer	nt met	hods:									•		

Direct	Indirect							
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 								
INTRODUCTION	9 Hours							
Automobile physical configuration - Evolution of electronics in automobiles - Operating principles								

of IC engine – Two stroke – Four stroke - Major engine components – Engi	ne cylinder
arrangements -working of simple carburetor- Ignition system - definition of engine	•
terms	-
ENGINE CONTROL SYSTEM	9 Hours
Motivation For Electronic Engine Control - Electronic Engine Control System - Eng	ine Functions
And Control - Electronic Fuel Control System- Engine Mapping- Effect of Air/Fuel	Ratio, Spark
Timing on Performance, Exhaust Gas Recirculation on Performance- Electronic Ign	0
Engine Control System - Engine Crank (Start) - Engine Warm-Up - Open-Loop Contro	ol - Closed-
Loop Control - Hard Acceleration - Deceleration and Idle	
AUTOMOTIVE SENSORS AND COCK PIT ELECTRONICS	9 Hours
Role of sensors and actuators in automotive control- construction and working prin	-
air flow (MAF) rate sensor - Exhaust gas oxygen sensor - Throttle plate angular pos	
Crankshaft angular position/RPM sensor - Coolant temperature - Intake air temperature	
Manifold absolute pressure (MAP) sensor - Differential exhaust gas pressure sensor -	Vehicle speed
sensors- Introduction to Cockpit Electronics – Visual displays VEHICLE NETWORKS	0.11
	9 Hours
Vehicle Tracking System GPS, Vehicle networks CAN, CAN FD, LIN, FlexRay- I/O Features- Advantages- Protocol formats – on board diagnostics systems.	Modules –
COMFORT AND SAFETY SYSTEMS	0.11
	9 Hours
Traction control system – Cruise control system – electronic control of automatic trans- antilock braking system – electronic suspension system –airbag systems – centralized	
system – Navigation systems – climate control of cars- Maintenance and charging of b	
Theory: 45 Hrs Total Hours: 45	atteries.
REFERENCES:	
1. David Crolla, "Encyclopedia of Automotive Engineering", 6 th edition, wiley, 20	15
 David Crond, "Encyclopedia of Futometric Engineering", or edition, whey, 26 Tom Denton, "Automobile Electrical and Electronics Systems", 2nd edition Edw 	
Publishers, 2017.	
3. William B Ribbens, "Understanding Automotive Electronics", 5 th edition, Newn	es Publishing
2003	
4. Robert Bosch GmbH, "BOSCH Automotive Handbook", 9th edition, Bentley put	olishers, 2014
5. Barry Hollembeak, "Automotive Electricity, Electronics and Computer Controls	
Delmar Publishers, 2001.	, , ,
6. Warren M Farnell, "Fuel System and Emission controls", 1st edition Check Cha	rt Publication
2005.	
2005.7. H.H. Braess, "Handbook of Automotive Engineering", Ulrich Seiffert, 1st edition	n, SAE

CONDITION MONITORING

Course Outcomes

After successful completion of this course, the students should be able to										
CO1	Recognize the types of failures and maintenance strategies	K2								
CO2	Illustrate the fundamental principles of machinery vibration	K2								
CO3	Explain signal analysis, fundamentals of FFT and signal conditioning	K2								
CO4	Explain the vibration and noise based condition monitoring techniques	K3								
CO5	Explain the thermography and wear analysis for condition monitoring	K2								
CO6	Identify and explain the appropriate condition monitoring technique for a given application	K3								

Pre-requisite Nil

11.														
	CO/PO Mapping													
	(S	S/M/W	indica	tes st	rength o	of corre)	S-Str	ong, M-	Mediun	n, W-W	eak		
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М
Course	Asses	ssment	t meth	ods:										
Direct						Indirect								
1. C	ontinu	ious As	ssessm	ent T	est I,II									
2. A	ssign	nent:	Group	p Pr	esentati	on, Pi	roject							
	-			-	on, Pr	• •		1.Course end survey						

Product Demonstration etc (as applicable) 3. End Semester Examination

< Signature of BOS chairman, MCE

	^ -
FAILURES AND PRINCIPLES OF MAINTENANCE	07 Hours
System failure and component failure, Types of failure, Causes of failure	
principles, Human factors in failure incidents, Maintenance strategies: Pr	
Predictive Maintenance, Bath Tub Curve, Failure Modes Effects and Crit	
FUNDAMENTALS OF MACHINERY VIBRATION	10 Hours
Simple harmonic motion and vibration, Vibration and Spring Mass syst	em, Degrees of freedom,
Free vibration and Natural frequency, Forced vibration and Vibration iso	olation, Single Degree-of-
Freedom Motion, Forced Vibration Response, Base Excitation, For	
Vibration Isolation, Tuned Vibration Absorber, Unbalanced Resp	onse, Characteristics of
Vibrating Systems, Vibration of Continuous Systems, Mode Shapes and	Operational Deflection
Shapes	
DIGITAL SIGNAL PROCESSING	10 Hours
Classification of Signals, Signal Analysis, Frequency Domain Signal Analysis	alysis, Fundamentals of
Fast Fourier Transform, Computer-Aided Data Acquisition, Signal Cond	
Demodulation, Cepstrum Analysis, Illustrative examples: Representation	0 0
frequency domain, Compressor Vibration and Engine Vibration	C
VIBRATION AND NOISE MONITORING	06 Hours
Principles of Vibration Monitoring, Misalignment Detection, Eccentry	icity Detection, Cracked
Shaft, Bowed and Bent Shaft, Unbalanced Shaft, Looseness, Rub, Be	
Fluid Machines, Acoustical Terminology, NoiseSources, SoundFields, Noi	6
Noise Source Identification	
THERMOGRAPHY	06 Hours
Thermal Imaging Devices, Use of IR Camera, Industrial Application	s of Thermography in
Condition Monitoring	
WEAR DEBRIS ANALYSIS	06 Hours
Mechanisms of Wear, Detection of Wear Particles, Oil Sampling Technic	uue. Oil Analysis. Limits
of OilAnalysis	1,
Theory:45Hours Total	Hours:45
REFERENCES:	REFERENCES:
 Amiya R. Mohanty, "Machinery Condition Monitoring: Principles Press, 2015 	and Practices", CRC
2. R.A. Collacott, "Mechanical Fault Diagnosis and Condition Monit	oring", Springer,2012.
3. W.T.Becker, R.J.Shipley, "ASM Handbook: Volume 11: Failure A ASM International, 2002.	Analysis and Prevention",
4. V.P. Singh, "Mechanical Vibrations", Dhanpat Rai & Co., 2014.	

MICRO ELECTROMECHANICAL

L	Т	Р	J	С
3	0	0	0	3

U18MCE0003

SYSTEMS

Course Outcomes	
After successful completion of this course, the students should be able to	
CO1: Explain the evolution of micro and smart system.	K2
CO2: Illustrate about various sensors and actuating system.	K2
CO3: Classify the Micro machining techniques in MEMS.	K2
CO4: Evaluate a proper scaling method.	K2
CO5: Determine packaging techniques in MEMS and smart system.	K2
CO6: Discuss various applications of MEMS.	K2

Pre-requisite Nil

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Prog	ramme	Outco	mes(P	Os)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М

Course Assessment methods:	
Direct	Indirect
1. Continuous Assessment Test I, II	1. Course end survey
2. Assignment:Group Presentation,	
Project report, Poster preparation,	
Prototype or Product	
Demonstration etc (as applicable)	
3. End Semester Examination	

S. Signature of BOS chairman, MCE

IN	TRODUCTION	9 Hours
Ov	erview - Microsystems and microelectronics - definition-MEMS materials-scali	ng laws scaling in
	ometry-scalinginrigidbodydynamics-scalinginelectrostaticforces-scalinginelectri	
-	fluid mechanics- scaling in heat transfer.	
M	ICRO SENSORS AND ACTUATORS	9 Hours
Wo	orking principle of Microsystems - micro actuation techniques - micro sensors-ty	ypes–Micro
act	uators - types - micro pump - micro motors - micro - valves - micro grippers -	-micro
Ac	celerometers	
FA	ABRICATION PROCESS	9 Hours
Sul	bstrates-single crystal silicon wafer formation-Photolithography-Ion implantatio	n-Diffusion –
Ox	idation-CVD-Physical vapor deposition-Deposition by epitaxy-etching process.	
M	ICRO SYSTEM MANUFACTURING	9 Hours
D		
Bu	lk Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro sys	stem packaging-
	lk Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro systemials - die level-device level-system level-packaging techniques - die preparati	
ma	lk Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro systemials - die level-device level-system level-packaging techniques - die preparatinding -wire bonding - sealing.	
ma bor	terials - die level-device level-system level-packaging techniques - die preparati	
ma bor M	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing.	on -surface 9 Hours
ma bor MI	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN	on -surface 9 Hours
ma bor MI Des sys	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl	on -surface 9 Hours
ma bor MI Des sys Th	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl stems in automotive industry, bio medical, aero space and telecommunications reory:45 Hours Total Hours:45	on -surface 9 Hours
ma bor MI Des sys Th	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl stems in automotive industry, bio medical, aero space and telecommunications teory:45 Hours Total Hours:45 ERENCES:	on -surface 9 Hours ications of micro
ma bor MI Des sys Th	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl stems in automotive industry, bio medical, aero space and telecommunications teory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC	on -surface 9 Hours ications of micro
ma bor M Dea sys Th EF 1. 2.	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl stems in automotive industry, bio medical, aero space and telecommunications teory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005.	on -surface 9 Hours ications of micro Graw-Hill, 2017.
ma bor MI Des sys Th EF	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl stems in automotive industry, bio medical, aero space and telecommunications teory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor	on -surface 9 Hours ications of micro Graw-Hill, 2017.
ma bor M Dea sys Th EF 1. 2.	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appleters in automotive industry, bio medical, aero space and telecommunications teory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor Smart Devices", John Wily and sons Ltd., 2001.	on -surface 9 Hours ications of micro Graw-Hill, 2017. s MEMS and
ma bor M Dea sys Th EF 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl stems in automotive industry, bio medical, aero space and telecommunications teory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor	on -surface 9 Hours ications of micro Graw-Hill, 2017. s MEMS and
ma bor M Dea sys Th EF 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparati nding -wire bonding - sealing. ICRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl stems in automotive industry, bio medical, aero space and telecommunications reory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor Smart Devices", John Wily and sons Ltd., 2001. Fatikow S,Rembold U, "Microsystem Technology and Micro robotics", Spri	on -surface 9 Hours ications of micro Graw-Hill, 2017. TS MEMS and nger-Verlag

U18MCE0004

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to				
CO1	Express the basic concepts of Artificial Intelligence	K2			
CO2	Demonstrate the usage of planning and decision making.	K3			
CO3	Interpret the ideas of machine learning by supervised and unsupervised learning methods	K3			
CO4	Apply Linear Regression and Logistic Regression machine learning methods.	K3			
CO5	Summarize the concepts of Artificial Neural Networks	K2			
CO6	Describe various Artificial Neural Networks methodology	K2			

Pre-requisite

Data Warehousing and Data Mining

		CO/PO Mapping												
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
	Programme Outcomes(POs)													
COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	М		S	S			S	Μ		Μ	Μ	Μ
CO2	S	Μ	М							Μ		Μ	W	Μ
CO3	S	S	М		Μ					Μ		Μ	W	М
CO4	S	S	Μ		Μ					Μ		Μ	W	М
CO5	S	S	М		S	S			S	Μ		Μ	S	М
CO6	S	S	М		S	S		W	S	Μ		Μ	S	S
Course	Asse	ssment	tmeth	ods:										
			Direct				Indirect							
1. Int	ternal	Test I												
2. Int	ternal	Test II	[
3. Assignment						1.Course end survey								
4. Gr									-					
5. En	5. End semester exam													
INTRO	DDU	CTIO	N TO	ARTI	FICIA	L IN	FELL	IGEN	ICE				9	Hours

Defining Artificial Intelligence, Intelligent Agents, Solving Problems by searching-Problem-solving agents-Example problems – Searching for Solutions-Uninformed search strategies – Informed search strategies – Heuristic functions

KNOWLEDGE REPRESENTATION AND PREDICATE LOGIC

10 Hours

Knowledge Representation and Mappings, Approaches to knowledge representation Representing simple facts in logic, Computable functions and predicates, Procedural vs Declarative knowledge,LogicProgramming,Forwardvsbackwardreasoning.ClassicalPlanning,Makingsimple Decisions

Signature of BOS chairman, MCE

IDEA OF MACHINE LEARNING	9 Hours			
Idea of Machine learning from data, Supervised Learning : Learning a Class from Exam	ples-Noise-			
Learning Multiple Classes- Regression-Model Selection and Generalization, Unsupervi	sed learning-			
Introduction, k-Means Algorithm, Optimization objective, Random Initialization, Choosing number				
of clusters -Deep learning.	_			
LINEAR REGRESSION AND LOGISTIC REGRESSION	9 Hours			
Linear Regression -Model representation for single variable, Single variable Cost Function, Mu	ultivariable cost			
function, Gradient Decent for Linear Regression, Multivariable model representation, Logist				
Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced Optimi	zation,			
Classification (One vs All), Problem of Overfitting, Regularization				
APPLICATIONS	9 Hours			
Applications of AI- Natural Language Processing – Machine Translation – Robot – Gaming. Int				
Artificial Neural Networks and Convolution Neural networks – Applications Use of Tensor flow				
Theory: 45Total Hours:	45Hours			
REFERENCES:				
1. Stuart Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", 3rd Edition, P	earson			
Education / Prentice Hall of India,2015.				
3. Elaine Rich, Kevin Knight, Shivashankar.B.Nair, "Artificial Intelligence", Tata McGraw H Edition, 2009	Iill,Third			
5. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.				
 George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex ProblemSc Pearson Education / PHI,2008 	olving",			
8. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computations Cambridge University Press, 2010.	al Agents",			
9. EthemAlpaydin, "Introduction to Machine Learning", Second Edition, MIT Press, 2015				
10. Tom M. Mitchell, -Machine Learning, McGraw-Hill Education (India) Private Limited, 20)13			
11. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.				
12. Y. S. Abu-Mostafa, M. Magdon-Ismail, and HT. Lin, "Learning from Data", AML Book F 2012	Publishers,			
13. K. P. Murphy, "Machine Learning: A probabilistic perspective", MIT Press, 2012.				
14. M. Mohri, A. Rostamizadeh, and A. Talwalkar, "Foundations of Machine Learning"	', MIT Press,			
2012.				

1119MCE0005	DATABASE MANAGEMENT SYSTEMS	L	L T P	J	С	
U18MCE0005	DATADASE WANAGEWIENT SISTEMS	3	0	0	0	3

After successful completion of this course, the students should be able to				
CO1	Understand the functional components of DBMS and Relational Model.	K2		
CO2	Devise queries using SQL to develop database application	K2		
CO3	Describe the database design approaches.	K2		
CO4	Understand data storage and retrieval techniques.	K2		
CO5	Explore concepts for transaction processing, concurrency control and NOSQL.	K2		
CO6	Illustrate the concepts of NOSQL	K2		

Pre-requisite

NIL														
		CO/PO Mapping												
								•••	0					
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
GO	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М					S		Μ					Μ
CO2				Μ	S			М		Μ	S	Μ		Μ
CO3			М				М						М	
CO4			М				S							
CO5	S						S			М				
CO6	S	М	М							М			М	М

Direct	Indirect				
1. Internal Test I	muntet				
2. Internal Test II	1.Course end survey				
3. Assignment: Group Presentation	5				
4. End semester exam					
INTRODUCTION TO DATABASE AND RELATIONAL MODEL 9Hours					
Introduction: Database applications, Purpose, Accessing a	nd modifying databases, Architecture of D	BMS.			
Relational Databases: Relational model, Database schema	, Keys, Formal Relational Query Language	es			
DATABASE APPLICATION DEVELOPMENT					
	Guidelines for Database Design. SQL: Data definition, Basic SQL query structure, Specifying integrity constraints				
in SQL, Set operations, Nested subqueries, Aggregation, Join expressions, Views. Functions, Procedures and					
Triggers. Accessing Databases from Programs using JDB	C, Building Web Applications using PHP &	&MySQL. Case			
Study: Open Source Relational DBMS					

< > Signature of BOS chairman, MCE

DATABASE DESIGN	9 Hours
Database Design: E-R model, E-R diagram, Reduction to relational schema, E-R design issue	es, Relational
Database Design: features of good design, Functional Dependency theory, decomposition us	ing functional
dependency, Normal forms. (Optional: multi-valued dependency and 4th normal form).	-
STORAGE AND INDEXING	7 Hours
Storage and File structure: File Organization, RAID. Indexing: Concepts, Clustered and Non-clustered tree and B+-tree. Basics of Hashing (Static, Dynamic).Overview of Query processing.	d Indices, B-
TRANSACTION MANAGEMENT	11 Hours
Transactions: Concept and purpose, ACID properties and their necessity, transactions in SC Schedules: Conflicts and Aborts, Serializability, Recoverability. Concurrency Control: lock-base phase locking, Timestamp based protocols. Deadlock handling. Case Study: NoSQL: CAP Theorem Properties, Types of NoSQL Systems.	d protocols, 2-
Theory: 45 Total Hours: 45Hou	irs
REFERENCES:	
1. Abraham Silberschatz, Henry Korth, and S. Sudarshan, "Database System Concepts", Sixth Edi Hill.2016.	tion, McGraw-
2. R. Elmasri and S. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education	tion,2016
3. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 3nd Edition, McGraw	/ Hill,2014.
4. Thomas M. Connolly and Carolyn E. Begg, "Database Systems - A Practical Approach toDesig Implementation and Management", Fifth edition, Pearson Education, 2014	n,
5. C.J.Date, A.Kannan and S.Swamynathan, "An Introduction to Database Systems", Eighth Edition Education, 2006.	on,Pearson

	0	-	P
Signat	ure of BO	Schairn	nan, MCE

U18MCE0006	SOFT COMPUTING	L	Т	Р	J	С
		3	0	0	0	3

After	After successful completion of this course, the students should be able to					
CO1	Identify and describe soft computing techniques and their roles in building intelligent machines	K2				
CO2	Recognize the feasibility of applying a soft computing methodology for a particular problem	K2				
CO3	Identify and select a suitable classification/clustering algorithm to solve the problem	K2				
CO4	Apply evolutionary algorithms and Fuzzy logic to solve the problem	K2				
CO5	Discuss the soft computing systems by hybrid soft computing techniques	K2				
CO6	Describe the various optimization techniques used in soft computing	K2				

Pre-requisite

-														
							CC)/PO N	Iapping	3				
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
~ ~		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	М	S										S	S
CO2	S	М											М	
CO3	S		S	S				S	S				М	S
CO4	S		S		S	М		S	S				М	S
CO5	S				S			S						
CO6	S	S						S					W	W
C					•			•			•			

Course Assessment methods:

Direct	Indirect				
1. Internal Test I					
2. Internal Test II	1.Course end survey				
3. Assignment: Group Presentation					
4. End semester exam					
INTRODUCTION TO EUZZY SETS AND EUZZY LOCIC SYSTEMS 0 Hours					

INTRODUCTION TO FUZZY SETS AND FUZZY LOGIC SYSTEMS 9 Hours

Fuzzy sets and Fuzzy logic systems- Classical Sets and Fuzzy Sets and Fuzzy relations- Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions: Features of membership functions, standard forms and boundaries, different fuzzification methods Fuzzy toCrispconversions:LambdaCutsforfuzzysets,fuzzyRelations, Defuzzification methods.

FUZZY RULE BASED SYSTEMS

Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication- Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Rules, Fuzzy Inference System- Mamdani Fuzzy Models – Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting

9 Hours

Signature of BOS chairman MCE

INTRODUCTION TO NEURAL NETWORKS

Advent of Modern Neuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline and Madaline networks; single layer network; Back propagation and multi-layer networks. Competitive learning networks: Kohonen self-organizing networks, Hebbian learning; Hopfield Networks.

GENETIC ALGORITHMS

Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA) Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based clustering Algorithm, Image processing and pattern Recognition.

HYBRID SOFT COMPUTING TECHNIQUES

Introduction - Neuro-Fuzzy Modelling-Applications of Neural Networks- Pattern Recognition and classification Genetic-Neuro Hybrid System, Genetic-Fuzzy Hybrid System, Fuzzy-Genetic Hybrid System, Simplified Fuzzy ARTMAP, Application of Soft Computing, CASE Study.

Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle Swarm Optimization (PSO).

Theory: 45Hrs Total Hours: 45 Hrs REFERENCES:

- Samir Roy, Udit Chakroborthy, —Introduction to soft computing neuro-fuzzy and genetic algorithm^{II}, Person Education, 2013
- 2. Timothy J.Ross, —Fuzzy Logic with Engineering applications, Tata McGraw Hill New York, Third edition, 2016
- 3. DavidE.Goldberg,—GeneticAlgorithmsinSearchOptimizationandMachineLearning,PearsonEducation, 2007.

4. J.-S.R Jang., C.-T Sun., & E. Mizutani, —Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligencel, Prentice-Hall of India Pvt. Ltd., 2005.

9 Hours

9 Hours

9 Hours

UNDER WATER ROBOTICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1	Express the basic concepts of underwater vehicle and Manipulator Systems	K2
CO2	Describe the rigid body kinematics of Autonomous Underwater vehicle and manipulators	K2
CO3	Summarize the dynamics of Autonomous Underwater vehicle and manipulators.	K2
CO4	Apply controllers for dynamic control of Autonomous Underwater vehicles.	K2
CO5	Discuss the concepts of kinematic control of Underwater manipulator systems.	K2
CO6	Describe various dynamic control theories of Underwater manipulator systems.	K2

Pre-requisite

N	IL	

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Prog	ramme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S											W		
CO2	S	Μ												
CO3	S	М				Μ							M	S
CO4	S	W		W	Μ								S	S
CO5	S	М		W	М								W	W
CO6	S	М		W	М								Μ	Μ
Cours	Course Assessment methods:													
	Direct									Ι	ndirect			
1. Ir	1. Internal Test I													

	muntet								
1. Internal Test I									
2. Internal Test II	1.Course end survey								
3. Assignment: Group Presentation									
4. End semester exam									
MODELLING OF UNDER WATER ROBOTS 9 Hours									
Introduction to Underwater Vehicles -Sensorial S	ystems, Actuation, Localization,	Autonomous							
Underwater Vehicles (AUV) Control Fault Detect	ion/Tolerance for UUVs, Underv	water							
Vehicle Manipulator Systems (UVMS) Coordinat	ed Control, Future Perspectives.								
MODELLING OF UNDER WATER ROB	MODELLING OF UNDER WATER ROBOTS 10 Hours								
Rigid Body's Kinematics-Attitude Representation by Euler Angles, Attitude Representation by									
Quaternion, Attitude Error Representation, 6-DOF	Quaternion, Attitude Error Representation, 6-DOFs Kinematics, Rigid Body's Dynamics-Rigid								
Body's Dynamics in Matrix Form.									

< >. Signature of BOS chairman, MCE

DYNAMIC CONTROL OF AUVS	9 Hours								
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, Non model Based									
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/V	ehicle								
Fixed Frame Based Controller									
KINEMATIC CONTROL OF UVMS	8 Hours								
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, Nor	n model Based								
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/V	ehicle Fixed								
Frame Based Controller.									
DYNAMIC CONTROL OF UVMS	9 Hours								
Feed forward Decoupling Control, Feedback Linearization, Non-regressor-Based A	Adaptive Control,								
Sliding Mode Control, Adaptive Control, Output Feedback Control.									
	Total Hours: 45								
REFERENCES:									
1. Gianluca Antonelli, Underwater Robots: Motion and Force Control of Vehic	cle-Manipulator								
Systems, Springer Berlin Heidelberg, Second Edition 2010									
2. C. Vasudevan, K. Ganesan, Underwater Robots, Springer, Third Edition, 20)15.								
3. Frank Kirchner, Sirko Straube, Daniel Kühn, AI Technology for Underwate	er Robots, First								
Edition 2019.									
4. Steven W. Moore, Harry Bohm, Vickie Jensen, Underwater Robotics: Scien									
Fabrication, Marine Advanced Technology Education (MATE) Center, 2010).								
5. Daniel R. Faust, Underwater Robots, The Rosen Publishing Group, Inc, Fire	st Edition, 2016.								

5. Daniel R. Faust, Underwater Robots, The Rosen Publishing Group, Inc, First Edition, 2016.

< Signature of BOS chairman, MCE

INDUSTRIAL IOT

L	Т	Р	J	С
3	0	0	0	3

9 Hours

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1	Explain the basic principles of smart manufacturing.	K2
CO2	Illustrate the importance of IoT in smart manufacturing	K2
CO3	Describe the functions of internet of things (IoT).	K2
CO4	Explain the key elements of Industrial internet of things (IIoT).	K2
CO5	Explain the functions of big data analytics.	K2
CO6	Discuss various applications of Industrial IoT.	K2

Pre-requisite

NIL

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	Μ													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М

Course Assessment methods:

	Direct	Indirect							
1.	Continuous Assessment Test I,II								
2.	Assignment: Group Presentation, Project								
	report, Poster preparation, Prototype or	1. Course end survey							
	Product Demonstration etc (as applicable)								
3.	End Semester Examination								
IN	INTRODUCTION								

INTRODUCTION

Globalization and Emerging Issues, The Fourth Revolution, LEAN Production Systems, Smart and **Connected Business Perspective, Smart Factories**

IoT COMPONENTS

Cyber Physical Systems and Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data And Advanced Analysis, Cyber security inIndustry4.0, Basics of Industrial IoT, Industrial Sensing & Actuation, Industrial Internet Systems.

Signature of BOS chairman, MCE

INDUSTRIAL IoT	9 Hours
Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Bus	siness Models,
IIoT Reference Architecture, Industrial IoT- Layers: IIoT Sensing, IIoT Processing	, IIoT
Communication, IIoT Communication, IIoT Networking.	
INDUSTRIAL IOT: BIG DATA ANALYTICS	9 Hours
IIoT Analytics - Introduction, Machine Learning and Data Science, IoT Platforms,	Data
Management tool, Software-Defined Networking, Data Center Networks, Cloud C	omputing
INDUSTRIAL IoT- APPLICATION	9 Hours
Power Plants, Oil, chemical and pharmaceutical industry, Inventory Management &	& Quality
Control, Plant Safety and Security (Including AR and VR safety applications), Fac	ility
Management.	
Theory:45Hours	Total Hours: 45
REFERENCES:	
1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress,	2016.
2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Indust	rial Internet of
Things: Cyber manufacturing Systems", Springer, 2017.	
3. Andrew Minteer, "Analytics for the Internet of Things (IoT): Intelligent anal	ytics for your
intelligent devices", Packt Publishing, 2017.	
4. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The I	Evolving World of
M2M Communications", Willy Publications, 2013.	
5. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Ir	nternet of Things",
Springer, 2011.	

U18MCE0008		L	Т	Р	J	С
UISWICE0008	STATISTICAL QUALITY CONTROL	3	0	0	0	3

After	After successful completion of this course, the students should be able to									
CO1	Define the concept of probability and quality control	K2								
CO2	Explain various sampling method to measure quality and the attributes of quality.	K2								
CO3	Summarize the process behavior based on various control charts for variables.	K2								
CO4	Summarize the process behavior based on various control charts for attributes	K2								
CO5	Select the appropriate samples for the study.	K2								
CO6	Apply various techniques to improve the overall quality.	K2								

Pre-requisite NIL

11	IL													
	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S		Μ					S					
CO2	S			М					S					
CO3	S	М		S										
CO4	S				S	М				S				
CO5														
CO6														
0			· · · · •											

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. Assignment: Group Presentation	
4. End semester exam	

< Signature of BOS chairman, MCE

INTRODUCTION	9 Hours
Probability concepts, Review of distribution: Normal, Poison's, and Binomial, Proble	ems, Measuring of
quality and control, Value and quality, Quality costs, Quality assurance	-
CONTROL CHARTS FOR VARIABLES	9 Hours
Chance and assignable causes of quality variation, Control charts for variables, X-bar	, R, and s-charts,
Warning and modified control limits, Process capability study, Ranges, Moving Aver	ages, and Six s-
limits, multivariate charts.	
CONTROL CHARTS FOR ATTRIBUTES	9 Hours
Limitation of variable chart, p-chart, problems with variable sample size, np-chart, c-	chart, u-chart, and
ku-chart, Demerits per unit control chart.	
ACCEPTANCE SAMPLING	9 Hours
Economics of sampling, Lot formation, OC-Curve-Producer's and Consumer's risk, S	Single and double
sampling plans, AOQ, AOQL, ATI, ASN, Sequential sampling plan, MIL – STD – 10	0
STD – 414 tables, IS 2500 Standard.	,
QUALITY IMPROVEMENT	9 Hours
Zero defects program, Quality circle, Fishbone diagram, scatter diagram, Pareto Anal	ysis, Deming cycle,
Introduction to Reliability function, System reliability of series, parallel, and combine	
Reliability improvement techniques.	C ·
Theory: 45Hours Tota	l Hours:45
REFERENCES:	
1. Grant E.L. and Leavenworth, "Statistical Quality Control", Tata McGraw-Hill Publish	ing Company, 5th
edition 2002.	
2. Douglas C. Montgomery, "Statistical Quality Control", John Wiley and Sons, 2001.	
3. Fiegenbaum, A.V., "Total Quality Control", McGraw-Hill Inc., 1991.	
4. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, New I	Nelhi 2006
 Srinath L.S "Reliability Engineering", Affiliated East west Press, 2005. 	Jenn, 2000

< Signature of BOS chairman, MCE

U18MCE0009

COMPOSITE AND SMART MATERIALS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO1	Recognize the need and characteristics of the composite materials	K2				
CO2	Explain the manufacturing processes of composite materials	K2				
CO3	Explain the applications of composites and its sustainability	K2				
CO4	Explain the principle and working of Piezoelectric and Magnetostricitve materials	K2				
CO5	Explain the electro active materials and shape memory alloys	K2				
CO6	Understand the concept behind smart composites	K2				

Pre-requisite Nil

	CO – POMapping													
	(S/M/W indicates strength of correlation) S – Strong, M – Medium, W - Weak													
GO						Pro	ogram	Outco	mes					
CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12	PSO1	PSO2
CO1	S													
CO2													М	
CO3							М							
CO4	S												М	
CO5													М	
CO6	М													
Cours	e Asses	sment	Metho	ods:	•	•	•		•	•		•		

Direct Indirect 1. Continuous Assessment Test I,II 2. Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) 1. Course end survey 3. End Semester Examination 1. Course end survey 9 Hours Need and general characteristics of composite materials- mechanical advantages and limitations Characteristics of fibers and matrixes – classification of composites – Prepregs – Lamina, Laminate and

sandwich construction. Ceramics.

Signature of BOS chairman, MCE

MANUFACTURING AND QUALITY INSPECTION	9 Hours				
Fundamentals of curing - Bag molding process - compression and vacuum molding - filame	ent winding				
– Quality inspection methods for raw materials – cure cycle monitoring – cured composite pa	arts.				
APPLICATIONS OF COMPOSITES AND SUSTAINABILITY	9 Hours				
Applications of composites - Natural fibers needs and its significance - Recycling of compositions	ites				
PIEZOELECTRIC AND MAGNETOSTRICTIVE MATERIALS	9 Hours				
Introduction to Smart Materials, Principles of Piezoelectricty, Perovskyte Piezoceramic	Materials,				
Single Crystals vs Polycrystalline Systems, Piezoelectric Polymers, Modelling Piezoelectric	Actuators,				
Amplified Piezo Actuation - Internal and External Amplifications. Principles of Magnetostri-	ction, Rare				
earth Magnetostrictive materials, Giant Magnetostriction and Magneto-resistance	ce effect.				
Magnetostrictive Actuation, Joule Effect, Wiedemann Effect, Magneto volume Effect, Magneto	etostrictive				
Mini Actuators.					
ELECTRO ACTIVE MATERIALS AND SHAPE MEMORY ALLOYS	9 Hours				
Introduction to Electro-active Materials, Electronic Materials, Electro-active Polymers, Ion	ic Polymer				
Matrix Composite (IPMC), Shape Memory Effect, Shape Memory Alloys, Shape Memory	Polymers,				
Electro-rheological Fluids, Magneto Rhelological Fluids. IPMC and Polymeric Actuators, Sh	nape				
Memory Actuators					
Theory: 45 Hours Total	: 45 Hours				
References:					
1. Mallick P K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 3rdEdition,					
Maneel Dekker Inc, 2008.					
2. Brian Culshaw, Smart Structures and Materials, Artech House, 2000					
3. Gauenzi, P., Smart Structures, Wiley, 2009					
4. Cady, W. G., Piezoelectricity, Dover Publication					

		L	T	Р	J	С	
U18MCE0010	ADDITIVE MANUFACTURING	3	0	0	0	3	
Course Outcomes:							

	se Outcomes.					
After	After successful completion of this course, the students should be able to					
CO1	Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.	K2				
CO2	Acquire knowledge on process of transforming a concept into the final product in AM technology.	K2				
CO3	Elaborate the vat polymerization and material extrusion processes and its applications.	K2				
CO4	Acquire knowledge on powder bed fusion processes and its applications.	K2				
CO5	Acquire knowledge on direct energy deposition processes and its applications.	K2				
CO6	Evaluate the advantages, limitations, applications of binder jetting, material jetting and laminated object manufacturing processes.	K3				

Pre-requisite:

Nil

CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progra	amme	Outcon	nes(PO	s)				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	S													М
CO2	S		М										Μ	М
CO3	S		М										Μ	М
CO4	S		М										М	М
CO5	S		М										М	М
CO6	S		М										М	М
Com			t moth	a da.	-			•		•	•	-	•	·

Direct	Indirect
1. Continuous Assessment Test I,II	
2. Assignment:Group Presentation, Project	
report, Poster preparation, Prototype or	
Product Demonstration etc. (as	1.Course end survey
applicable)	
3. End Semester Examination	

< 5 Signature of BOS chairman, MCE

INTRODUCTION	9 Hours
Overview - Need - Development of Additive Manufacturing (AM) Technology: Ra	pid Prototyping-
Rapid Tooling – Rapid Manufacturing – Additive Manufacturing. AM Process Chain-	
Benefits. Applications: Building Printing-Bio Printing-Food Printing-Printing Electro	nics. Business
Opportunities and Future Directions - Intellectual Property.	
DESIGN FOR ADDITIVE MANUFACTURING (DFAM)	9 Hours
Concepts and Objectives- AM Unique Capabilities: Part Consolidation-Topolog	
Lightweight Structure - DFAM for Part Quality Improvement. Data Processing	
Preparation –Part Orientation and Support Structure Generation -Model Slicing - Tool	
Generation-Customized Design and Fabrication for Medical Applications- Case Studi	
VAT POLYMERIZATION AND MATERIAL EXTRUSION	9 Hours
Photo polymerization: Stereolithography Apparatus (SLA) - Materials -Proces	0
Limitations-Applications. Digital Light Processing (DLP) - Materials – Process	
Applications. Extrusion Based System: Fused Deposition Modeling (FDM) - Process-	Materials -
Applications and Limitations. POWDER BED FUSION AND DIRECT ENERGY DEPOSITION	0.11
	9 Hours
Powder Bed Fusion: Selective Laser Sintering (SLS): Process – Powder Fusion Mech	
Parameters – Typical Materials and Application. Selective Laser Melting (SLM) and	
Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposition	
Engineered Net Shaping (LENS) - Process -Material Delivery - Process Parameters - N	laterials -
Benefits - Applications. OTHER ADDITIVE MANUFACTURING PROCESSES	9 Hours
Binder Jetting: Three-Dimensional Printing - Materials -Process - Benefits and Limita	
Jetting: Multijet Modeling- Materials- Process- Benefits. Sheet Lamination Process: L	
Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bond Bonding- Materials-Application and Limitation.	unig – Therman
	Total Hours: 45
REFERENCES:	10tal 110u15. 45
1. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing	g for
Prototyping and Manufacturing", Hanser publications, United States, 2015,	g 101
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Techn 	pologies: Rapid
Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United Sta	ates, 2015,
 Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition United States, 2015, 	n, CRC Press.,
4. AndreasGebhardt, "Understanding Additive Manufacturing: Rapid Prot	otyping Rapid
Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2012,.	
5. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Spring States, 2011,	ger., United
6. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A	A tool box for
prototype development", CRC Press., United States, 2019,	
7. MilanBrandt, "Laser Additive Manufacturing: Materials, Design, Tec	hnologies, and
Applications", Woodhead Publishing., United Kingdom, 2016,	

5. Signature of BOS chairman, MCE

U18MCE0011

DESIGN OF MATERIAL HANDLING SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1	Recognize the need and types of the Material Handling Equipments	K2
CO2	Calculate the power requirements for a given belt conveyor	K3
CO3	Select the components for the belt conveyors	K3
CO4	Select and design the conveyors for the particular application	K3
CO5	Differentiate the conveyors and elevators and design the bucket and cage elevators	K3
CO6	Explain the various elements of the hoists	K2

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO 1 PSO 2 **CO1** Μ CO2 Μ CO3 Μ Μ Μ CO4 S Μ W W Μ W W **CO5** Μ Μ Μ **CO6** Μ Μ Μ

Direct	Indirect	
1. Continuous Assessment Test I,II		
2. Assignment: Group Presentation, Project report,		
Poster preparation, Prototype or Product	1.Course end survey	
Demonstration etc. (as applicable).		
3. End Semester Examination		
MATERIAL HANDLING EQUIPMENTS (MH	IE)	4 Hours
Materials and Bulk materials – Types of material hand	ling equipments – selection ar	nd applications of
MHE. Automation in material handling system.		
BELT CONVEYORS		10 Hours
General components of belt conveyors - Selection of be	elt speed and belt width – Dri	ve unit design:
Power requirement – coupling types and selection – Sp	beed reduction: gearbox types	and selection –
Shaft and Pulley design – selection of Idlers and Idlers	spacing - Safety devises for l	belt conveyors
DESIGN OF OTHER CONVEYORS		10 Hours

< Signature of BOS chairman, MCE

Apron conveyors, Screw conveyors, Cleat conveyors and Pneumatic conveyors	
ELEVATORS	11 Hours
Conveyors and Elevators – Bucket elevators: centrifugal type and continuous ty	pe bucket elevators-
Design of bucket elevators – Safety devices for bucket elevators Cage elevators	: Shaft way, guides,
counter weights – safety devises	
HOIST	10 Hours
Design of Hoisting elements: Welded and roller chains - Hemp wire and ropes -	– Design of ropes –
Pulley – sprockets and drums	
Load handling attachments – Forged and Eye hooks – crane grabs – lifting mag	nets – Grabbing
attachments – arresting gears and brakes	-
Theory:45Hrs	Total Hours:45
REFERENCES:	
1. Rudenko N., "Materials handling equipment", ELnvee Publishers, 1970.	
2. Fenner & Dunlop, "Conveyor Handbook"	
2. David VHutton "FundamentalsofFiniteElementAnalysis",McGraw-HillInter	nationalEdition,
2004.	
2. Alexandrov M, Materials Handling Equipments, MIR Publishers, 1981.	
4. A. Spivakovsky(Author), V. Dvachkov(Author), D. Danemanis (Translator)	

4. <u>A. Spivakovsky</u>(Author), <u>V. Dyachkov</u>(Author), <u>D. Danemanis</u> (Translator) Conveyors and Related Equipment, 1966.

< 5. Signature of BOS chairman, MCE

L	Т	Р	J	С
3	0	0	0	3

After su	ccessful completion of this course, the students should be able to
CO1	Explain the design principles for manufacturability and factors influencing it
CO2	List and explain the factors influencing form design.
CO3	Explain the design considerations for cast steel and casting process
CO4	Explain the design considerations various machining process.
CO5	Explain the use of computer in DFMA.
CO6	Describe the Design considerations and Guidelines for assembly.

Pre-requisite

Nil

CO/PO Mapping

		(S/M	/W indi	cates st	rength o	of corre	lation)	S-St	trong, N	I-Mediu	um, W-	Weak		
COs						Progra	mme O	utcome	s(POs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	М													
CO2	М													
CO3	М		М										М	
CO4	М	W	S										М	W
CO5	М	W	М		W								М	
CO6	М		М										М	

Course Assessment methods:

	DIRECT	INDIRECT	
1.	Continuous Assessment Test I,II		
2.	Assignment: Group Presentation, Project report,		
	Poster preparation, Prototype or Product	1.Course end survey	
	Demonstration etc. (as applicable).		
3.	End Semester Examination		
INT	TRODUCTION		9 Hours

General design principles for manufacturability -Factors influencing design-Types of problems to be solved- evaluation of customer's requirements-Systematic working plan for the designer-Types of problems to be solved-Possible Solutions-Evaluation method- Process capability - Feature tolerances -Geometric assembly. tolerances - Assembly limits -Datum features - Tolerance stacks-Interchangeable part manufacture and selective

9 Hours FACTORS INFLUENCING FORM DESIGN Materials choice - Influence of basic design, mechanical loading, material, production method, size and weight on form design- form design of welded members and forgings-case studies

Signature of BOS chairman MCF

Form design of grey iron, steel, malleable iron and aluminum castings. Redesign of casti	ngs based on
parting line considerations - Minimizing core requirements, machined holes, redesign of case	st members to
obviate cores-case studies	
COMPONENT DESIGN - MACHINING CONSIDERATION	9 Hours
Design features to facilitate machining - drills - milling cutters - keyways - Doweling procee	
sunk screws - Reduction of machined area- simplification by separation - simplification by ar	nalgamation -
Design for machinability - Design for economy - Design for clampability - Design for a	accessibility -
Design for assembly. Identification of uneconomical design - Modifying the design	- Computer
Applications for DFMA- case studies	
DESIGN FOR ASSEMBLY	9 Hours
Design for assembly (DFA) - The assembly process - Economic production quantities - Desig	gn
Design for assembly (DFA) - The assembly process - Economic production quantities - Desig considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - Metal stitc	
	hing
considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - Metal stitc	hing
considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - Metal stitc. – Fits - press-fits - snap-fits. Weldments - Characteristics and applications of arc weldments - Production Quantities - Design Recommendations.	hing
considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - Metal stitc. – Fits - press-fits - snap-fits. Weldments - Characteristics and applications of arc weldments - Production Quantities - Design Recommendations.	hing Economic

9 Hours

٦

]

- Dekker,2011
- Bralla, Design for Manufacture handbook, McGraw hill, 1999. 2.

COMPONENT DESIGN – CASTING CONSIDERATION

Kevien Otto and Kristin Wood, Product Design. Pearson Publication, 2004. 3.

PRECISION MANUFACTURING

After s	uccessful completion of this course, the students should be able to	
CO1:	Describe different types of Unconventional Machining processes and principle of mechanical energy based unconventional machining processes.	K2
CO2:	Explain the working principle of electrical energy based unconventional machining processes.	K2
CO3:	Explain the working principle of chemical energy based unconventional machining processes.	K2
CO4:	Explain the working principle of electro chemical energy based unconventional machining processes.	K2
CO5:	Explain the working principle of thermal energy based unconventional machining processes.	K2
CO6:	Describe the working principle of super finishing process.	K2

Pre-requisite Nil

						CO/P	O Ma	pping	3					
	(S/M/	W inc	licates	streng	gth of	correl	ation)	S	-Stron	g, M-N	Iedium	, W-W	eak	
COa						Progra	amme	Outco	omes(H	POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	W												
CO2	М	Μ												
CO3	М	Μ											Μ	
CO4	М	Μ				W							Μ	W
CO5	М	Μ											Μ	
CO6	М	М											М	

Direct	Indirect
 Internal Test I Internal Test II End semester Examination Assignment 	1.Course end survey

	0	
5.	mel	
Signature of BOS	S chairman, MC	E

MECHANICAL ENERGY BASED PROCESSES	9 Hours
Introduction Unconventional Machining Process, Need, Classification, Brief overview	
Abrasive Jet Machining - Water Jet Machining - Abrasive Water Jet Machining- Ultr	
(AJM, WJM, AWJM, USM). Working Principles – equipment used – Process parameters	-MRR -
Applications.	
ELECTRICAL ENERGY BASED PROCESSES	9 Hours
Electric Discharge Machining (EDM) - working Principles-equipment-Process Pa	
electrodes Used – Power Circuits – Dielectric – Flushing – Applications, Wire Cu	t EDM
Applications.	0.77
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED	9 Hours
PROCESSES	
Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchants	s – Maskant-
techniques of applying maskants - Process Parameters - Surface finish and MRR-	Applications.
Principles of ECM- equipments - MRR -Process Parameters- ECG and ECH - Ap	plications.
THERMAL ENERGY BASED PROCESSES	9 Hours
Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Beam	n Machining
(EBM), Principles-Equipment – MRR - Process Parameters - Applications.	
SUPER FINISHING PROCESS	9 Hours
Super finishing process – Honing - honing machines, Process parameter, MRR – I	Lapping –
characteristics, Types of lapping, lapping machines, and Super finishing – Burnish	ning, Magnetic
float polishing, Magnetic field assisted polishing, Electro polishing	
Theory:45Hrs	Total Hours:45
REFERENCES:	
1. Vijay K Jain "Advanced Machining Processes", first edition, Allied Publishers	Pvt. Ltd., New
Delhi, 2007.	
2. Benedict G F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., 1	New York,
1987	
3. Pandey P C and Shan H S. "Modern Machining Processes", Tata McGraw-Hill,	, New Delhi,
1980.	
4. Hassan Abdel-Gawad El-Hofy "Advanced Machining Processes: Nontraditiona	l and Uybrid

Machining Processes" Tata McGraw-Hill, New Delhi, 2005

			0
	0	-	p
	-	Dan	
Sic	nature of	BOScha	irman, MCE
010	nature of	DOD Cha	arman, wee

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Apply linear programming model and assignment model to domain specific situations.	K2
CO2:	Analyze the various methods under transportation model and apply the model for testing. the closeness of their results to optimal results	K2
CO3:	Apply the concepts of PERT and CPM for decision making and optimally managing. projects	K2
CO4:	Analyze the various replacement and sequencing models and apply them for arriving at optimal decisions.	K2
CO5:	Analyze and apply appropriate inventory techniques in domain specific situations.	K2
CO6:	Analyze and apply appropriate queuing theories in domain specific situations.	K2
Dre	noquisito	

Pre-requisite

						CO/	PO M	lappir	ng					
	(S/I	M/W i	ndicat	es stre	ngth o	f corre	elatior	n) .	S-Stro	ng, M-	Mediur	n, W-W	eak	
COs						Progr	amme	Outco	omes(POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	S		S									W	
CO2	S	S		S									W	
CO3	S	S		S						S			W	
CO4	S	S		S									W	
CO5	S	S		S									W	
CO6	S	S		S									W	
]	Nil													
Cour	se Asses	sment	meth	ods:										
			Direc	et							Indi	rect		
1. In	ternal Te	st I												
	ternal Te							1.C	ourse	end sur	vey			
	ssignmen													
	nd semest		aminat	ion										
	AR MO													Hours
	ases of C												gorithm	_
	al variabl			-			_				y in sin	nplex.		
TRAN	SPOR	FATI	ON A	ND A	SSIG	NME	ENT I	PROE	BLEN	1			9	Hours
-	ortation 1					•								
	ality test -											l – form	ulation -	_
balance	ed and un	balanc	ced as	signm	ent pro	blems	s. Trav	veling	salesn	nan pro	blem			

				0
	\leq	Sau	-1	1
Signat	ure of E	BOS cha	irman, N	CE

Basic terminologies - Constructing a project network - Scheduling computations - PERT - CPM -Resource smoothening, Resource leveling, PERT cost **REPLACEMENT AND SEQUENCING MODELS** 9 Hours Replacement policies - Replacement of items that deteriorate with time (value of money not changing with time) - Replacement of items that deteriorate with time (Value of money changing with time) -Replacement of items that fail suddenly (individual and group replacement policies). Sequencing models- n job on 2 machines – n jobs on 3 machines – n jobs on m machines, Traveling salesman problem **INVENTORY AND QUEUING THEORY** 9 Hours Variables in inventory problems, EOQ, deterministic inventory models, order quantity with price break, techniques in inventory management. Queuing system and its structure - Kendall's notation -Common queuing models - M/M/1: FCFS/∞/∞ - M/M/1: FCFS/n/∞ - M/M/C: FCFS/∞/∞ - M/M/1: FCFS/n/m **Theory:45Hrs Total Hours:45**

9 Hours

PROJECT MANAGEMENT BY PERT & CPM

1. Taha H A., "Operation Research", Pearson Education, 2007.

4. Wagner, "Operations Research", Prentice Hall of India, 2000

Hira and Gupta "Introduction to Operations Research", S. Chand and Co.2012
 Hira and Gupta "Problems in Operations Research", S. Chand and Co.2010

REFERENCES:

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Develop the governing equations for a continuum.	K3
CO2:	Model and assemble the stiffness matrices for 1D, 2D elements.	K3
CO3:	Explain about plane stress and plane strain	K3
CO4:	Choose the appropriate element type for a particular application.	K3
CO5:	Apply the FEM for plate bending and thermal analysis	K3
CO6:	Apply different case study of finite element analysis	K3

Pre-requisite

Nil

CO/PO Mapping

	(S/I	M/W ii	ndicate	es stre	ngth o	f corre	elation	ı) S	S-Stro	ng, M-	Mediun	n, W-W	eak	
COs						Progr	amme	Outco	omes(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
C01	S	S							S		S	S		
CO2	S	S	М								S	S	М	
CO3	S		S		S						S		S	
CO4	S		S			S					S		S	

Course Assessment methods:

	Direct	Indirect
1.	Internal Test I	
2.	Internal Test II	Course end survey
3.	End semester Examination	
4.	Assignment	

INTRODUCTION

Historical background – Introduction to FEA – Review of Matrix Algebra and Gaussian elimination – Governing equations for continuum – Spring assemblage – Stiffness method & Potential Energy Approach – Galerkin''s weighted residual method.

ONE DIMENSIONAL ELEMENTS – BAR, PLANE TRUSS & BEAM9 Hours

Bar element - Stiffness Matrix in local and global coordinates, Computation of Stress – Potential EnergyandGalerkin''sresidualmethod–SolutionofPlaneTruss–Beamelement–Stiffnessand assembly of stiffness matrices - Potential energy and Galerkin sapproach.

PLANE STRESS & PLANE STRAIN - CST & LST APPROACH8 Hours

Binomial, Poisson and Normal distributions – properties- Fitting of Binomial, Poisson and normal distributions to data

AXISYMMETRIC ELEMENTS AND ISOPARAMETRIC FORMULATION

10 Hours

9 Hours

Axisymmetric formulation – Stiffness Matrix – Pressure Vessel Analysis – Applications – Isoparametric formulation – Formulation for Bar and Plane Elements – Numerical Integration – Gaussian & Newton-Cotes Quadrature – Evaluation of Stiffness Matrix by Gaussian Quadrature..

PLATE BENDING AND THERMAL ANALYSIS

9 Hours

Basic Concepts of Plate Bending – Element Stiffness Matrix and Equations – Heat Transfer – Basic Differential Equation and Units – 1d and 2d formulation.

CASE STUDY: Finite Element Analysis on Bicycle Frame, Finite Element Analysis on Vbelt pulley of a fodder crushing machine.

Theory:45Hrs

Total Hours:45

REFERENCES:

1. Daryl, L. Logan, "A First course in the Finite Element Method", Thomson Learning, 4th edition, 2007.

2. Chandrupatla T.R., and Belegundu A.D., "Introduction to Finite Elements in Engineering", Pearson Education, 3rd Edition, 2002.

3. David V Hutton "Fundamentals of Finite Element Analysis", McGraw-Hill International Edition, 2004.

4. Rao S.S., "The Finite Element Method in Engineering", Pergammon Press, 1989.

5. N. Reddy, "An Introduction to the Finite Element Method", Tata McGraw Hill, 3rd Edition, 2005.

Signature of BOS chairman, MCE

L	Т	Р	J	С
3	0	0	0	3

9 Hours

9 Hours

9 Hours

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Extend the concept and function of maintenance department and costs associated.	K2
CO2:	Plan for preventive maintenance.	K2
CO3:	Schedule and evaluate the maintenance.	K2
CO4:	Test the reliability in maintenance.	K2
CO5:	Analyze manpower requirement.	K2
CO6:	Explain the maintenance of mechanical and electrical systems.	K2

Pre-requisite

Nil

						CO/P	'O Maj	oping						
		(S/M/	W indic	cates str	ength c	of corre	lation)	S-St	rong, N	/I-Medi	um, W	-Weak		
COs						Program	mme O	utcome	es(POs)					
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ								S				S	
CO2		М	М									W		S
CO3			М										М	
CO4											S		S	
CO5									S					S
CO6	S													S

Course Assessment methods:

Internal test I	Internal test I
1. Internal Test I 2. Internal Test II	Course end survey
3. Group Presentation	
4. End Semester exam	
MAINTENANCE CONCEPT	9 Hours

MAINTENANCE CONCEPT

Maintenance objectives, levels, types of systems, benefits, effects - Responsibilities of maintenance department - Concept of maintainability - Principles of Maintenance - R&D, Overhauling and Expert systems in Maintenance, Maintenance cost and budget.

PLANNED PREVENTIVE MAINTANANCE

Scope and elements of PPM, Implementation, work planning and scheduling Planned maintenance procedure, effectiveness of preventive maintenance, development of checklist.

MAINTENANCE EVALUATION, PLANNING AND SCHEDULING

Maintenance evaluation, planning of maintenance function, development of maintenance department, estimation of maintenance work maintenance scheduling.

RELIABILITY IN MAINTENANCE

Reliability, failure functions and their models, application, design for reliability, quality and reliability,

	^
\langle	P
Signature of BOS c	hairman MCE

reliability improvement and testing.

MANPOWER PLANNING MAINTENANCE OF MECHANICAL AND ELECTRICAL SYSTEMS

9 Hours

Manpower planning: Objectives, stages, Timescale, Estimation Mode, Maintenance of Bearings, Friction clutches, Couplings, Fastening devises, Chains, Gear Drives, Support Equipments, Electrical Equipments.

Theory:45Hrs

Total Hours:45

REFERENCES

- 1. Mishra, R.C., K.Rathak, Maintenance Engineering and Management, Prentice Hall of India, 2ndEdition, 2012.
- 2. Er. Sushil Kumar Srivastava, Maintenance Engineering (Principles, Practices and Management) S.Chand

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to										
CO1	Explain different measurement techniques used in physiological parameters measurement.	K2									
CO2	Describe the different sensors and transducer principles used in bio medical application	K2									
CO3	Describe the signal conditioning circuits used in biomedical engineering.	K2									
CO4	Comment on various measurement systems used in diagnostics.	K2									
CO5	Comment on various monitoring systems used in diagnostics	K2									
CO6	Differentiate the working of recorders and explain the advanced systems used in medicine.	K2									

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO	Programme Outcomes (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	М											М	М	М
CO2	Μ			W								Μ		
CO3	Μ			Μ								Μ	W	
CO4	Μ	W										Μ		М
CO5	Μ	W										Μ	Μ	
CO6	М				М							М		

Course Assessment methods:

Internal test I	Internal test I					
Internal test I Internal test II End semester Examination Assignment	Course end survey					
INTRODUCTION		9 Hours				

9 Hours

9 Hours

Introduction to the physiology of cardiac, nervous & muscular and respiratory systems. Transducers and Electrodes: Different types of transducers & their selection for biomedical applications. Electrode theory, selection criteria of electrodes & different types of electrodes such as, Ag - Ag Cl, pH, etc

BIO-MEDICAL SENSORS AND TRANSDUCERS

Basic transducer principles Types — resistive, inductive, capacitive, fiber-optic, photoelectric, chemical, active and passive transducers and their description and feature applicable for biomedical instrumentation – Bio, Nano sensors and application.

BIO AMPLIFIER

9 Hours

Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier - right leg driven ECG amplifier. Band pass filtering, isolation amplifiers - transformer and optical isolation - isolated DC

		A
\leq	Sau	P
Signature of	BOS chairman, N	ICE

amplifier and AC carrier amplifier. Chopper amplifier. Power line interference

MEDICAL MEASUREMENT AND MONITORING SYSTEMS

Blood pressure measurement: by ultrasonic method – plethysmography – blood flow measurement by electromagnetic flow meter, cardiac output measurement by dilution method – phonocardiography – vector cardiography. Heart lung machine – artificial ventilator – Anesthetic machine – Basic ideas of CT scanner – MRI and ultrasonic scanner – cardiac pacemaker –defibrillator patient safety - electrical shock hazards - Centralized patient monitoring system.

RECORDERS AND ADVANCED SYSTEMS

Oscillagraphic – galvanometric - thermal array recorder, photographic recorder, storage oscilloscopes, electron microscope. Biotelemetry, Diathermy, Audiometers, Dialysers, Lithotripsy. CASE STUDIES: Hot wire Anemometry for respiratory flow measurements.

Theory:45Hrs

Total Hours:45

9 Hours

9 Hours

REFERENCES

- 1. Khandpur R S., "Handbook of Biomedical Instrumentation", TMH, 2014
- 2. Cromwell, Weibell and Pfeiffer, "Biomedical Instrumentation and Measurements", 2nd edition, Prentice Hall of India, 2011.
- 3. Geddes L.A., and Baker, L.E., Principles of Applied Bio-medical Instrumentation, 3rd Edition, John Wiley and Sons, 2010
- 4. Tompkins W J., "Biomedical Digital Signal Processing", Prentice Hall of India, 2000.
- 5. Arumugam M, "Bio-Medical Instrumentation", Anuradha Agencies, 2006.

OPEN ELECTIVES

< Signature of BOS chairman, MCE

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to									
CO1:	Describe about the robot laws ,kinematics and dynamics	K3								
CO2:	Discuss about various robotic drives and control	K2								
CO3:	Illustrate the various sensor used in robotic control	K2								
CO4:	Brief about the image optimization techniques	K3								
CO5:	Discuss about the application of robots in various fields	K2								

Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
	Programme Outcomes (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12		
	101			101			/				1			
CO1	S										S	S		
CO2	S		М								S	S		
CO3	S	S				W					S			
CO4	S					W					S	S		
CO5	S		М					М			М	М		

Course Assessment methods:

INDIRECT	
1. Course -end survey	
	10 Hours
on - robot anatomy – specification	– Resolution,
obot arm kinematics and dynamics	– planning of
-	1 0
	10 Hours
actuators - end-effectors - classificati	on-control of
ecoupled and feedback control - effect	of external
- computed torque control, force control	ol of robotic
	1
	10 Hours
status sensors, environmental sensors,	quality control
optical and optical position sensors – v	elocity sensors
nd slip sensors – force and torque sense	
	on - robot anatomy – specification robot arm kinematics and dynamics actuators – end-effectors – classificati ecoupled and feedback control – effect - computed torque control, force contr status sensors, environmental sensors,

of right sensors.

MACHINE VISION SYSTEM

10 Hours

Image Sensing and Digitizing - Image definition, Image acquisition devices, specialized lighting techniques. Digital Images - Sampling, Quantization and Encoding. Image storage. Image Processing and Analysis Data reduction – digital conversion and windowing. Segmentation – Thresholding, Edge detection and Region growing. Binary Morphology and grey morphology operations. Feature Extraction, Object recognition, Depth measurement.

APPLICATION

5 Hours

Introduction - Delivery Robots – Intelligent vehicles – Survey and inspection robots – Space Robots – Autonomous aircrafts – Underwater Inspection – Agriculture and Forestry.

Theory:45Hrs

Total Hours:45

REFERENCES

- 1. Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India, 2010.
- 2. S. R. Deb and S. Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.
- 3. Mikell P. Groover, "Industrial Robots Technology, Programming and Applications", McGraw Hill, New York, 2008.
- 4. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987
- 5. Ramesh Jam, Rangachari Kasturi, Brain G. Schunck, "Machine Vision", Tata McGraw-Hill, 1995.

6. Yoremkoren, "Robotics for Engineers", McGraw-Hill, USA, 1987.

7. P.A. Janaki Raman, "Robotics and Image Processing", Tata McGraw-Hill, 1991.

Sau	1
Signature of BOS chai	irman MCE

U18MCO0002

Course Outcomes

After	After successful completion of this course, the students should be able to										
CO1:	To understand the basics of automation in agriculture.	K2									
CO2:	To understand the concepts of Precision agricultural systems and trends	K2									
CO3:	To understand importance of automation in Irrigation systems	K2									
CO4:	To understand the various Automation Practices in agriculture through case studies.	K2									
CO5:	To know the Applications in material handling and packaging industries	K2									

CO/PO Manning

Pre-requisite

Nil

	CO/I O Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
00		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
				_							_	_	1	2
CO1	S												S	
CO2	S					W								М
CO3	S			S										М
CO4	S			S				W					S	
CO5		М		S				W					S	
CO3 CO4	S	M		S										

Course Assessment methods:

DIRECT	INDIRECT
5. Internal Test I	Course end survey
6. Internal Test II	
7. Assignment	
8. Group Presentation	
9. End semester exam	
AUTOMATION IN AGRICULTURE	10 Hours

Introduction to automation- Robot farming system –wheel type robot tractor, crawler type robot tractor, rice planting robot, robot combine harvester – sensing crop status.

PRECISION AGRICULTURAL SYSTEMS

Soil sensors- crop sensors – yield monitors –remote sensing- airborne multispectral and hyperspectral imaging-satellite imaging system- Principle – applications

IRRIGATION SYSTEMS

Introduction –Types of irrigation system GIS in irrigation -Planning and design – rain fall monitoringdrought monitoring- automated controller-based irrigation system-IOT based irrigation system- case study evaluation of irrigation system in agriculture

AUTOMATION PRACTICES

10 Hours

10 Hours

15 Hours

Field crop production automation - Mechanization, Sensing and Control in cotton production - Automatic

Rubber Tapping

Theory: 45

Total Hours:45

RE	FERENCES
1.	Qin Zhang, Francis J. Pierce, "Agricultural Automation: Fundamentals and Practices", CRC Press, A Chapman
	and Hall Book, 2013
2	Qin Zhang, "Precision Agriculture Technology for Crop Farming", CRC Press, 2016.
3	Irrigation Systems, A Laycock, Irrigation Systems-Design, Planning and Construction ,2011
4	Shimon Y Nof, Springer Handbook of Automation ,2009.
5	Jensen, J.R., 2004. "Introductory Digital Image Processing: A Remote Sensing Perspective". Prentice – Hall.
	New Jersey.
6.	A.M.Michael, 2010. Irrigation - theory and practice, Vikas publishers, New Delhi.
7	http://cyber.sci-hub.tw/MTAuMTIwMS9iMTkzMzYtMTE=/10.1201%40b19336-11.pdf /
8	https://link.springer.com/chapter/10.1007/978-3-540-78831-7_63
9	https://www.safaribooksonline.com/library/view/agricultural-systems-agroecology/9780128020951
10	http://sci-hub.tw/10.1080/10106048709354084
11	https://www.safaribooksonline.com/library/view/sustainable-water-engineering/9781118541029/
12	https://www.coursera.org/specializations/gis

1]18N/	[CO00	04		N	ATU	RE I	INSP	IREI)		L	Т	Р	J	С
UION			OP	TIM	IZA	ΓΙΟΝ	N TE	CHN	IQU	ES	3	0	0	0	3
	Cour	se Ou	tcom	es							1				
								ourse,	the s	tuden	ts sł	nould	be able t	0	
CO1	Unders		1		1										K2
CO2	Unders			•	•		•								K2
CO3	Apply		-	ed optin	mizatio	on tech	niques	to sol	ve prol	blems					K4
	Pre-r	equisi	ite												
	NIL														
							CO/F	PO Ma	apping	g					
	(S/M/	Windi	cotos	atrona	th of a	orrala				g, M-M	din	m W	Week		
		w mu	cales	sueng			,			nes(PC		III, vv -	vv Cak		
COs						1	- Star				5)			DSO	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO11	PO12	PSO 1	PSO:
CO1	М	М	М											М	Μ
CO2	М	S	S											М	М
CO3	S	S	М	М	S									S	S
											1				
	Cours	se Asse	essme	nt me	thods										
		Direct	-, ,								ndir	ect			
Written A Case Stu	Assignme dies	ent					Cours	e end	survey	Y					
Simulati														0.11	
MODU	LE I													9 Ho	ours
	ction to	-			-				-	-		ation -	– Nature	Inspi	red
MODU		Gene		Somm			105141	11111112	, cu	se stu	105.			9 Ho	ours
		Optim	izatio	n - A	nt Col	ony C	Optimi	zation	– Bee	es Alg	orith	m – A	rtificial B		
Optimiz	ation – O	Case S	tudies	•		-	-								-
MODU														9 Ho	ours
	o Search	Algor	rithm -	- Fire	fly Al	gorith	m - F	ish Sv	arm A	Algorit	hm –	Case	Studies.		
MODU			Det	<u> </u>	41	A 4 T				C	C (1		9 Ho	ours
Grey W MODU	0	rithm	– Bat	Algor	ithm –	Ant I	_10n C	ptimi	zation	- Case	e Stu	dies.	9 Ho	1180	
		on Alc	orithr	n - Cr	ow Se	arch A	loorit	hm _	Water	Wave	Ont	mizati	on - Case		25
Theory			5011111				1150111		,, ater	,, u, c	-		Hours: 4		
	REFI		CES												
1					nspired	d Opti	mizati	ion Al	gorith	ms, El	sevie	er, 2010	5.		
2													nspired A	loorith	nms
2	Onnu	DOLOI	15 114	auna (-,,		u op	umza	uon u	y 146	iture-n	ізрпси л	igonu	mis,

	0	-	P
		> are	1
Sign	ature of B	OS chairr	nan, MC

3	Ke-Lin Du, M.N.S. Swamy, Search and Optimization by Metaheuristics, Techniques and
	Algorithms Inspired by Nature, Birkhauser, 2016.
4	www.ieeeexplore.org
5	www.elsevier.com
6	www.springer.com

			0
	5	m	-1
Signat	ture of BOS	chairma	IN, MCE
Signal		Chairma	II, NICE

	Machanias in Crickat	L	Т	Р	J	C
U18MCO0005	Mechanics in Cricket	3	0	0	0	3

Course OBJECTIVES

- 1. To encourage, support and motivate the students to learn and understand concepts with a real-time things or with a sports related activity
- 2. To know the design aspects and mechanics behind the sports equipment designs
- 3. To develop goal oriented synergetic approach by rectifying errors in the pressure situations
- 4. To develop team spirit and be a team worker.
- 5. To analyze and anticipate the changes in the game and thereby reacting according to the situation

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Understand the basic principles, rules and regulations and the skills of the game, tactics, field	K2
	placement and umpiring signals	K2
CO2:	Interpret the technical knowledge in the aspects of cricket	K3
CO3:	Illustrate and make use of material science concepts in the design of cricket equipments	K3
CO4:	Apply and interpret the knowledge of solid mechanics and fluid mechanics in the batting and	K3
	bowling aspects of cricket	K3
CO5:	Discover and explain the applications of sensor and instrumentation in the game of cricket	K3
D	• •	

Pre-requisite

U17MET2003 Engineering Mechanics

						CO)/PO M	lapping	5					
		(S/M	I/W ind	licates s	strength	n of cor	relation	i) S	-Strong	, M-Med	ium, W-V	Weak		
CO						Prog	ramme	Outcon	nes(PC	s)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1			М							М		М		
CO2	S	S	W							М		М	М	М
CO3	W	W	S							М		М	М	М
CO4	S	S	S							М		М	М	М
CO5	Μ	Μ	S							М		М	М	М

Course Assessment methods:

Course Assessment methous.	
DIRECT	INDIRECT
 Continuous Assessment Test I, II Assignments, Journal paper review, Group Presentation, Prototype or Product Demonstration Open book test, Quiz etc. (as applicable) End Semester Examination 	1. Course-end survey
Introduction to the Game of Cricket	9 Hours
Introduction – Evolution of cricket – Basic rules and Ground, Pitch and equipment's, Ground and pitch pre improvement exercises for batting, bowling and fielding	eparation, Physical conditioning for cricket, Stamina

Batting – Batting posture - Stance, Bat lift, Position and orientation of bat for various types of shots or strokes

Signature of BOS chairman, MCE

Bowling - Bowling – Ball grip, seam position and its effects in trajectory of the ball – Se	eam and Face
bowling - Various Slower delivery techniques - Naku Ball, Split Finger, Leg cutter, Off	
orientation for various Spin Bowling – Leg Spin, Off Spin, Top spin, Chinaman, Googly	
Various Aspects of Cricket Player and Umpire	9 Hours
Fielding – Fielding Positions, Judgments according to field positions, Field adjust	tments according to
trajectory of bowlers, Catching – Low, Flat, High catches at different positions, Slip c	Ū.
Under arm, Flat, Long throw	0, 0
Wicket-keeping – Stance for spin and pace / seam bowling – Upto the stumps, Behind th	e stumps, Stumping,
Run-outs	1 1 1 0
Umpiring – 42 laws of cricket – interpretation and its application, Different signals – Sta	nce and movements
for run-outs, Eligibility criteria, Calculations for Organizing a cricket tournament – Matc	hes, Run-rate
Material Science and Composite Materials in Cricket	9 Hours
Various types of cricket – Depends on ball usage – White, Red, Pink - SG, Kookaburra,	Dukes – Various
design considerations in the design of cricket bats and balls - CNC Machines in design of	of bats - Various
materials used for the design of cricket bat – Aluminum, Carbon composite, Graphite –	Handle materials –
Cane, Willow, Rubber, Polyurethane – Design modifications in Cricket Bat – Selection	of cricket bats –
Knocking of bats	
Knocking of bats	
Solid Mechanics and Fluid Mechanics in Cricket	9 Hours
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents	and Turbulent flow - Captaincy – Player
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur	and Turbulent flow - Captaincy – Player
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players	and Turbulent flow - Captaincy – Player re situation analysis,
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentum	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentu bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentum	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentu bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic restitution 9 Hours
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentu bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic restitution 9 Hours Hot Spot – Light
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentu bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic restitution 9 Hours Iot Spot – Light for Pitch Analysis -
Solid Mechanics and Fluid Mechanics in CricketFluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – LaminarCase studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidentsmanagements, Field Placements related to bowlers and strengths of batsmen, Pressurreacting according to the situations on and off the field, motivational aspects for playersSolid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentubodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient ofSensor and Instrumentation in CricketGo and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – HMeter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – DroneBowling action verificationTheory: 45 Hours	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic restitution 9 Hours Hot Spot – Light
Solid Mechanics and Fluid Mechanics in Cricket Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents managements, Field Placements related to bowlers and strengths of batsmen, Pressur reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentu bodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient of Sensor and Instrumentation in Cricket Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – H Meter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – Drone Bowling action verification	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic restitution 9 Hours Iot Spot – Light for Pitch Analysis -
Solid Mechanics and Fluid Mechanics in CricketFluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – LaminarCase studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidentsmanagements, Field Placements related to bowlers and strengths of batsmen, Pressurreacting according to the situations on and off the field, motivational aspects for playersSolid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentubodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient ofSensor and Instrumentation in CricketGo and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – HMeter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – DroneBowling action verificationTheory: 45 HoursToREFERENCES1. The Handbook of Cricket, K. V. Andrew	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic restitution 9 Hours Iot Spot – Light for Pitch Analysis -
Solid Mechanics and Fluid Mechanics in CricketFluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – LaminarCase studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidentsmanagements, Field Placements related to bowlers and strengths of batsmen, Pressurreacting according to the situations on and off the field, motivational aspects for playersSolid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentubodies, Curvilinear motion - Projectile motion – Ball validation related to Co-efficient ofSensor and Instrumentation in CricketGo and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – HMeter – LED Stumps – Ball Speed Sensor – Bat Swinging Speed Sensor (Intel) – DroneBowling action verificationTheory: 45 HoursToREFERENCES	and Turbulent flow - Captaincy – Player re situation analysis, um, Impact of elastic restitution 9 Hours Iot Spot – Light for Pitch Analysis -

OTHER REFERENCES

- 1. Cricket The Techniques of the Game, Andrew, Carter, Lenham
- 2. A History of Cricket, B. Green
- 3. The MCC Cricket Coaching Book (Fourth Edition)
- 4. Wisden Cricketers' Almanack (Printed Annually)
- 5. Test Cricket in Clubs and Schools (Available from NCA)
- 6. How to Coach Cricket, R. Dellor
- 7. Games for Cricket Training, A. Oakman
- 8. The Laws of Cricket (1980 Code) Second Edition 1992.

< Signature of BOS chairman, MCE

	LOW COST AUTOMATION	L	Т	Р	J	С	
U18MCO0006	LOW-COST AUTOMATION	3	0	0	0	3	

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	To provide basic knowledge to implement low cost Automation in various industries	K2
CO2:	To study the pneumatics devices and circuits and its applications	K2
CO3:	To understand the Hydraulic devices and circuits	K2
CO4:	To configure the Automation assembly lines used in industries	K2
CO5:	To know the Applications in material handling and packaging industries	K2

Pre-requisite

U17MET2003 Engineering Mechanics

						CC)/PO M	lapping	g					
		(S/N	A/W in	dicates	strengt	h of cor	relation	n) S-	-Strong	, M-Med	lium, W-	Weak		
CO -						Prog	ramme	Outcor	nes (PC	Ds)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	S												S	М
CO2	S												S	М
CO3	S		М		М								S	М
CO4	S		М		M								S	М
CO5	S												S	М

Course Assessment methods:

DIRECT	INDIRECT
1. Internal Test I	Course end survey
2. Internal Test II	
3. Assignment	
4. Group Presentation	
5. End semester exam	
INTRODUCTION TO AUTOMATION	5 Hours

Automated manufacturing systems, fixed /programmable /flexible automation, Need of automation, Basic elements of automated systems- power, program and control. Levels of automation; control systems: Continuous and discrete control; Low cost automation, Economic and social aspects of automation.

BASICS OF PNEUMATICS AND CIRCUIT DESIGN

Operational principles and application, air compressors, Pneumatic cylinders and air motors, Pneumatic valves, Design of pneumatic circuits: speed control, reciprocating, synchronization and sequencing circuits. Hydro-pneumatic, Electro pneumatic Control in pneumatic systems.

BASICS OF HYDRAULICS AND CIRCUIT DESIGN

12 Hours

12 Hours

Principles of hydraulics, Hydraulic fluids, Filtration technology, Hydraulic- pumps, valves, and actuators. Standards in circuit diagram representation, Power pack design layout, Basic hydraulic circuits.

Signature of BOS chairman, MCE

ASS	SEMBLY AUTOMATIC	DN:	8 Hours
Тур	es and configurations, Par	rts delivery at workstations-Various vibrat	ory and non-vibratory devices for
feed	ling, hopper feeders, rotar	y disc feeder, centrifugal and orientation,	Product design for automated
asse	mbly.		
API	PLICATIONS AND CA	SE STUDIES:	8 Hours
	5 5	oor opening- labelling Alignment method	examples- Direction Change-
Aut	tomatic Screw Fastening-	locking and clamping devices.	
	Theory: 45	Tutorials: 0 hour	Total Hours:45
RE	FERENCES		
1.	Anthony Esposito, "Fluid	Power with applications", Prentice Hall intern	ational, 2014.
2	Mikell P Groover, "Autom	ation, Production System and Computer Integ	grated Manufacturing", Prentice Hall
	Publications, 2016.		
3	Kuo.B.C, "Automatic cont	rol systems", Prentice Hall India, New Delhi,	2007.
4	James A Sullivan, "Fluid p	power Theory and Applications", 4th edition,	C.H.I.P.S, 2007.
5	Mujumdar.S.R, "Pneumati	c System", Tata McGraw Hill 2009	
6.	.E.G. Phillips, "Pneumatic	conveying", 2017.	

	_		A	- 1
-	5		1	-
Signa	ture of BO	S chair	man, MCI	Ε.

L	Т	Р	J	С
2	0	1	0	3

Course OBJECTIVES

- 1. To understand the mechanical engineering terminologies related to electrical/control/instrumentation engineering.
- 2. To understand the Modes of Heat transfer.
- 3. To understand thermoelectric power generation.

Course Outcomes

After successful completion of this course, the students should be able to

0	CO1:	Illustrate	the	mechanical	terminologies	and	compare	them	with	appropriate	electrical	
		terminolo	gies.									

CO2: Find the resultant of force system, resolution of forces.

CO3: Solve the problems related to frictional losses.

CO4: Describe inertia and its effects on drive selection.

CO5: Analyze the heat transfer rate and thermoelectric power generation.

Pre-requisite

U17MET2003 Engineering Mechanics

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

00						Program	mme O	utcome	s (POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	S	S			W					М	М	М	М	
CO2	S	S												
CO3	S	S										S		М
CO4	М													
CO5	М	Μ												

Course Assessment methods:

DIRECT	INDIRECT	
1. Continuous Assessment Test I, II	1. Course-end survey	
2. Assignments, Journal paper review, Group		
Presentation, Prototype or Product Demonstration		
Open book test, Quiz etc. (as applicable)		
3. End Semester Examination		
4. Classroom teaching.		
5. Magic Demonstrations.		
6. Peer learning.		
FORCE AND MECHANICS		12 Hours
Engineering Mechanics, units and dimensions, mass, weight,	pressure, velocity, acceleration, ele	ctrical analogy,
force and reaction, resultant, resolution of forces.		
THE MAGIC BALL AND THE NECESSARY EVIL		8 Hours
Friction, laws of friction, calculation of frictional forces, loss	es due to friction, Electrical analogy	/.
WILL THE DUSTER MOVE ALONG WITH PAPER?		10 Hours
Mass, inertia, applications of inertia, inertial effect on drivers	s. Moment of inertia, Calculation of	moment of inertia

and inertial effects on drivers.	
WORK ENERGY AND POWER	4 Hours
Moment, torque, work, energy, power, electrical analogy.	
INTRODUCTION TO HEAT TRANSFER AND THERMOELECTRIC POWER	11 Hours
GENERATION	
Electrical heat generation, Modes of heat transfer, thermoelectric power generation.	
Theory: 45 Hours	Fotal: 45 Hours
TEXTBOOKS	
1. Ferdinand P. Beer& E. Russell Johnston., "Vector Mechanics for Engineers, Statics McGarw Hill 2017.	and Dynamics",
 Frank P. Incropera, David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine, "Pr and Mass transfer", Wiley 2015. 	rinciples of Heat
REFERENCE BOOKS	
1. David Halliday, Jearl Walker, and Robert Resnick, "Fundamentals of	Physics",4th editior

Wiley.2015

P
MCE

INDUSTRY OFFERING ELECTIVE

	0
\leq	and
Signature of B(OS chairman, MCE

PRODUCT DESIGN AND DEVELOPMENT

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Apply concepts of product development and outline product planning process						
CO2:	Apply relative importance of customer needs in establishing product specifications						
CO3:	Identify concept generation activities and summarize the methodology involved in concept						
	selection and testing						
CO4:	Outline supply chain considerations in product architecture and understand theindustrial						
	design process						
CO5:	Apply design for manufacturing concepts in estimating manufacturing costs						
CO6:	Apply principles of prototyping in product development economics and highlight						
	importance of managing projects						
Pre-rec	misite						

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 Μ Μ Μ W Μ CO₂ Μ Μ CO3 Μ Μ S CO4 S W Μ Μ Μ S CO5 Μ S Μ S S CO6 Μ Μ

Course Assessment methods:

Direct Indirect					
1. Internal Test I	Course end survey				
2. Internal Test II					
3. Assignment					
4. Group presentation					
5. End semester exam					
INTRODUCTION - DEVELOPMENT PROCESSES AND ORGANIZATIONS					
– PRODUCT PLANNING					
Characteristics of successful product development to Design and develop products, duration and					

Characteristics of successful product development to Design and develop products, duration and cost of product development, the challenges of product development. A generic development process, concept development: the front-end process, adapting the generic product development process, the AMF development process, product development organizations, the AMF organization. The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process.

IDENTIFYING CUSTOMER NEEDS - PRODUCT SPECIFICATIONS

9 Hours

Signature of BOS chairman, MCE

he needs into a hierarchy, establishing the relative importance of the needs and reflecting on the esults and the process. Specifications, establish specifications, establishing target specifications setting the final specifications. ONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING 9 Hours Procept generation clarify the problem search externally, search internally, explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey bopulation and a survey format, communicate the concept, measuring customer response, nterpreting the result, reflecting on the results and the process. PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN - 9 Hours DESIGN FOR MANUFACTURING Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors. PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING 9 Hours Conomic analysis, base case financial mode, Sensitive analysis, project trade-offs, influence of pualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Cheory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EEFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	Gathering raw data from customers, interpreting raw data in terms of customer needs,	organizing
esults and the process. Specifications, establish specifications, establishing target specifications setting the final specifications. ONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING 9 Hours ONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING 9 Hours concept secreting, concept generation clarify the problem search externally, search internally, explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey boopulation and a survey format, communicate the concept, measuring customer response, nterpreting the result, reflecting on the results and the process. PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING Weaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting broduction, impact of DFM on other factors. PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PHOURE Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of iconomic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of pualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Fheory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		
Acting the final specifications. 9 Hours ONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING 9 Hours The activity of concept generation clarify the problem search externally, search internally, explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey oppulation and a survey format, communicate the concept, measuring customer response, interpreting the result, reflecting on the results and the process. 9 Hours RODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING 9 Hours Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting borduction, impact of DFM on other factors. 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of pualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project success, qualitative analysis. Understanding and representing task, baseline project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Charter S Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours		0
CONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING 9 Hours The activity of concept generation clarify the problem search externally, search internally, explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey opulation and a survey format, communicate the concept, measuring customer response, interpreting the result, reflecting on the results and the process. 9 Hours RODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING 9 Hours Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting broduction, impact of DFM on other factors. 9 Hours ROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING Prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of pualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Project: 0 Total: 45 Hours Efferences: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		
The activity of concept generation clarify the problem search externally, search internally, explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey population and a survey format, communicate the concept, measuring customer response, nterpreting the result, reflecting on the results and the process. RODUCT ARCHITECTURE INDUSTRIAL DESIGN DESIGN FOR MANUFACTURING 9 Hours Meaning of product architecture, implications of the architecture, establishing the architecture, arriety and supply chain considerations, platform planning, related system level design issues. 9 Hours Assessing the need for industrial design, the impact of industrial design, industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting broduction, impact of DFM on other factors. 9 Hours ROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING 9 Hours ROJECTS 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode, Sensitive analysis, project trade-offs, influence of ualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		9 Hours
Explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey bopulation and a survey format, communicate the concept, measuring customer response, interpreting the result, reflecting on the results and the process. RODUCT ARCHITECTURE - INDUSTRIAL DESIGN - 9 Hours DESIGN FOR MANUFACTURING 9 Hours Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, nanaging the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting broduction, impact of DFM on other factors. 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of conomic analysis, base case financial mode. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		rnally.
concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey concept screening, the result, reflecting on the results and the process. RODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, nanaging the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors. 9 Hours ROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of pualitative factors on project success, qualitative analysis. Understanding and representing task, paseline project planning, accelerating projects, project execution, postmortem project evaluation. Cheory: 45 Tutorial: 0 Practica		
population and a survey format, communicate the concept, measuring customer response, interpreting the result, reflecting on the results and the process. 9 Hours RODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING 9 Hours Meaning of product architecture, implications of the architecture, establishing the architecture, ariety and supply chain considerations, platform planning, related system level design issues. 9 Hours Assessing the need for industrial design, the impact of industrial design, industrial design process, nanaging the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors. 9 Hours ROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis. Understanding and representing task, paseline project planning, accelerating projects, project execution, postmortem project evaluation. Protex: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		0.
Architecture design on the results and the process. 9 Hours PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING 9 Hours Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. 9 Hours Assessing the need for industrial design, the impact of industrial design, industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors. 9 Hours PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of pualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Cheory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		
PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING 9 Hours Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors. 9 Hours PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of pualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Cheory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	interpreting the result, reflecting on the results and the process.	_ '
DESIGN FOR MANUFACTURING Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, nanaging the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors. PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING ROJECTS 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of conomic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		
Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, nanaging the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting broduction, impact of DFM on other factors. PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Cheory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN -	9 Hours
variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, nanaging the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors. PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING 9 Hours Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of gualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Cheory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	DESIGN FOR MANUFACTURING	
PROJECTS Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: 1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	estimation of manufacturing cost, reducing the cost of components, assembly, production, impact of DFM on other factors.	supporting
 Economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015. 	PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS	9 Hours
 Economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation. Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours EFERENCES: Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015. 	Prototyping basics, principles of prototyping, technologies, planning for prototypes, I	Elements of
 Description project planning, accelerating projects, project execution, postmortem project evaluation. Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours REFERENCES: Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015. 		
Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Hours REFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	qualitative factors on project success, qualitative analysis. Understanding and represent	enting task,
EFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	baseline project planning, accelerating projects, project execution, postmortem project e	evaluation.
EFERENCES: 1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.		
1. Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.	Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Ho	urs
2015.	REFERENCES:	
		Graw Hill,
2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013.	2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013.	

Signature of BOS chairman, MCE

3

6 Hours

6 Hours

Course Outcomes

After s	After successful completion of this course, the students should be able to							
CO1:	Apply concepts of product lifecycle management and visioning							
CO2:	Apply relative importance of product concepts, processes and workflow							
CO3:	Apply principles of collaborative product development							
CO4:	Outline considerations in system architecture understand the industrial process							
CO5:	Apply product lifecycle management strategy and assessment							
CO6:	Apply the infrastructure assessment, assessment of current systems and applications.							

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		Μ		М					W			Μ	
CO2			М										Μ	
CO3	М		М										M	
CO4			S			W				М	М		M	
CO5			S		М	М								S
CO6						М							М	

Course Assessment methods:

Direct	Indirect				
1. Internal Test I	Course end survey				
2. Internal Test II					
3. Assignment					
4. Group presentation					
5. End semester exam					
INTRODUCTION TO PRODUCT LIFE CYCLE MANAGEMENT					

Definition, PLM Lifecycle Model, Threads of Product Lifecycle Management, Need for Product Lifecycle Management, Opportunities and Benefits of Product Lifecycle Management, Views, Components and Phases of Product Lifecycle Management, Product Lifecycle Management feasibility study, Product Lifecycle Management Visioning.

PLM CONCEPTS, PROCESSES AND WORKFLOW

Characteristics of Product Lifecycle Management, Environment Driving Product Lifecycle Management, Product Lifecycle Management Elements, Drivers of Product Lifecycle Management, Conceptualization, Design, Development, Validation, Production, Support of Product Lifecycle Management.

COLLABORATIVE PRODUCT DEVELOPMENT

Engineering Vaulting, Product Reuse, Smart Parts, Engineering Change Management, Bill of

Mater	Materials and Process Consistency, Digital Mock-Up and Prototype Development, Design for															
Envir	Environment, Virtual Testing and Validation, Marketing Collateral.															
SYST	EM A	RCH	ITECI	URE										6	He	urs
								•		anageme		-	_	P	J	С
										A rchitect						
inform	nation	models	, Funct	ionalit	y of the	e Produ	act Life	ecycle	Manag	gement S	Syster	n 3	0	0	0	3
Cour	se Ou	tcom	es	CIED												
Alter	SUCC	ING A essiul	COMP	STR/ letion	of thi	<u>Y ANI</u> S coui) ASS (SE, U)	e stud	ENT lents s	hould l M Initia /stems a HMI De	oe al	ole t	0	9 	Ho	urs
-Strate	gy, in 1: Ext	pact o plain tl	ie appl	içatior	npieme	MI's i	a <u>PLI</u> M n vario	uş don	gy, PL nains _c ,	NI INITI	utves	to i nnli	Suppe	rt C	K	rate 2
CO	2: Dif	ferenti	ate vai	ious c	ommu	nicatio	n proto	or Cul	sed in	HMI De	velop	omer	it	з.	K	2
DDCC	13; De	cribe	car mu	ltimed	ia syst	ems an	id the l	nardwa	re, sof	tware ev	oluti	on		20		2 urs
CÕ	4: Šu	nmari	ze vario	ous too	ols.use	l for H	MI de	velopn	nent fo	r automo creatior tudy. cument reate UI	bile	appl	icatio	n	K	2
CO	5: Exp	plain th	ie imp	ortance	e of use	er expe	rience	with a	case s	tudy.	-, ation	5			K	
CO	<u>6: Uš</u>	e vario	<u>us grap</u>	Shic to	ols and	l advar	iced te	chniqu	les to c	reate UT ask to the	S E teat	<u>ne o</u>	n trac	k	K	3
	- 3	Resolu	ving iss	mana i	sue m	anagen	nent)	prioriti	c 5 01 u	isk to th	c tear	115 0	II tiuc	к,		
N	11		and ma			•	,	design	`							
	- 4	<u>v 11– (x</u>)						lappin								
	(S/M/W	V indic	ates sti	rength			/		g, M-M	ediun	n, W	-Wea	k		
COs	DOI	DOA	DOG	DO 1	205	-		Outco			D 01	-	DO10	200		2000
CO1	PO1	PO2 W	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12	PSO		<u>PSO2</u>
CO1 CO2	M M	s vv														M M
CO2 CO3	11/1	M	М													M
CO3		S	IVI	М												M
CO4		M	М	IVI	М											M
CO5		M	M		M											M
	se Miss			karlen		ucle M	anager	ment	Engir	neering	Digit	aliza	tion (Engi	neei	
Cou <u>r</u> ,	oc imen	(111 -11 4)		ect	Litte		lanage		- Engn		Indir			Lingi	nee	mg
1. Ç	ontinue	pusiAss			Dinge	r D "	Produ	-+ Gour	se end				McGt	•awH	:11	
2. Ö	pen p	gok te	est; Co	operati	ve lea	rning	report,		gn and	Develo	piner	π,	MCOI	aw11	,	
A	ssignm	ent:	Journal	- pape	er rev	new.	Group			uring" P						
			Produc									010				
	oplicab		1100000	t Don	ionotiu		(us									
-	-		amina	tion												
										RONICS						ours
										s, Medic						
		ir func	ctionali	ties. C	Commu	inicatio	on pro	tocols	for E	CUs. (C	CAN,	LIN	l, Mo	st, F	lexF	lay,
Ethern	,	TIL (T)												•	TT	
		TIME		icle Inf	otainm	ont Dra	ofession	nal Sur	toma D	lear Seat	Enter	rtain	mont			ours
			in ven rview,					lai Sys	iems, r	cai seal	Linte	itaill	ment -	· Evol	uuo	II UI
				,	, ,, uit	- 11100110								9	Ho	ours
-				pts, H/	W Platf	form(in	tel,Qua	lcomm	,i.MX6), S/W Pl	latfori	n(OS	S, Gra			
and C	onnect	ivity),	Service	s(Navi	gation,	map	Engine	, Alexa	a), App	lication	Frame	ewor	k(Qt,	Andr	oid	sdk,
CGIST	ГUDIO	, IAR S	SYSTE	MS), H	[MI doi	nain sp	ecific a	applicat	ions - I	HMI appl	licatio	on co	mpone	ents, V	Nidg	gets,

Signature of BOS chairman, MCE

Framework, Framework model and state machine.	
UX AND UI	10 Hours
Introduction to UX design - stages, theory, Design thinking, UX Case Studies, Compa	arison of UX
and UI, Interaction concepts, Graphic design with introduction to tools (Adobe Photo	shop, Adobe
XD, Blender) - Asset Design - Overview only, Guidelines and norms, 2D/3D rendering	
TRENDS AND ADVANCED TOPICS	10 Hours
Voice, Gesture, Vision, sensor based UI controls, Haptics, New technologies (eyeg	aze, gesture,
dual display), SPI - android auto, car play, Smart City and Public Transport, ride shari	ng, personal,
Virtual Reality, Augmented Reality and Mixed Reality, UI Analytics (Usage patterns),	, Debugging,
Performance Profiling	
Theory: 45 Hours Tota	l Hours: 45
REFERENCES:	
1. Shuo Gao, Shuo Yan, Hang Zhao, Arokia Nathan, "Touch-Based Human-Machine	e Interaction:
Principles and Applications ", Springer Nature Switzerland AG; 1st edition,2021.	
2. Robert Wells, "Unity 2020 By Example: A project-based guide to building 2D, 3D	, augmented
reality and virtual reality games from scratch "Packt Publishing Limited 2020	

reality, and virtual reality games from scratch ", Packt Publishing Limited, 2020. 3. Ryan Cohen, Tao Wang, "GUI Design for Android Apps", Apress, Berkeley, CA, 2014.

			-0-
	5.	m	T
Signa	ture of BOS	S chairman	, MCE

U18ECE0058	A dwaraad UMI	L	Т	Р	J	С
	Advanced HMI	2	0	2	0	3
Course Outcomes						

After successful completion of this course, the students should be able to	
CO1: Summarize HMI architecture and its subcomponents	K2
CO2: Develop real time automotive applications using tools such as Unity and Qt.	K3
CO3: Develop simple HMI using Android and Web app development tools	K3
CO4: Perform HMI testing and validation for the developed system	K3

Pre-requisite

Nil

						CO	/PO M	appin	g					
	(S/M/W	V indic	ates sti	rength	of corr	elation) S	S-Stron	g, M-M	edium,	W-Wea	k	
COs							amme							
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ	W												Μ
CO2	Μ	S												Μ
CO3		Μ	Μ											Μ
CO4		S		М	М									Μ
Cours	se Ass	essme	nt met	hods:										
			Di	rect							Indirec	t		
				nt Test 1	·			Cour	se end s	survey				
	Assignment; Journal paper review, Group													
	Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as													
			Produc	t Den	ionstrat	tion et	c. (as							
	plicab	nester E	vamina	ation										
		CTIO											2 H	Iours
HMI A	Archit	ecture	& Con	cepts,	HMI S	ubcom	nponen	ts						
GAM	ING A	ADVA	NCEE) 3D D	EVEL	OPM	ENT						9 H	Iours
Introduction to game development and advanced 3D development, Game Engine, Unity 3					3D –									
install	installation -code editor - camera - game objects and transform - Renderer - lighting - UI -						UI –							
Script	Scripting, Realtime 3D in Automotive world, HMI Development.													
QT														Iours
		-	•	Suppo	rted P	latform	is, Qt I	nstalla	tion, Q	t Creato	or, Qt M	Iodules	, Signal	ls and
		Proces	<u> </u>											
						LOPE							8 I	Iours
							nt End	Frame	works)				
				UTO										Iours
				HMI,	Challe	<u> </u>			<u> </u>	ification	and Va			
Theor	ry: 30	Hours	5			Prac	tical: 1	5 Hou	irs			Total	Hours	: 45
REFF	CREN	CES:												

5. Signature of BOS chairman, MCE

- 1. Shuo Gao, Shuo Yan, Hang Zhao, Arokia Nathan, "Touch-Based Human-Machine Interaction: Principles and Applications", Springer Nature Switzerland AG; 1st edition,2021.
- 2. Robert Wells, "Unity 2020 By Example: A project-based guide to building 2D, 3D, augmented reality, and virtual reality games from scratch", Packt Publishing Limited, 2020.
- 3. Lee Zhi Eng , "Qt5 C++ GUI Programming Cookbook: Practical recipes for building crossplatform GUI applications, widgets, and animations with Qt 5, 2nd Edition, Packt Publishing Limited, 2019.
- 4. .Karim Yaghmour, "Embedded Android: Porting, Extending, and Customizing", First Edition, Shroff/O'Reilly, 2013
- 5. Louis J.Williams, "Basic Programming Android for beginners Handbook", IT Campus Academy, March 2016
- 7. Julie C. Meloni, "Sams Teach Yourself HTML, CSS, and JavaScript All in One", Pearson Education, 2011.
- 8. Arnon Axelrod, "Complete Guide to Test Automation by Arnon Axelrod", a Press, September 2018.

8.Dean Alan Hume, "Progressive Web Apps", Manning Publisher, December 2017.

LIST OF EXPERIMENT:

- 1. Setting up of Raspberry Pi with capacitive touch screen
- 2. Setting up the Unity environment.
- 3. Working with UI controls of Unity.
- 4. Qt Installation and configuration.
- 5. Creating Dialogs and Main windows using Qt programming.
- 6. Working with building blocks of practical web design using HTML
- 7. Webpage design with CSS and Form validation using JavaScript.

P
MCE

MINOR SPECIALISATION

5.	1
Signature of BOS cha	irman MCE

MINOR SPECIALISATION IN 3D PRINTING

Sa	-1
Signature of BOS ch	airman MCF

FUNDAMENTALS OF 3D PRINTING

Course Outcomes

After successful completion of this course, the students should be able to

CO7: Discuss the basics concepts of 3D printing technology

CO8: Explain the basics of computer graphics

CO9: Develop CAD models for 3D printing

CO10 Select a specific material for the given application

CO11 Explain various method for designing and modeling for industrial applications

CO12 Import and Export CAD data and generate .stl file

Pre-requisite

_

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Μ **CO1** S W **CO2** Μ S Μ S **CO3** S Μ **CO4** Μ S Μ Μ **CO5** Μ S Μ Μ **CO6** S

Course Assessment methods:

DIRECT	INDIRECT	
Internal test I		
Internal test II	Course end survey	
End semester Examination		
Assignment		
INTRODUCTION		8 Hours
Introduction, Design considerations, Principles of 3D pr	rinting, Additive v/s Conventional Mar	nufacturing
processes, components – nozzle, plate, feeder heater		
FUNDAMENTALS OF COMPUTER GRAP	HICS	7 Hours
Computer Graphics - Co-Ordinate Systems- 2D And 3I	O Transformations Homogeneous Coor	dinates – Line
Drawing -Clipping- Viewing Transformation.		
CAD		11 Hours
Definitions, evolution, Product design and rapid produc	t development, conceptual design, deta	ul design,
prototyping, 3D solid modeling and slicing software and	d their role in 3D printing, CAD Data f	ormats, Data
translation, Data loss, STL format, creation of STL file.	_	
PRINTING MATERIALS		10 Hours

rkinting matchials

10 Hours

Materials - Plastics, Metals, Ceramics, Carbon fiber, Nitinol, Biological Tissues, Hydrogels, Graphene; Material Selection, Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties, Support Materials.

INDUSTRIAL APPLICATIONS

9 Hours

Product Models, manufacturing – Printed electronics, Biopolymers, Packaging, Healthcare, Food processing industry, Medical, Biotechnology, Displays; Future trends.

Theory: 45 Hours

Practical: 15 Hours.

Total Hours: 60

REFERENCE BOOKS

- 1. Hod Lipson, Melba kurman, "Fabricated the new world of 3D printing", John Wiley & sons, 2013.
- 2. CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017.
- 3. Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011
- 5. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.
- 6. Additive Manufacturing of Metals: Fundamentals and Testing of 3D and 4D Printing by Hisham Abdel-Aal

LIST OF EXPERIMENTS

- 1. 3D Modelling of a single component.
- 2. Assembly of CAD modelled Components
- 3. Exercise on CAD Data Exchange.
- 4. Generation of .stl files.

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Understand the fundamentals of additive manufacturing

CO2: Describe the operating principles of liquid based additive manufacturing process.

CO3: Describe the operating principles of solid based additive manufacturing process.

CO4: Explain the concepts of powder based additive manufacturing process.

CO5: Describe the principles of binder and LOM additive manufacturing process.

CO6: Understand the various types of post-processing in additive manufacturing process.

Pre-requisite

U18MCR0001 - Fundamentals of 3D Printing

CO/PO Mapping

		(S/M/W	/ indicate	es strengt	h of com	relation)	S-Str	ong, M-N	Medium,	W-Weal	K	
COs			Programme Outcomes(POs)									
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	W										
CO2	S	W										
CO3	M	S	Μ									
CO4	M	S	Μ									
CO5	M	S	Μ									
CO6	М	M	W									

Course Assessment methods:

DIRECT	INDIRECT	
Internal test I		
Internal test II	Course end survey	
End semester Examination		
Assignment		
INTRODUCTION		7 Hours

Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing. Classification of additive manufacturing processes.

LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING	10 Hours				
SYSTEMS					
Photo polymerization: Stereolithography Apparatus (SLA) - Materials -Process – Advantages	Limitations-				
Applications. Digital Light Processing (DLP) - Materials – Process - Advantages - Applications. Extrusion					
Based System: Fused Deposition Modeling (FDM) - Process-Materials - Applications and Limitations.					
POWDER BASED ADDITIVE MANUFACTURING SYSTEMS	9 Hours				

Powder Bed Fusion: Selective Laser Sintering (SLS): Process – Powder Fusion Mechanism – Process Parameters – Typical Materials and Application. Selective Laser Melting (SLM) and Electron Beam Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposition Process: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Process Parameters - Materials - Benefits -

	0
5.	- P
Signature of BOS c	hairman MCE

Applications.

BINDER AND LAMINATED OBJECT MANUFACTURING SYSTEMS

Binder Jetting: Three Dimensional Printing - Materials -Process - Benefits and Limitations. Material Jetting: Multijet Modeling- Materials- Process- Benefits. Sheet Lamination Process: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding – Thermal Bonding-Materials-Application and Limitation.

POST-PROCESSING IN ADDITIVE MANUFACTURING

9 Hours

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, Brief information on characterization techniques used in additive manufacturing, Applications of additive manufacturing in rapid prototyping, rapid manufacturing, rapid tooling, repairing and coating.

Total Hours: 45

REFERENCE BOOKS

- 1. CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2009.
- 2. Ali Kamrani, Emad Abouel Nasr, Rapid Prototyping Theory and Practice (Manufacturing Systems Engineering Series), Springer, 2006
- 3. Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011
- 5. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

	0
5	r
Signature of BOS ch	airman, MCE

U18MCR0003

MECHATRONICS IN 3D PRINTING

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

 CO1: Understand the fundamentals of mechatronics and its importance in 3D Printing CO2: Describe the operating principles of 3D Printing actuators and Controllers CO3: Describe the mechanical components in 3D Printing 	
CO3: Describe the mechanical components in 3D Printing	
CO4: Explain the different sensors used in 3D Printing	
CO5: Classify the communication protocols.	

Pre-requisite

U18MCR0002 - Additive Manufacturing Processes

CO/PO Mapping												
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs	Programme Outcomes(POs)											
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Μ	М										
CO2	S	W										
CO3	Μ	S	М									
CO4	М	S	М		М							
CO5	М	S	М		М							

Course Assessment methods:

DIRECT	INDIRECT				
Internal test I Internal test II End semester Examination Assignment	Course end survey				
INTRODUCTION	7 Hours				

INTRODUCTION

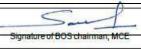
Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics – 3 pillars of 3D printing, resolution, accuracy and repeatability

ACTUATORS AND CONTROLLERS

Types of Stepper and Servo motors – Construction – Working Principle – Advantages and Disadvantages, motor drivers, Controller board, Screens and user interfaces.

MECHANICAL COMPONENTS IN 3D PRINTING

Pulley, Timing belt, lead screw, Bearing, Guide ways, Coupling, Spring, Extruder, Cooling fan, Gears and types.


SENSORS

Principles of working - Construction-characteristics and limitations of Thermal Sensor or Temperature Sensor, Filament Sensor, Proximity sensor or bed levelling sensors, Thermistor, Thermocouple, RTD, Encoders.

INDUSTRIAL COMMUNICATION PROTOCOLS

Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII & RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), IPP (Internet printing protocol) – Printing from mobile devices.

Theory: 45 Hours Practical: 15 Hours.

Total Hours: 60

10 Hours

9 Hours

10 Hours

9 Hours

REFERENCE BOOKS

- 1. CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2009.
- 2. Ali Kamrani, Emad Abouel Nasr, Rapid Prototyping Theory and Practice (Manufacturing Systems Engineering Series), Springer, 2006
- **3.** Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011
- 5. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.
- **6.** Richard Zurawski, "Industrial Communication Technology Handbook", CRC Press, 2nd Edition, 2017.

List of experiments:

- 1. Temperature measurement using Arduino
- 2. Data visualization with Arduino
- 3. Position measurement
- 4. Stepper motor control using Arduino
- 5. Servo motor control using Arduino
- 6. UART and I2C Communication protocol

1
nan, MCE

U18MCR0004

3D PRINTING LABORATORY

L	Т	Р	J	С	
0	0	2	0	1	

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Investigate on file Import and model configuration.

CO2: Plan on setting orientation, slicing and tool path generation.

CO3: Create components using 3D printer.

CO4: Perform tensile and compression testing on part.

Pre-requisite

U18MCR0003 - Mechatronics in 3D Printing

CO/PO Mapping

		(S/M/W	⁷ indicate	es strengt	S-Str	ong, M-N	Aedium,	W-Weak	2			
Cos	Programme Outcomes(Pos)											
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S								S	S		
CO2	S								S	S		
CO3	S								S	S		
CO4	S								S	S		

Course Assessment methods:

DIRECT	INDIRECT								
Work book	Course end survey								
Model Exam									
LIST OF EXPERIMENTS									
1. Importing and Configuring Model									
2. Build option and orientation setting									

- 3. Slicing setting and Correction
- 4. Support and Tool path Generation
- 5. Build a components without support material
- 6. Build a component with support material
- 7. Mechanical testing (Tensile and Compression)

Signature of BOS chairman, MCE

U18MCR0005		L	Т	Р	J	C	
0 - 0 - 0 - 0 - 0 0 0 0 0	PROJECT	0	0	0	6	3	

Course Outcomes

After successful completion of this course, the students should be able to										
CO1:	1: Design, analyze, realize / simulate a physical system by using the technology they learnt during the									
	program.									
CO2:	Integrate various systems into one Mechatronics product.									
000										

CO3: Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

Pre-requisite

U18MCR0001-Fundamental of 3D printing

CO/PO Mapping												
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs					Progr	amme O	utcomes((POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	S		М	М				S
CO2	S	S	S	S	S	М	М	М				S
CO3									S			
CO4										S	S	

Course Assessment methods:

DIRECT	INDIRECT
6. Interdisciplinary work	
7. Innovation	
8. Working model/ simulation result	1.Course end survey
9. Report with good referencing	
10. End Semester Viva Voice	

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a 3D printing project. However, special considerations can be given for interdisciplinary measurement and computer based simulation projects. This exception should be recorded and approved by the department committee. Management related projects will not be allowed. The interdisciplinary projects will carry more weightage.

0	P
Signature of BOS	chairman, MCE