KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

COIMBATORE – 641049

REGULATION 2018A(R18A)

(2022 Batch onwards)

SYLLABUS

1st to 8thSemesters

BE MECHATRONICS ENGINEERING

	- A-
~	-1
Signature of BOS ch	nairman, MCE

DEPARTMENT OF MECHATRONICS ENGINEERING

VISION

To achieve excel in academic and industrial automation research and innovative product development driven by mechatronics systems."

MISSION

- Impart the right blend of knowledge and skills to students and enable them to apply it in real life situations.
- Motivate the students towards interdisciplinary research to cater to the local and global needs.
- Achieve innovation in developing industrial products with social responsibility.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of Mechatronics Engineering Undergraduate Program are to prepare the students:

- I. To develop innovative and sustainable products with multidisciplinary Engineering expertise.
- **II.** Solve intricate engineering problems by identifying the crux from the mechatronics engineering fundamentals and engage in lifelong learning in their profession.
- **III.** To work or pursue higher education in multicultural, multilingual and multinational environment with competent oral and written communication.
- **IV.** To lead and contribute in a team entrusted with professional, social and ethical responsibilities.

PROGRAM OUTCOMES (POs)

Graduates of the Mechatronics Engineering Undergraduate Program should have the ability to:

PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

	-	-D-
Signatur	e of BOS chain	
Signatur	e or bos chain	man, MUCE

PO3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and the cultural, societal, and environmental considerations.

PO4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Create, select, and apply appropriate techniques, resources, and modem engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates of the Mechatronics Engineering Undergraduate Program will have the ability to:

PSO1. Design and develop Mechatronics systems to solve complex engineering

problems by integrating electronics, mechanical and computing systems.

PSO2. To analyze and provide solutions for real time engineering problems related to instrumentation, control, automation, and robotics.

		A
_	Sa	- f
Signat	ure of BOS cl	hairman, MCE

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE - 641 049

REGULATIONS 2018

B.E. MECHATRONICS ENGINEERING

CURRICULUM

		Semes	ter I							D
S. No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MAI1202	Linear Algebra and Calculus	Embedded - Theory & Lab	BS	3	0	2	0	4	_
2	U18CHI1202	Engineering Chemistry	Embedded - Theory & Lab	BS	3	0	2	0	4	-
3	U18ENI0201	Fundamental Communication	Embedded - Theory & Lab	HS	2	0	2	0	3	-
4	U18MEI1201	Engineering Graphics	Embedded - Theory & Lab	ES	2	0	2	0	3	-
5	U18CSI1201	Problem solving and Programming using C	Embedded - Theory & Lab	ES	2	0	2	0	3	-
6	U18INI1600	Engineering Clinic I	Practical and Project	ES	0	0	4	2	3	-
7.	U18TLR1001	Heritage of Tamils	Mandatory	HS	1	0	0	0	1*	
	Total Credits								21	
			Total (Conta	ct I	Iou	rs/w	eek	26	

			-0-
	S.	m	1_
Signatu	ire of BOS	chairman	, MCE

	Semester II										
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite	
1	U18MAI2201	Advanced Calculus and Laplace Transforms	Embedded - Theory & Lab	BS	3	0	2	0	4		
2	U18PHI2202	Engineering Physics	Embedded - Theory & Lab	BS	3	0	2	0	4	-	
3	U18******	Language Elective	Embedded - Theory & Lab	HS	2	0	2	0	3	-	
4	U18MET2003	Engineering Mechanics	Theory	ES	3	0	0	0	3	-	
5	U18CSI2201	Python Programming	Embedded - Theory & Lab	ES	2	0	2	0	3	-	
6	U18INI2600	Engineering Clinic II	Practical and Project	ES	0	0	4	2	3	-	
7	U18TLR2001	Tamils and Technology	Mandatory	HS	1	0	0	0	1*		
				a (dits	21		
			Total	Conta	ct H	lou	rs/w	veek	27		

Semester III										_
S. No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre- requisite
1	U18MAT3101	Partial Differential Equations and Transforms	Theory	BS	3	1	0	0	4	-
2	U18MCI3201	Electronic Devices and Circuits	Embedded - Theory & Lab	ES	3	0	2	0	4	-
3	U18MCI3202	Electrical Machines	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT3103	Mechanics of solids	Theory	ES	3	1	0	0	4	-
5	U18MCT3104	Fluid Mechanics and Thermal Sciences	Theory	ES	3	1	0	0	4	-
6	U18INI3600	Engineering Clinic III	Practical and Project	ES	0	0	4	2	3	-
					Τα	otal	Cre	edits	23	
			Total (Conta	ct H	lou	rs/w	veek	28	

Sa Signature of BOS chairman, MCE

		Semest	er IV							
S. No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	C	Pre-requisite
1	U18MAT4101	Numerical Methods and Probability	Theory	BS	3	1	0	0	4	-
2	U18MCI4201	Hydraulics and Pneumatics	Embedded - Theory & Lab	PC	3	0	2	0	4	-
3	U18MCI4202	Sensors and Instrumentation	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT4103	Digital Electronics and Microprocessor	Theory	PC	3	1	0	0	4	U18MCI32 01
5	U18MCT4104	Theory of Machines	Theory	PC	3	1	0	0	4	-
6	U18INI4600	Engineering Clinic IV	Practical and Project	ES	0	0	4	2	3	-
7	U18CHT4000	Environmental Science and Engineering	Theory	MC	3	0	0	0	3	
8	U18VET4101	UHV-II	Theory	HS	2	1	0	0	3*	
		•				Cre		20	•	
*Mand	latory -Credit Co	ourse not for CGPA Ca	Total Con alculation	ntact	Hou	rs/w	eek	23	8	

	A
\leq	
and the second second	OS chairman, MCE

		Semes	ter V							
S. No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MCI5201	Industrial Electronics and drives	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI3202
2	U18MCI5202	Manufacturing Technology	Embedded - Theory & Lab	PC	2	0	2	0	3	-
3	U18MCI5203	Programmable logic controller	Embedded - Theory & Lab	PC	3	0	2	0	4	-
4	U18MCT5004	Control Engineering	Theory	PC	3	0	0	0	3	-
5	U18MCT5105	Design of Machine Elements	Theory	PC	3	1	0	0	4	U18MCT3103
6	U18MC00**	Open Elective I	Theory	OE	3	0	0	0	3	-
7	U18MCE00**	Professional Elective I	Theory	PE	3	0	0	0	3	_
					T	otal	Cre	edits	24	
			Total	Conta	ct I	Hou	rs/w	veek	30	

		A
\leq	Sau	r_
Signature of B	OS chairman, M	ACE

	Semester VI										
S. No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite	
1	U18MCI6201	Computer aided Manufacturing	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI5202	
2	U18MCI6202	Robotics Engineering	Embedded - Theory & Lab	PC	3	0	2	0	4	-	
3	U18MCI6203	Microcontroller and Embedded Systems	Embedded - Theory & Lab	PC	2	0	2	0	3	U18MCT4103	
4	U18MCE00**	Professional Elective II	Theory	PE	3	0	0	0	3	-	
5	U18MCE00**	Professional Elective III	Theory	PE	3	0	0	0	3	-	
6	U18MCO0***	Open Elective II	Theory	OE	3	0	0	0	3	-	
8	U18INT6000	Constitution of India	Theory	MC*		1		1		<u> </u>	
	·				To	tal	Cre	dits	20		
			Tota	l Conta	ct H	lou	rs/w	eek	23		

		Semester V	VII							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MBT7001	Engineering Economics and Financial Management	Theory	HS	3	0	0	0	3	-
2	U18MCT7001	Mobile Robotics	Theory	PC	3	0	0	0	3	-
3	U18MCT7002	Image Processing and Computer Vision	Theory	PC	3	0	0	0	3	-
4	U18MCE00**	Professional Elective IV	Theory	PE	3	0	0	0	3	-
5	U18MCE00**	Professional Elective V	Theory	PE	3	0	0	0	3	-
6	U18MCP7701	Project – Phase I	Project	PW	0	0	0	6	3	-
	Total Credits									
	Total Contact Hours/week									

 	 - <u>D</u> -	_
\leq	 1	

	Semester VIII											
S.No	Course code	Course Title	Course ModeCTLTPJ									
1	U18MCP8701	Project – Phase II	Project	PW	0	0	0	24	12			
					To	otal	Cre	edits	12			
Total Contact Hours/week 24												
Total Credits 165												

		Programme Ele	ctives						
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С
		Mechatronics Sy	stems						
1.	U18MCE0001	Automotive Electronics	Theory	PE	3	0	0	0	3
2.	U18MCE0002	Condition Monitoring	Theory	PE	3	0	0	0	3
3.	U18MCE0003	Micro Electro Mechanical Systems	Theory	PE	3	0	0	0	3
		Computational Int	elligence						
4.	U18MCE0004	Artificial Intelligence and Machine Learning	Theory	PE	3	0	0	0	3
5.	U18MCE0005	Database Management System	Theory PE		3	0	0	0	3
6.	U18MCE0006	Soft Computing	Theory P		3	0	0	0	3
7.	U18MCE0014				3	0	0	0	3
Design and Manufacturing									
8.	U18MCE0007	Industrial IOT	Theory	PE	3	0	0	0	3
9.	U18MCE0008	Statistical Quality Control	Theory	PE	3	0	0	0	3
10.	U18MCE0009	Composite and Smart Materials	Theory	PE	3	0	0	0	3
11.	U18MCE0010	Additive Manufacturing	Theory	PE	3	0	0	0	3
12.	U18MCE0016	Finite Element Analysis	Theory	PE	3	0	0	0	3
		Automation	ı						
13.	U18MCE0011	Design of material handling systems	Theory	PE	3	0	0	0	3
14.	U18MCE0012	Design for manufacturing and Assembly	Theory	PE	3	0	0	0	3
15.	U18MCE0013	Precision manufacturing	Theory	PE	3	0	0	0	3
16.	U18MCE0015	Operation Research	Theory	PE	3	0	0	0	3
17.	U18MCE0017	Maintenance Engineering	Theory	PE	3	0	0	0	3
18.	U18MCE0018	Medical Mechatronics	Theory	PE	3	0	0	0	3

	-	-6	
<	Sa	-1	
Signature	of BOS cha	airman, MC	E

	Open Electives												
S. No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С				
1.	U18MCO0001	Robotics for Engineers	Theory	OE	3	0	0	0	3				
2.	U18MCO0002	Automation in Agriculture	Theory	OE	2	0	1	0	3				
3.	U18MCO0004	Nature Inspired Optimization Techniques	Theory	OE	3	0	0	0	3				
4.	U18MCO0005	Mechanics in Cricket	Theory	OE	3	0	0	0	3				
5.	U18MCO0006	Low Cost Automation	Theory	OE	3	0	0	0	3				
6.	U18MCO0007	Magics and Mechanics	Theory	OE	2	0	1	0	3				

	INDUSTRY OFFERING ELECTIVE											
1	U18MCE0019	Product Design and Development	Theory	PE	2	0	2	0	3			
2	U18MCE0020	Product Lifecycle Management	Theory	PE	3	0	0	0	3			
3	U18ECE0057	Introduction to HMI	Theory	PE	3	0	0	0	3			
4.	U18ECE0058	Advanced HMI	Theory	PE	2	0	2	0	3			

	ONE CREDIT COURSE										
1	U18MCC0001	Robot Operating System	Practical	OC	1	0	0	0	1		

	Language Elective												
S.No	Course code	Course Title	Course Mode		L	Т	Р	J	С				
1.	U18FRI2201	French Level I	Theory	LE	2	0	2	0	3				
2.	U18GEI2201	German Level I	Theory	LE	2	0	2	0	3				
3.	U18HII2201	Hindi Level I	Theory	LE	2	0	2	0	3				
4.	U18JAI2201	Japanese Level I	Theory	LE	2	0	2	0	3				

	NPTEL COURSES										
1	U18MCE0021	Surface Engineering of Nano materials	Theory	PE	2	0	0	0	2		
2	U18MCE0022	Fundamentals of Automotive systems	Theory	PE	3	0	0	0	3		
3	U18MCE0023	Structural Analysis of Nanomaterials	Theory	PE	1	0	0	0	1		

		_		A
-	<	>	-	Ľ
Sigr	nature of <mark>E</mark>	BOS cha	airman, M	NCE

	Ν	linor specialization in	3D Printing								
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite	
1	U18MCR0001	Fundamentals of 3D printing	Embedded - Theory & Lab	ES	3	0	2	0	4	-	
2	U18MCR0002	Additive manufacturing processes	Theory	ES	3	0	0	0	3	U18MCR0001	
3	U18MCR0003	Mechatronics in 3D Printing	Embedded - Theory & Lab	ES	3	0	2	0	4	U18MCR0002	
4	U18MCR0004	3D Printing laboratory	Laboratory	ES	0	0	2	0	2	U18MCR0002	
5	U18MCR0005	Project	Project	PW	0	0	0	6	5	-	
	Total Credits 18										

MINOR SPECIALISATION CURRICULUM

		Minor Specializatio	n in Robotics							
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite
1	U18MCR0008	Fundamentals of Robotics	Embedded - Theory & Lab	MS	2	0	2	0	3	-
2	U18MCR0009	Introduction to single- board microcontroller and Computer	Embedded - Theory & Lab	MS	2	0	2	0	3	U18MCR0008
3	U18MCR0010	Autonomous Mobile Robot	Embedded - Theory & Lab	MS	2	0	2	0	3	U18MCR0008
4	U18MCR0011	Industrial Robotics	Embedded - Theory & Lab	MS	2	0	2	0	3	-
5	U18MCR0012	Capstone Project	Project	PW	0	0	0	0	6	-
					То	tal	Cre	dits	18	

	D-
5.	m 1
Signature of BOS	chairman, MCE

HONOR VERTICALS

		Vertical 1: Applied Robot	tics						
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С
1	U18MCR0013	Robots and Systems in Smart Manufacturing	Theory	ES	3	0	0	0	3
2	U18MCR0014	Agricultural Robotics and Automation	Theory	ES	3	0	0	0	3
3	U18MCR0015	Humanoid Robotics	Theory	ES	3	0	0	0	3
4	U18MCR0016	Medical Robotics	Theory	ES	3	0	0	0	3
5	U18MCR0017	UAV systems	Theory	ES	3	0	0	0	3
6	U18MCR0018	Collaborative Robotics	Theory	ES	3	0	0	0	3
7	U18MCR0019	Microrobotics	Theory	ES	3	0	0	0	3
8	U18MCR0020	Motion simulation and virtual reality	Theory	ES	3	0	0	0	3

		Vertical 2: Industrial Autom	ation						
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С
1	U18MCR0021	Smart Manufacturing & Automation	Theory	ES	3	0	0	0	3
2	U18MCR0022	Automation in production systems and Management	Theory	ES	3	0	0	0	3
3	U18MCR0023	Advanced SCADA,HMI and VFD	Theory	ES	3	0	0	0	3
4	U18MCR0024	Industrial Controller Communications	Theory	ES	3	0	0	0	3

	2	-		8	D
-	-	>		\leq	1
Signa	ature	of BOS	Schair	man, I	MCE

5	U18MCR0025	Virtual Instrumentation	Theory	ES	3	0	0	0	3
6	U18MCR0026	Digital Twin and Industry 5.0	Theory	ES	3	0	0	0	3
7	U18MCR0027	Robotic Process Automation	Theory	ES	3	0	0	0	3
8	U18MCR0028	Supply chain management in industry 4.0	Theory	ES	3	0	0	0	3

		-	-	0—	Ĩ.
	5	Saul	-1	10	
Signa	ture of B	OS chai	man M	CE	

SEMESTER I

			0
	\leq	-	1
Cianat	ure of BOS	chairn	MCE
Signalu	lie or bos	cnaim	Iari, MUCE

U18MAI1202	LINEAR ALGEBRA AND CALCULUS	L	Т	Р	J	С
01010111202	(Common to All branches except AI &DS)	3	0	2	0	4

COURSE OUTCOMES

After successful completion of this course, the students should be able to:

CO1: Identify eigenvalues and eigenvectors, apply Cayley Hamilton theorem to Matrix. Manipulation and apply orthogonal diagonalization to convert quadratic form to canonical form.
CO2: Apply suitable techniques of differentiation and integration to various functions and identify the maxima and minima of functions of one variable.
CO3: Solve first order ordinary differential equations and apply them to certain physical situations.
CO4: Solve higher order ordinary differential equations arising in real world situations.
CO5: Evaluate the total derivative of a function, expand the given function as series and locate the maximum and minimum for multivariate functions.
CO6: Determine Rank, Inverse, Eigenvalues, Eigenvectors of the given matrix, solve.

Differential equations and locate Maxima-Minima of the function using MATLAB

Pre-requisite: Basics of Matrices, Differentiation and Integration

					S-Stro	CO/Pong, M-	0 Map Mediu	ping m, W-	Weak					
Cos	Progr	amme	Outcon	nes (P	0s)								PS	0
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	1	2
CO1	S	S												
CO2	S	М												
CO3	S	М												
CO4	S	М			М									
CO5	S	S												
C06					S							М		

Course Assessment methods: DIRECT

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Open Book Test; Cooperative Learning Report, Assignment; Journal Paper Review, Group Presentation, Project Report, Poster Preparation, Prototype or Product
- 3. Demonstration etc (as applicable) (Theory component)
- 4. Pre/Post Experiment Test/Viva; Experimental Report for each Experiment (lab Component)
- 5. Model Examination (lab component)

5.	- 1
Signature of BOS c	hairman MCE

6.	End Semester Examination	(Theory	and lab	components)
----	--------------------------	---------	---------	-------------

INDIRECT

1. Course-end survey

THEORY COMPONENT

MATRICES

Rank of a matrix – Consistency of a system of linear equations - Rouche's theorem - Solution of a system of linear equations - Linearly dependent and independent vectors - Eigenvalues and Eigenvectors of a real matrix - Properties of eigenvalues and eigenvectors - Cayley Hamilton theorem (excluding proof) - Orthogonal matrices – Orthogonal transformation of a symmetric matrix to diagonal form – Reduction of quadratic form to canonical form by orthogonal transformation

DIFFERENTIAL AND INTEGRAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules -Maxima and Minima of functions of one variable - Definite and Indefinite integrals - Techniques of Integration: Substitution rule, Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction.

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

Leibnitz's equation – Bernoulli's equation – Applications: Orthogonal trajectories and Electric Circuits

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Linear equations of second and higher order with constant coefficients - Euler's and Legendre's linear equations – Method of variation of parameters – First order Simultaneous linear equations with constant coefficients - Applications: Electric Circuits.

FUNCTIONS OF SEVERAL VARIABLES

Total derivative - Taylor's series expansion - Maxima and minima of functions of two variables -Constrained maxima and minima: Lagrange's multiplier method with single constraints – Jacobians

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2014.
- 2. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 11th Reprint, 2010.
- 3. Kreyzig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley and sons, 2011.

	<	5	4	P	
Signa	ture of	BOSC	hairma	n, MC	E

6 Hours

9 Hours

9 Hours

11 Hours

10 Hours

REFERENCES

- Veerarajan T., "Engineering Mathematics (for First Year)", Tata McGraw Hill Pub. Co. Ltd., New Delhi, Revised 1. Edition, 2007.
- 2.
- Weir, MD, Hass J, Giordano FR, "Thomas' Calculus", Pearson education 12th Edition, 2015. G.B. Thomas and R.L. Finney, "Calculus and Analytical Geometry", 11th Edition, Pearson Education, 2006. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. 3.
- 4.

WEBSITES

1. https://www.khanacademy.org/math/integral-calculus

LAB	COMPONENT	30 Hours										
List o	<u>f MATLAB Programs:</u>											
1.	Introduction to MATLAB.											
2.	Matrix Operations - Addition, Multiplication, Transpose, Inv	verse										
3.	. Rank of a matrix and solution of a system of linear equations											
4.	4. Characteristic equation of a Matrix and Cayley-Hamilton Theorem.											
5.	5. Eigenvalues and Eigenvectors of Higher Order Matrices											
6.	Curve tracing											
7.	Differentiation and Integration											
8.	Solving first and second order ordinary differential equation	18.										
9.	Determining Maxima and Minima of a function of one varia	ıble.										
10	. Determining Maxima and Minima of a function of two varia	ibles.										
Theory	v: 45 Tutorial: 0 Practical: 30 Project: 0	Total: 75 Hours										

U18CHI1202	ENGINEERING CHEMISTRY	L	Т	Р	J	С
01001111202	(Common to All Branches)	3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Apply the basic principles of chemistry at the atomic and molecular level.
CO2:	Analyze the impact of engineering solutions from the point of view of chemical principles
CO3:	Apply the chemical properties to categorize the engineering materials and their uses
CO4:	Integrate the chemical principles in the projects undertaken in field of engineering and technology
CO5:	Develop analytical proficiency through lab skill sets to demonstrate in professional practice.

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/	W ind	icates	streng	gth of	correla	ation)	S-	-Stron	g ,]	M-Med	ium, W	-Weak	
COs						Р	rograr	nme (POs		nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	S	М												
CO2	S	М		М										
CO3	S	М		S										
CO4	S	М		S										
C05	М	S		S										
Course	Assessm	nent n	netho	ds:								•		
		D	IREC	T				INDIRECT						
1. Co	ntinuous	Asses	ssment	t TestI										
2. Co	ntinuous	Asses	ssment	t Testl	Ι									
	signmen							1. Co	ourse-e	end sur	vey			
4. En	d Semes	ter Ex	amina	tion										

	-	-D
Signature of E	SOS chai	irman. MCE

ELECTROCHEMISTRY AND CORROSION	9 Hours
Electrodes - Calomel and Glass electrode (Construction and working prin	nciples) - Electrode
Potential - Nernst equation and problems - Electrochemical Series and	its applications.
Corrosion: Mechanism of chemical and electrochemical corrosion - 7	Types of corrosion
(Metallurgically Influenced Corrosion, Mechanically Assisted Degradation a	and Environmentally
Induced Cracking – overview) - Factors influencing corrosion.	
Corrosion control: Inhibitors - Cathodic protection (Sacrificial anodic pro-	otection, Impresse
current cathodic protection) - Electroplating (Cu) and Electroless platin	ng (Ni).
SURFACE CHEMISTRY AND CATALYSIS	8 Hours
Adsorption: Types and factors affecting adsorption - Adsorption isoth	nerms: Freundlich's
adsorption isotherm - Langmuir's adsorption isotherm - Applications of ads	orption on pollution
abatement.	
Surface catalysis: Power law and Eley Rideal model and Langmuir-Hinshe	
Catalysis: Catalyst - catalytic poisoning and catalytic promoters - autoca	talysis acid bas
catalysis - enzyme catalysis. Applications of catalysis in industries.	
ENGINEERING MATERIALS	8 Hours
Polymers: Introduction - Degree of polymerization - Functionality - Pre	paration, Properties
and Applications of PET, PVC and conducting polymers (Polyactylene and	nd Polythiophene).
Composites: Constituents of Composites and applications - Polymer C	omposites (PC) -
Metal Matrix Composites (MMC) - Ceramic Matrix Composites (CMC)	
Lubricants: Classification (liquid, solid and semi solid) - Functions - F	Properties (viscosit
index, flash and fire point, oiliness, carbon residue, aniline point, cloud po	oint and pour point
- Synthetic lubricants.	
CHEMICAL BONDING	7 Hours
Introduction - Types of bonding: Ionic, covalent, co-ordinate and metall	ic bonds - Van der
Waal's forces of attraction and its types (dipole - dipole, dipole - induced di	ipole, induced dipole
- induced dipole) - hydrophobic interaction - hybridization in organic i	molecules
(sp, sp^2, sp^3) - hydrogen bonding and its characteristics.	
THERMODYNAMICS	7 Hours
Introduction - Thermodynamic process - Internal energy - Enthalp	y – First law of
thermodynamics – Second law of thermodynamics - Entropy - Free Energy	•
Function - Gibbs Helmholtz equation - Problems – Clausius-Clapeyron eq	•
relations - Third law of thermodynamics – Zeroth law.	
WATER TECHNOLOGY	6 Hours
Introduction - Hardness of water - Disadvantages of hard water in boiler	s: scale and sludge,
priming and foaming, caustic embrittlement and boiler corrosion - Softe	
External treatment (Demineralization process) - Internal treatment (c	-
phosphate and Calgon conditioning) - Desalination (Reverse osmosis,	
Domestic water treatment.	· · · · · · · · · · · · · · · · · · ·
Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total	: 45 Hours

REFERENCES

- 1. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, Reprint 2017.
- 2. Puri B.R., Sharma L.R., Pathania, M.S. Principles of physical chemistry, Vishal Publishing Co., 2017
- 3. Atkins, P. and de Paula, J., Atkin's Physical Chemistry, 9th ed., Oxford Univ. Press, 2009.
- 4. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East West Press Private Limited, 2007.
- 5. Samir Sarkar., Fuels and Combustion, 3rd Edition, Orient Longman, India, 2009.
- 6. Dara S.S. and Umare S.S., A text book of Engineering Chemistry, S.Chand and Company Limited, New Delhi, 2014.
- 7. Engineering Chemistry, Wiley India Editorial Team, Wiley, 2018.

LABORATORY COMPONENT

LIST OF EXPERIMENTS (Any 10 - Branch specific)

- 1. Preparation of Standard solutions
- 2. Conductometric estimation of mixture of acids vs strong base
- 3. Estimation of extent of corrosion of Iron pieces by Potentiometry
- 4. Estimation of the extent of dissolution of Copper / Ferrous ions by spectrophotometry.
- 5. Estimation of acids by pH metry.
- 6. Determination of total, temporary and permanent hardness by EDTA method.
- 7. Estimation of DO by Winkler's method
- 8. Estimation of Alkalinity by Indicator method.
- 9. Estimation of Chloride by Argentometric method
- 10. Estimation of Sodium and Potassium in water by Flame photometry.
- 11. Determination of Flash and Fire point of lubricating oil
- 12. Determination of Cloud and Pour point of lubricating oil
- 13. Determination of relative and kinematic viscosities of lubricating oil at different temperatures
- 14. Determination of corrosion rate on mild steel by Weight loss method
- 15. Morphological studies of corrosion on mild steel by microscopic techniques

Theory: 0 Tutorial: 0Practical: 30 Project: 0 Total: 30 Hours

REFERENCES

- 1. Jeffery G.H., Bassett J., Mendham J. and Denny R.C., Vogel's Text Book of Quantitative Chemical Analysis, Oxford, ELBS, London, 2012.
- 2. Shoemaker D.P. and C.W. Garland., Experiments in Physical Chemistry, Tata McGraw-Hill Pub. Co., Ltd., London, 2003.

U18EN10201 - FUNDAMENTALS OF COMMUNICATION (Common to all branches of B.E /B.Tech Programmes except AI &DS) (For students admitted from the academic year 2022 - 2023)

L	Т	P	J	С
2	0	2	0	3

Course Objectives:

- 1. To strengthen theory and practice of writing and speaking in academic context.
- 2. To hone written and spoken competencies leading to effective communication.
- 3. To comprehend, use and explain technical data and information.
- 4. To facilitate the application of advanced writing strategies in professional scenario.
- 5. To enhance the use of rhetorical strategies in professional situation.

Course Outcomes:

After the course, the student will be able to:

- CO1: Read, listen, understand, and interpret material on technology.
- CO2: Communicate knowledge and information through oral and written medium.
- CO3: Reflect on effective use of formats and tactics in writing and speaking.

Assessment Methods

Direct
1. Continuous Assessment of Skills
2. Assignment
3. Written Test
4. End Semester Examination
Indirect
1. Course-end survey

Signature of the BOS Chairman/Languages and Communication

Bound

Dr. Arokia Lawrence Vijay, MA, M.Phil, Ph.D., Assistant Professor III & Head Department of Languages and Communication Kumeraguna College of Technology

CO/PO Mapping:

	(S	/M/W	indic	ntes st	rengtl			lappi ion)S-		, М-М	fediur	n, W-	Weak	
COs	(S/M/W indicates strength of correlation)S-Strong, M-Medium, W- Programme Outcomes(POs)											PSO		
	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	РО 10	РО 11	РО 12	PSO1	PSO2
COI		м		М					s	s		s		
CO2		м		м					s	s		s		
C03		М		М	-				s	s		S		

UNIT - 1

Describing a place, event - Preparing Brochures, Flyers, Handouts (Layout & Content) -Drafting a proposal for an event - Writing Circular, Agenda, Minutes of Meeting Listening: Listening to Presentation with Numerical Data - Listening to Presentation

Speaking: Picture Connect (Narrating story)

UNIT - 2

Transcoding Graphics (Graphs, Charts, Tables, Process Writing) - Writing a Report (Industry Accident, College Event) - Drafting permission letter and report for Industrial Visit, In-Plant Training) - Email Writing

Listening: Listening to Advertisement - Listening to Product Descriptions

Speaking: Extempore

UNIT - 3

Reading Reviews - Review Writing (Movie, Product, Short Story, Article) - Writing a Company Profile - Cover Letter and Resume Writing, Creating Online Profile -

Listening: Listening to Interviews

Speaking: Situational Discussion (Pair Activity)

Signature of the BOS Chairman/Languages and Communication

Bound

Dr. Arokia Lawrence Vijay, MA, MPNI, Ph.D., Assistant Professor III & Head Department of Languages and Communication maraguru College of Technology 12

12

12

UNIT - 4

-

2Hispana

Aptitude Questions Practice (Synonyms, Antonyms, Jumbled Sentences, Verbal Analogies) -General Interview Questions (Goal setting, strength and weakness, contribution to society / nation, narrating transformation of challenges into opportunities) Listening: Listening to Panel / Group Discussion

Speaking: Event Management (Group Activity)

UNIT - 5

Problem Solving and Caselets / Case Studies -Creating Promotional Video - Hands-on training on PPT Preparation - Creating Advertisements

Listening: Listening to TED / TECH Talks - Listening to Success Stories

Speaking: Group Discussion (Interview Based)

Reference Books:

- 1. Effective Technical Communication, by Ashraf Rizvi, Tata McGraw Hill Publications.
- Technical Communication English Skills for Engineers, by Meenakshi Raman & Sangeeta Sharma, Oxford Higher Education.
- 3. Talk like TED, by Carmine Gallo, St. Martin's Press.
- 4. Basic Communication Skills for Technology, by Andrea J Rutherfoord, Pearson Publishers.
- 5. Word Power Made Easy, by Norman Lewis, Simon and Schuster.
- 6. Life Skills and Leadership for Engineers, by David Goldsberg, University of Skinois, Tata McGraw Hill.
- 7. Oxford Guide to Effective Writing & Speaking by John Seely, Oxford University Press
- 8. British Council LearnEnglish Teens Website https://learnenglishteens.britishcouncil.org/

Signature of the BOS Chairman/Languages and Communication

BOUT

Jr. Arokia Lawrence Vijay, MA, M.Phi, Ph.D., Assistant Professor III & Head Department of Languages and Communication Kumaraguru College of Technology Kumaraguru College of Technology 12

U18MEI1201

ENGINEERING GRAPHICS

(Common to AE, AUE, CE, MCE, ME, EIE and EEE)

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After successful completion of this course, the students should be able to

Construct various plane curves.
Construct projection of points and projection of lines.
Develop projection of surfaces and solids.
Solve problems in sections of solids and development of surfaces.
Apply free hand sketching and concepts of isometric in engineering practice.
Draw engineering drawing in AutoCAD with dimensions.

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Pro	-	ne Ou	tcomes	8				
							(POs)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S	S									W			
CO3	S	S									М			
CO4	S	S												
CO5	S	S												
CO6	S													

Course Assessment methods:

DIRECT	INDIRECT
1.Continuous Assessment I	
2. Continuous Assessment II	
3. Assignment	
4.End semester	
PLANE CURVES, PROJECTION OF POINTS	, LINES AND PLANES 10 Hours

Importance of graphics in design process, visualization, communication, documentation and drafting tools, Construction of curves - ellipse, parabola, and hyperbola by eccentricity method only. Orthographic projection of points. Projections of straight lines located in first quadrant - determination of true length and true inclinations. Projections of plane surfaces - polygonal lamina and circular lamina,

located in first quadrant and inclined to one reference plane.

PROJECTION AND SECTION OF SOLIDS

Projection of simple solids - prism, pyramid, cylinder and cone. Drawing views when the axis of the solid is inclined to one reference plane. Sectioning of simple solids - prisms, pyramids, cylinder and cone. Obtaining sectional views and true shape when the axis of the solid is vertical and cutting plane inclined to one reference plane.

DEVELOPMENT OF SURFACES, ISOMETRIC PROJECTIONS AND 10 Hours FREE-HAND SKETCHING

Development of lateral surfaces of truncated prisms, pyramids, cylinders and cones. Isometricprojection, Isometricscale, Isometricviews of simplesolids, truncated prisms, pyramid s, cylinders and cones. Free hand sketching techniques, sketching of orthographic views from given pictorial views of objects, including free-hand dimensioning.

PRACTICALS INTRODUCTION TO AUTOCAD

15 Hours

Introduction to Drafting Software (AutoCAD) & its Basic Commands. Introduction to coordinate systems, object selection methods, selection of units and precession. sketching – line, circle, arc, polygon, rectangle and ellipse. Working with object snaps, layers and object properties. Editing theobjects–copy,move,trim,extend,workingwitharrays,mirror,scale,hatch,filletandchamfer.

ISOMETRIC	15 Hours							
Building drawin	Building drawings – Single and double bed room house (sectional Top view only). Introduction to							
Motion path animation. Isometric views of simple solid blocks.								
Theory:30	Tutorial: 0	Practical:30	Project:0	Total : 60Hours				

REFERENCES:

- 1. Basant Agrawal and CM Agrawal, Engineering Drawing, McGraw-Hill, New Delhi, First Edition, 2008.
- 2. Venugopal K. and Prabhu Raja V., Engineering Graphics, New Age International (P) Limited, New Delhi,2008.
- 3. Natarajan K.V., Engineering Drawing and Graphics, Dhanalakshmi Publisher, Chennai, 2005.
- 4. Warren J. Luzadder and Jon. M. Duff, Fundamentals of Engineering Drawing, Prentice Hallof India Pvt. Ltd., New Delhi, Eleventh Edition, 2005.
- 5. Gopalakrishna K.R., Engineering Drawing (Vol. I & II), Subhas Publications, 2001.
- 6. James Leach, AutoCAD 2017 Instructor, SDC Publications, 2016.

U18CSI1202	2

PROBLEM SOLVING AND PROGRAMMING USING C

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Acquire knowledge on different problem-solving techniques.
CO2:	Use appropriate data types and control structures for solving a given problem.
CO3:	Execute different array and string operations.
CO4:	Experiment with the usage of pointers and functions.
CO5:	Organize data using structures and unions.

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М							W					
CO2	S	М							W	W				
CO3	S	W			W	W			W	W		W		
CO4	М	W	М	W	W	W			W	W		М		
CO5	М	W	М	W	W	W			W	W		М		
Cours	se Asses	sment n	nethods	:										
			DIR	ЕСТ							INDIR	ECT		

1. Continuous Assessment Test I, II						
(Theory Component)						
2. Assignment (Theory Component)						
3. Group Presentation (Theory Component)						
 Pre/Post - experiment Test/Viva; Experimental Report 	1.Course one survey					
for each experiment (lab component)						
5. Model examination (lab component)						
6. End Semester Examination (Theory and						
lab component)						
STRUCTURED PROGRAMMING	<u> </u>	6 Hours				
Algorithms, building blocks of algorithms (instructions/statement						
code, flow chart, programming language), algorithmic problem						
(iteration). Introduction to C Programming – Operators and E	xpressions – Data Input a	nd Output – Control				
Statements						
ARRAYS AND STRINGS		6 Hours				
Defining an array – Processing an array –Multidimensional	•	<u> </u>				
– Initialization of Strings – Reading and Writing Strings	 Processing Strings –Sea 	arching and Sorting				
of Strings						
FUNCTIONS, STORAGE CLASSES		6 Hours				
Defining a function-Accessing a function-Function protot	pes–Passing arguments	to a function–Passing				
functions - Function with string - Recursion - Storage clas	ses					
POINTERS		7 Hours				
Pointer Fundamentals – Pointer Declaration – Passing Point	ters to a Function – Point	ters and one-				
dimensional arrays – operations on pointers– Dynamic mer						
STRUCTURES AND UNIONS 5 Hours						
Structures and Unions: Defining a Structure – Processing a	Structure - User defined	data types (Typedef)				
– Unions		` • • /				
Theory: 30 Tutorial: 0 Practical: 0	Project: 0	Total:30 Hours				
· ·	v					

RE	FERENCES	:						
1.	ByronSGottfriedandJitendarKumarChhabra, "ProgrammingwithC", TataMcGraw							
	Hill Publishir	Hill Publishing Company, Third Edition, New Delhi, 2011.						
2.	Pradip Dey a	nd Manas Ghosh,	"Programming in C"	', Second Edition, C	Oxford Universit	У		
	Press, 2011.							
3.	Kernighan,B.	W and Ritchie, D.	M, "The C Program	ning language", Sec	ond Edition,			
	Pearson Edu	cation,2006						
			er programming", Pe					
5.	Reema Thare	ja, "Programming	in C", Second Editi	on, Oxford Universit	ity Press, 2011.			
LAB COMPONENT CONTENTS								
LIS	ST OF EXPR	ERIMENTS				30 Hours		
1.	Writing algorithms, flowcharts and pseudo codes for simple problems.							
2.	Programs on expressions and conversions							
3.	Programs us	sing if, if-else, sw	itch and nested if sta	tements				
4.	Programs us	sing while, do-wh	ile, for loops					
5.	Programs of	n one dimensional	arrays, passing array	ys to functions and a	array operations			
6.	-	-	onal arrays, passing 2	D arrays to function	18			
7.	-	sing String function						
8.			, recursion, call by v					
9.	-		s, call by reference, p	pointers with arrays				
10.		sing structures and						
	Theory: 0	Tutorial: 0	Practical:30	Project: 0	Total: 30H	Iours		
	REFERENCES							
1.	Byron S Gottfried and Jitender Kumar Chhabra, "Programming with C", Tata McGraw Hill							
	Publishing Company, Third Edition, New Delhi, 2011.							
2.	Pradip Dey and Manas Ghosh, "Programming in C", Second Edition, Oxford University Press, 2011.							
3.	-		D.M, "The C Program	nming language", Se	econd Edition, P	earson		
	Education,2				2007			
4.	Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.							

4. Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.

L	Т	Р	J	С
0	0	4	2	3

Course Objectives

- To help the students look into the functioning of simple to complex devices and systems.
- To enable the students to design and build simple systems on their own.
- To help experiment with innovative ideas in design and teamwork.
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Identify a practical problem and find a solution

CO2: Understand the project management techniques

CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

						CO	D/PO N	Ларріі	ng					
	(S	/M/W	indica	tes sti	rength	of co	rrelatio	n)	S-Stroi	ng, M-M	ledium,	W-Wea	ık	
COs]	Progran			es				
COS								(POs)	1					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1. Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce40%	
CONTENT:	

The course will offer the students an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students

with ample opportunity to be innovative in designing and building arrange of products. from toys to robots and flying machines. In the First semester, students will focus primarily on IOT with C programming using Arduino.

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific task, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total 90 Hours

U18TLR1001		HERITAGE OF TAMILS	L	Т	Р	J	C
			1	0	0	0	1
Course Outcome	S						
After successful of	completio	on of this course, the students should be a	able to)			
		tal knowledge of Tamil language and literature					
	2	e, rock art paintings to modern art sculpture					
		vledge in the folk and martial arts					
		ance of role thinai concept of Tamils.					
	owledge of	contribution by tamils to Indian national move	ment a	nd india	an cultu	re	
Pre-requisite -							
Course Assessmen	t methods						
Direct		Indirect	,				
Final Examination		Weekly Feedback Survey					
Assignment							
							ITarra
UNIT I LANGUA	AGE ANI	D LITERATURE				4	Hours
of Bharathiyar and	Bharathid	orms of minor Poetry -Development of Moder asan. ART PAINTINGS TO MODERN ART – SCULI					Hour
Hero stone to mod	lern sculnt	ure - bronze icons - Tribes and their handicr	afts -	Artof	emple	car mak	ring
	-	es, Village deities, Thiruvalluvar Statue at			-		-
	-	rai, Veenai, Yazh and Nadhaswaram - Role o	-			-	
UNIT III FOLK	AND MA	ARTIAL ARTS				4	Hour
	gattam, Vil	llu Pattu, Kaniyan Koothu, Oyillattam, Leather	puppe	try, Sila	umbatta	m, Vala	ri, Tige
		EPT OF TAMILS				3	B Hours
Concept of Tamils -		& Aham and Puram Concept from Tholkappiy		-			
μνιτ ν σοντρ	Sangam Ag	and Literacy during Sangam Age - Ancient Cit ge - Overseas Conquest of Cholas. N OF TAMILS TO INDIAN NATIONAL					

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL: 15 PERIODS

REFERENCES:

- 1. Social Life of the Tamils The Classical Period (Dr.S. Singaravelu) (Published by: InternationalInstitute of Tamil Studies.
- 2. Historical Heritage of the Tamils (Dr.S.V. Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 3. The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by: International Institute of Tamil Studies.).
- 4. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Textbook and Educational Services Corporation, Tamil Nadu).
- 5. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K. Pillay) (Publishedby: The Author).
- 6. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Textbook and Educational Services Corporation, Tamil Nadu).

7. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) – Reference Book.

SEMESTER II

< Signature of BOS chairman, MCE

U18MAI2201

ADVANCED CALCULUS AND LAPLACE TRANSFORMS

L	Т	Р	J	С
3	0	2	0	4

(Common to All branches)

Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Evaluate double and triple integrals in Cartesian coordinates and apply them to calculate area and
	volume.
CO2:	Apply various integral theorems for solving engineering problems involving cubes and rectangular parallelepipeds.
CO3:	Construct analytic functions of complex variables and transform functions from z-plane to w-
	plane and vice-versa, using conformal mappings.
CO4:	Apply the techniques of complex integration to evaluate real and complex integrals over suitable.
	closed paths or contours.
CO5:	Determine solution of linear differential equations using Laplace transform technique.
CO6:	Determine multiple integrals, vector differentials, vector integrals and Laplace transforms using.
	MATLAB.

Pre-requisite: Nil

		(S/	M/W in	idicates	streng			(APPIN m) S		g. M-Me	dium, W	/-Weak		
COn		(OMES		0,			PS	0
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S													
CO3	М	W												
CO4	W													
CO5	S	М												
CO6	М				М							S		

Course Assessment methods:

DIRECT

1. Continuous Assessment Test I, II (Theory component)

Open book test; Cooperative learning report, Assignment, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc (as applicable) (Theory component)

- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (lab component)
- 4. Model examination (lab component)
- 5. End Semester Examination (Theory and lab component)

INDIRECT

THEORY COMPONENT

MULTIPLE INTEGRALS

Double integration in Cartesian coordinates - Change of order of integration - Triple integration in Cartesian coordinates – Applications: Area as double integral and Volume as triple integral.

VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and Solenoidal vector fields -Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proofs) -Verification of theorem and simple applications.

ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions – Necessary and sufficient conditions in Cartesian coordinates, Cauchy- Riemann equations (excluding proofs)- Properties of analytic function -Construction of analytic function by Milne Thomson method – Conformal mapping : w = z + c, cz, 1/z – Bilinear Transformation.

COMPLEX INTEGRATION

Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Singularities – Residues – Residue theorem – Application of residue theorem for evaluation of real integrals – Contour Integration (excluding poles on the real axis).

LAPLACE TRANSFORMS

Definition - Properties: Superposition, Shift in t or Time Delay, Shift in s, Time Derivatives, Time Integral- Initial Value Theorem - Final Value Theorem - Transform of periodic functions - Inverse transforms - Convolution theorem – Applications: Solution of linear ordinary differential equations of second order with constant coefficients.

TEXT BOOKS

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2014.
- 2. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 11th Reprint, 2010.
- 3. Kreyzig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons, 2011.

REFERENCES

- 1. Veerarajan T., "Engineering Mathematics (for First Year)", Tata McGraw Hill Pub. Co. Ltd.,
- 2. NawdBalhiy PhinthEditionah20Kl; and Gunavathy K., "Engineering Mathematics", S. Chand & Co., New Delhi, (Reprint) 2014.
- 3. Venkataraman M.K., "Engineering Mathematics", The National Publising Co., Chennai, 2003.
- 4. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

Signature of BOS chairman, MCE

LAB COMPONENT

List of MATLAB Programs :

- 1. Evaluating double integral with constant and variable limits.
- 2. Area as double integral
- 3. Evaluating triple integral with constant and variable limits
- 4. Volume as triple integral
- 5. Evaluating gradient, divergence and curl
- 6. Evaluating line integrals and work done
- 7. Verifying Green's theorem in the plane
- 8. Evaluating Laplace transforms and inverse Laplace transforms of functions including impulse.
- 9. Heaviside functions and problems based on convolution theorem .
- 10. Applying the technique of Laplace transform to solve differential equations.

Theory 15	Tutorial: 0	Practical: 30	Droject: 0	Total: 75 Hours
Theory: 45	i utoriai: v	Practical: 50	Project: 0	Total: 75 Hours

				0
	<	5.	-	1
S	anature	of BOS o	hairmar	. MCE

30 Hours

U18PHI2202

ENGINEERING PHYSICS

(Common to AU, ECE, CE, MEC, ME)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

(CO1: Enhance the fundamental knowledge in properties of matter and its real timeapplications relevant to various streams of Engineering and Technology
(CO2: Understand the phenomenon of heat and its transfer mechanism in engineering systems.
(CO3: Acquire essential knowledge in the concepts of quantum mechanics and itsimpact on electron microscopy.
(CO4: Analyse the concept of lasers, optical fibers, and their importance in diverse fields of engineering
(CO5: Apply the principles of acoustic and ultrasonic techniques for engineering practice
(CO6: Gain practical knowledge about the use of physics principles in a right way toimplement

modern technology.

Pre-requisites:

High School Education

	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
COs Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S										М
CO2	S	М	М									S
CO3	S	М										
CO4	S	S	М	М								S
CO5	S			М								М
CO6	М	S							М			S

	A
Signature of BOS of	hairman. MCE

Course Assessment methods

Direct

- 1. Continuous Assessment Test I, II (Theory component)
- 2. Video presentation, Group activities, Project report, E-Poster preparation,
- 3. Pre/Post experiment Test/Viva; Experimental Report for each experiment (Lab component)
- 4. Model examination (Lab component)
- 5. End Semester Examination (Theory and Lab component)

Indirect

1. Course-end survey

Theory Component content:

9 Hours
train
n for
ental

THERMAL PHYSICS 9 Hours Transfer of heat energy – conduction, convection and radiation – thermal expansion of solids and Iiquids – expansion joints – bimetallic strips – theory of heat conduction in solids – rectilinear flow of heat – determination of thermal conductivity of a bad conductor - Lee's & Charlton's disc method - Thermal Insulation – classification and properties – heat exchangers -applications – domestic refrigerator – microwave oven. 9 Hours

MODERN PHYSICS

Planck's concept (hypothesis) - Compton effect - Expression for Compton shift (Theory and Experiment) - Concept of matter waves - Physical significance of wave function - Schrödinger's wave equation - Time independent and time dependent equation - Eigen values and Eigen function - Particle in a box (one dimension) - Scanning Electron Microscope (SEM) - Transmission Electron Microscope (TEM).

APPLIED OPTICS	9 Hours								
LASERS: Absorption and emission - Spontaneous emission - Stimulated emission - Population									
inversion - Sources of excitation - Active medium - Resonant cavity - Einstein's theory of stimulated									
emission - Nd-YAG laser - CO2 laser - Semiconductor lasers - Applications – holography, cutting,									
welding and drilling.									
FIBER OPTICS: Structure of optical fibre - principle and propagation of light in optical fibres									
-Numerical aperture and acceptance angle - Types of optical fibres (material, refractive index, mode)									
- Applications - fibre optic communication system, fibre endoscope.									
ACOUSTICS AND ULTRASONICS 9 Hours									
ACOUSTICS: Classification of sound - characteristics of musical sound -loudness -W	eber-								
Fechner law -decibel - Reverberation - Reverberation time - Sabine's formula (Derivation	on) -								
Absorption coefficient and its determination - Factors affecting the acoustics of the buildings	s and								
their remedies.									
ULTRASONICS: Production of ultrasonic waves - Magneto-striction and Piezoelectric methods -									
Properties - Detection - Thermal and Kundt's tube methods, Determination of velocity of ultrasonic									
waves in liquids using acoustic grating – application - A, B, C- scan.									
Theory: 45Tutorial: 0Practical: 0Project: 0Total: 45 Hours									

Lab component Contents:

LIST OF EXPERIMENTS

- 1. Non-uniform bending Determination of Young's modulus
- 2. Compound pendulum Determination of acceleration due to gravity.
- 3. Spectrometer Determination of wavelength of mercury source using grating.
- 4. Air wedge Determination of thickness of thin sheet
- 5. Semiconductor laser:
 - a. Determination of wavelength of laser
 - b. Determination acceptance angle and numerical aperture of an optical fibre.
 - c. Determination of particle size
- 6. Melde's string Determination of frequency of a tuning fork
- 7. Determination of band gap of a semiconductor
- 8. Determination of efficiency of solar cell
- 9. Determination of thermal conductivity of a bad conductor Lee's Disc method
- 10. Determination of magnetic susceptibility of a solid material B-H curve apparatus.

Experiments for Demonstration:

- 1. Hall effect
- 2. Spin coating unit for thin film fabrication.
- 3. Four probe experiment
- 4. Ultrasonic interferometer Determination of velocity of sound and compressibility of aliquid.

Theory: 0Tutorial: 0Practical: 30Project: 0Total: 30 Hours

	A
	Saul
Si	nature of BOS chairman, MCE

Textbook:

1. A textbook of Engineering Physics, M N Avadhanulu, P.G. Kshirsagar and TVS ArunMurthy, S. Chand Publications 11th edition, 2018.

2. Concepts of Modern Physics, Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, 7thEdition, Mc-Graw Hill Education, New Delhi, 2017.

3. Engineering Physics, G. Senthil Kumar, VRB Publishers Ltd., Chennai. 2018.

Reference books:

- 1. Properties of matter, Brij Lal and Subrahmanyam, S. Chand & Co Ltd., New Delhi, 2014.
- Heat Thermodynamics and Statistical Physics, Brij Lal & Subrahmanyam, S. Chand &Co Ltd, New Delhi, 2012.
- 3. Quantum Mechanics, Satya Prakash, Pragati Prakashan Publishers, 2015.
- Lasers: Fundamentals and Applications, Springer Science & Business Media, K. Thiagarajan, Ajoy Ghatak, 2010.
- Introduction to Fiber Optics, K. Thyagarajan, Ajoy Ghatak, Second Edition, SpringerNew York Dordrecht Heidelberg London, 2010.
- Ultrasonics: Fundamentals, Technology, Applications, Second Editon, Marcel Dekker, New York, 1988.
- Practical Physics and Electronics, C. C. Ouseph, U. J. Rao, V. Vijayendran S. Viswanathan (Printers & Publishers), Pvt., Ltd. 2009
- Laboratory Manual of Engineering Physics, Dr. Y. Aparna & Dr. K. Venkateswara Rao, V.G.S Publishers. 2015

U18MET2003

ENGINEERING MECHANICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to									
CO1:	Apply the fundamental concepts in determining the effect of forces on a particle.									
CO2:	Make use of various principles in the determination of effect of forces in a rigid body.									
CO3:	Determine the geometry dependent properties of solids and sections									
CO4:	Solve problems in static friction.									
CO5:	Identify motion and determine the velocity and acceleration of a particle.									
CO6:	Apply the principles of kinetics in solving problems in dynamics.									

Pre-requisite

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S						W						М	
CO2	S						W						М	
CO3	S						W						М	
CO4	Μ						W						М	
CO5	М						W						Μ	
CO6	М						W						М	

DIRECT	INDIRECT
 Continuous Assessment Test I, II Assignment End Semester Examination 	1.Course-end survey

< Signature of BOS chairman, MCE

THEORY COMPONENT CONTENTS	
STATICS OF PARTICLES	9 Hours
Introduction - Laws of Mechanics, Parallelogram and triangular Laws of forces – Resolution and Composition of forces – Free body diagram - Equilibrium of a par theorem – Equilibrium of a particle in space.	Coplanar Forces -
STATICS OF RIGID BODIES	9 Hours
Principle of transmissibility – Moment of force about a point – Varignon's theorem couple – Equivalent couple – Moment of force about an axis – Coplanar non-conc rigid bodies – Resultant and equilibrium – Resolution of a given force into f Equilibrium in three dimensions – Reactions and supports.	urrent forces acting on
GEOMETRY DEPENDANT PROPERTIES	9 Hours
Centre of gravity, Centre of mass and Centroid – Moment of Inertia of simple and c formula – Radius of gyration – Polar moment of inertia – Product of inertia - Mass mon solids.	ment of Inertia of simple
FRICTION	9 Hours
Laws of friction – coefficient of friction – Dry friction – wedge friction – ladder fresistance.	
KINEMATICS OF PARTICLES	3 Hours
Kinematics – Rectilinear and curvilinear motion – projectile motion	
KINETICS OF PARTICLES	6 Hours
Kinetics – Newton's second law – D'Alembert's Principle – Work Energy method Impulse momentum – Impact of Elastic Bodies	1 – Principle of
Theory: 45 Hours Tutorial: 0Practical: 0Project:0	Total:45
Hours	
REFERENCES:	
1. Beer F P and Johnson E R, "Vector Mechanics for Engineers, Statics and Dyna	mics", TataMc-Graw
Hill Publishing Co. Ltd., New Delhi, 2006.	
2. Hibbeller, R.C., Engineering Mechanics: Statics, and Engineering Mechanics: I	Dynamics,
13th edition, Prentice Hall, 2013.	
3. J.L. Meriam & L.G. Karige, Engineering Mechanics: Statics (Volume I) and En	ngineering
Mechanics: Dynamics (Volume II), 7th edition, Wiley student edition, 2013.	1
4. P. Boresi& J. Schmidt, Engineering Mechanics: Statics and Dynamics, 1/e, Cer	
5. Irving H. Shames, G. Krishna Mohana Rao, Engineering Mechanics - Statics an Edition – PHI / Pearson Education Asia Pvt. Ltd., 2006.	na Dynamics, Fourth
 Rajasekaran S and Sankarasubramanian G, "Engineering Mechanics-Statics and Publishing House Pvt. Ltd., New Delhi,2006 	d Dynamics", Vikas

		-0-
4	Sau	1
Signature	of BOS chairman	, MCE

PYTHON PROGRAMMING (Common to All Branches)

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After	successful completion of this course, the students should be able to	
C01:	Classify and make use of python programming elements to solve and debug simple. logical problems. (K4, S3)	K4
0.00		IZO
CO2 :	Experiment with the various control statements in Python. (K3, S2)	K3
CO3:	Develop Python programs using functions and strings. (K3,S2)	K3
CO4:	Analyze a problem and use appropriate data structures to solve it. (K4, S3)	K4
CO5:	Develop python programs to implement various file operations and exception.	K3
	handling. (K3, S2)	

Pre-requisite

Nil

						CO /	PO M	appin	g					
	(S/N	1/W in	dicate	es strei	ngth o	f corre	elation) 5	S-Stro	ng, M-l	Mediur	n, W-W	Veak	
COs						Pro	ogramı (ne Ou POs)	itcome	es				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S			М					М		М		
CO2			М							М		М		
CO3			М							М		М	М	
CO4	S	S	М		М					М		М	М	
CO5			М							М		М		

				0
	<	Sa	-	P.
Sig	nature of	f BOS ch	airman, N	ICE
		100 000 CCC	CONSIGNATION OF THE	0.5200

1. Continuous Assessment Test I, II (Theory		
component)		
2. Open Book Test, Assignment	1.Course-end survey	
3. Viva, Experimental Report for each		
Experiment (lab Component)		
4. Model Examination (lab component)		
5. End Semester Examination (Theory and lab		
components)		
THEORY COMPONENT CONTENTS		
BASICS OF PYTHON PROGRAMMING		6 Hours
Introduction-Python Interpreter-Interactive and s	cript mode -Values and types,	operators,
expressions, statements, precedence of operators,	Multiple assignments, comme	ents.
CONTROL STATEMENTS AND FUNCTIO	NS IN PYTHON	6 Hours
Conditional (if), alternative (if-else), chained con-	ditional (if-elif-else)-Iteration-	while, for,
break, continue, pass – Functions - Introduction,	inbuilt functions, user defined	functions,
passing parameters, return values, recursion, Lam	bda functions.	
DATA STRUCTURES: STRINGS, LISTS	and SETS	7 Hours
Strings-String slices, immutability, string methods an	d operations -Lists-creating lists	, list operations, list
methods, mutability, aliasing, cloning lists, list and	strings, list and functions-list p	processing-list
comprehension, searching and sorting, Sets-creatin	g sets, set operations.	
DATA STRUCTURES: TUPLES, DICTION	ARIES	5 Hours
Tuples-Tuple assignment, Operations on Tuples,	lists and tuples, Tuple as retur	n value-
Dictionaries-operations and methods, Nested Dic	tionaries.	
FILES, MODULES, PACKAGES		6 Hours
Files and Exception-Text files, reading and writin	g files, format Operator-Mod	ules-Python
Modules-Creating own Python Modules-package	s, Introduction to exception ha	andling.
Theory: 30 Tutorial: 0 Practical:0 Project:	Total: 30Hou	Irs
REFERENCES:		

Saul		0
Dan	0	P
	2	

1. Ashok Namdev Kamthane, Amit Ashok Kamthane, "Programming and Problem	Solving
with Python", Mc-Graw HillEducation, 2018.	1 1.4.
2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", See Updated for Python 3, Shroff / O'Reilly Publishers, 2016.	cond edition,
3. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programmir	ng in
Python: An Inter-disciplinary Approach", Pearson India Education Services Pvt.	0
4. Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Private	
5. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Le	
6. Charles Diesbach, "Introduction to Computer Science using Python: A Computat	•
Problem-Solving Focus", Wiley India Edition, 2013.	
E BOOKS AND ONLINE LEARNING MATERIALS	
1. www.mhhe.com/kamthane/python	
2. Allen B. Downey, Think Python: How to Think Like a Computer Scientist, second	ond edition,
Updated for Python 3, Shroff / O'Reilly Publishers, 2016(http://greenteapress.cd	
python/)	1
LAB COMPONENT CONTENTS	
LIST OF EXPERIMENTS	30 Hours
1. Implement simple python programs using interactive and script mode.	
2. Develop python programs using id () and type()functions	
3. Implement range () function in python	
4. Implement various control statements in python.	
5. Develop python programs to perform various string operations like concatenation slicing, Indexing.	ion,
6. Demonstrate string functions using python.	
7. Implement user defined functions using python.	
 8. Develop python programs to perform operations on list. 	
 Develop python programs to perform operations on list. Implement dictionary and set in python. 	
10. Develop programs to work with Tuples.	
11. Create programs to solve problems using various data structures in python.	
12. Implement python program to perform file operations.	
13. Implement python programs using modules and packages	
Theory: 0Tutorial: 0Practical: 30Project:0Total: 30HoONLINE COURSES AND VIDEO LECTURES:	urs
http://nptel.ac.in	
https://www.edx.org/course/introduction-to-python-fundamentals-1	
https://www.edx.org/course/computing-in-python-ii-control-structures-0	1 Ctm otress
https://www.edx.org/course?search_query=Computing+in+Python+III%3A+Data	+Structures

				0	
	<	5	-	1	
Cian	ature o	f BOS cl	hairmar	MCE	2

U18INI2600

ENGINEERING CLINIC - II

L	Т	Р	J	С
0	0	4	2	3

Course Objectives:

- \Box To help the students look into the functioning of simple to complex devices and systems.
- $\hfill\square$ To enable the students to design and build simple systems on their own.
- \Box To help experiment with innovative ideas in design and teamwork.
- \Box To create an engaging and challenging environment in the engineering lab

Course Outcomes

CO1	Identify a practical problem and find a solution
CO2	Understand the project management techniques
CO3	Demonstrate their technical report writing and presentation skills
CO3	Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes													
003	(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
00-														
CO3										S				
0			47											

DIRECT	INDIRECT		
1. Project reviews50%	1.Course Exit Survey		
2. Workbook report10%			
3. Demonstration & Viva-voce40%			
Content:			

< Signature of BOS chairman, MCE

The course will offer the students an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the Second semester, students will focus primarily on Raspberry pi-based controllers with Python programming

GUIDELINES:

1. Practical based learning carrying credits.

2. Multi-disciplinary/ multi-focus group of 5-6students.

3. Groups can select to work on a specific task, or projects related to real world problems.

4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group

as well as individual students.

5. Students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

	TAMILS AND TECHNOLOGY	L	Т	Р	J	С
U18TLR2001		1	0	0	0	1
Course Outcome	es			•		
After successful	completion of this course, the students shou	uld be a	ble to			
CO1: Enhance the	fundamental knowledge of weaving and ceran	nic Techı	nology			
CO2: Understand th	he heritage, rock art paintings to modern art sculptu	ire				
CO3: Acquire esser	tial knowledge in the folk and martial arts					
	ne importance of role thinai concept of tamils.					
CO5: Gain the know	wledge of contribution by tamils to indian national	movemer	nt and ind	ian cultu	re	
Pre-requisite -						
Course Assessmer	nt methods:					
	Direct					
Continuous Assess	ment Test I, II2.					
Two Assignments						
End Semester Example	mination					

UNIT I WEAVING AND CERAMIC TECHNOLOGY

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and otherworship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras duringBritish Period.

UNIT III MANUFACTURING TECHNOLOGY

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold-Coins as source of history - Minting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidence - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

Signature of BOS chairman, MCE

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

Theory: 15 Hours

Total Hours: 15

REFERENCES:

1.Social Life of Tamils (Dr.K.K. Pillay) A joint publication of TNTB & ESC and RMRL – (in print)

- **2.** Social Life of the Tamils The Classical Period (Dr.S. Singaravelu) (Published by: InternationalInstitute of Tamil Studies.
- **3.** Historical Heritage of the Tamils (Dr.S.V. Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- **4.** The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by: International Institute of Tamil Studies.)
- 5. Keeladi 'Sangam City C civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Textbook and Educational Services Corporation, Tamil Nadu)
- 6. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K. Pillay) (Published by: The Author)
- Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Textbook and Educational Services Corporation, Tamil Nadu) 12. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) – Reference Book.

				A
		5.	m	1_
S	ignature	e of BOS	chairma	n, MCE

SEMESTER III

		-	A
	Sa	-	r_
Signatur	e of BOS ch	airman, M	ICE

U18MAT3101

PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS E) (

(Common to	AE/AUE/	CE/ME/MC	CE/EEE
------------	---------	----------	--------

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Form partial differential equations and solve certain types of partial differential equations	K2				
CO2:	Determine the Fourier Series and half range Fourier Series of a function.	K2				
CO3:	Solve one dimensional wave equation, one dimensional heat equation in steady state using Fourier series.	K3				
CO4:	Apply Fourier series to solve the steady state two-dimensional heat equation in cartesian coordinates.	K2				
CO5:	Identify Fourier transform, Fourier sine and cosine transform of certain functions and use Parseval's identity to evaluate integrals.	K3				
CO6:	Evaluate Z-transform of sequences and inverse Z-transform of functions and solve difference equations.	K2				

Pre-requisite

Nil

CO/PO Mapping

(S/M/W	(S/M/W indicates strength of correlation)				S-St	rong, N	/I-Medi	um, W	-Weak					
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М			М				М	М		S	М	М
CO2	S	М		М									W	W
CO3	S	S	S		S				М	М		S	W	W
CO4	S	М	М									М	W	W
CO5	S	М	М		S								W	W
CO6	S	S			S				М	М		S		

< >. Signature of BOS chairman, MCE

DIRECT	INDIRECT							
1. Continuous Assessment Test I, II	1.Course end survey							
2. End Semester Examination								
3. Assignment								
PARTIAL DIFFERENTIAL EQUATIONS								
Formation of partial differential equations by elimin	•	•						
Solution of PDE by variable separable method – Solution								
equations (excluding reducible to standard types) -		Homogeneous						
partial differential equations of second and higher or	der with constant coefficients.							
FOURIER SERIES		9+3 Hours						
Dirichlet's conditions – General Fourier series – Odd range cosine series – Parseval's identity – Harmonic		ries – Half						
BOUNDARY VALUE PROBLEMS – ONE DIM	ENSIONAL EQUATIONS	5+2 Hours						
Classification of second order quasi linear partial diff	ferential equations –Solution of one-dime	nsional wave						
equation – One dimensional heat equation (excluding insulated ends) – Fourier series solutions in Cartesian								
coordinates.								
BOUNDARY VALUE PROBLEMS – TWO DIM	IENSIONAL EQUATIONS	4+1 Hours						
Steady state solution of two-dimensional heat equations in Cartesian coordinates.	ion (Insulated edges excluded) – Fourier	series.						
FOURIER TRANSFORM		9+3Hours						
Statement of Fourier integral theorem – Infinite Fou Properties – Transforms of simple functions – Conv		orms –						
Z –TRANSFORM		9+3 Hours						
Z-transform - Elementary properties - Convolution t	heorem- Inverse Z – transform (by using	partial						
fractions, residues and convolution theorem) – Solution								
Theory:45Hours Practical:15Hours	Total	Hours: 60						
REFERENCES:								
1. Grewal B.S., "Higher Engineering Mathematic	es", Khanna Publishers, New Delhi, 44th	Edition.2014.						
2. Veera Rajan. T., "Transforms and Partial Diffe	2. Veera Rajan. T., "Transforms and Partial Differential Equations", Tata Mc Graw Hill							
Education Pvt. Ltd., New Delhi, Second reprin	t,2012.							
3. Kandasamy P., Thilagavathy K. and Gunavath		e						
III",S.Chand & Company ltd., New Delhi,200		2002						
4. Ian Sneddon., "Elements of partial differential								
5. Arunachalam T., "Engineering Mathematics II	11", Sri Vignesh Publications, Coimbatore	2013.						

		A
	Sau	1
Signatu	re of BOS chai	irman, MCE

ELECTRONIC DEVICES AND CIRCUITS

L	Т	Р	J	С
3	0	2	0	4

9 Hours

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Use passive elements and basic theorems to solve electric circuits.	K2				
CO2:	Understand the basic principles of semiconductor devices.	K2				
CO3:	Use diode to construct regulators, rectifiers, and other applications.	K3				
CO4:	Analyze small signal amplifiers and oscillators constructed using transistors.	K2				
CO5:	Apply op-amp to construct various applications.	K3				

Pre-requisite Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes COs (POs) PO1 **PO2** PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 S Μ **CO1** S Μ **CO2** М S S S Μ **CO3** S М S S **CO4** S Μ S S Μ **CO5**

Course Assessment methods:

DIRECT	INDIRECT				
 Continuous Assessment Test I, II End Semester Examination Assignment 	1.Course end survey				
CIRCUIT THEORY INTRODUCTION 9 Hours					
Network Theorems: Kirchhoff's laws – Thevenin's theorem - Norton's theorem -					

Superposition theorem - Maximum power transfer theorem - Nodal and Mesh Analysis

THEORY OF SEMICONDUCTOR DEVICES

PN junction – diode equation (Derivation not required) – forward and reverse bias – Diode dc and ac resistances – Zener diode–Bipolar Junction Transistor–CE,CB and CC configurations–Biasing of a transistor: fixed bias, self-bias – FET – Common source and drain characteristics of JFET and MOSFET.

		-		-A-
_	<	>~	-	1
Signa	ature o	f BOS c	hairman,	MCE

APPLICATION OF DIODES		9 Hours
Half Wave rectifier and Full Wave rectifier Voltage Multipliers – Voltage regulators – Z		uctors - Clippers and Clampers –
AMPLIFIERS AND OSCILLATORS		9 Hours
Common Emitter configuration - h parameter amplifiers, differential amplifier – Oscillators oscillators		
OPERATIONAL AMPLIFIERS		9 Hours
Ideal characteristics – Inverting, Non-invertingger – R.C. Phase shift oscillator, Wein H	Bridge Oscillator – Astable multiv	ibrator
Theory:45 Hours	Practical:30Hours	Total Hours: 75
REFERENCES:		
 Agarwal, Anant, and JeffreyH.Lang Mateo, CA: Morgan Kaufmann Pub 2, 3, 4, 5) 	blishers, Elsevier, July 2005. ISE	SN: 9781558607354(Unit: 1,
2. Albert Malvino and BatesJ., Electro Edition, 2020	onic Principles, Tata McGraw-H	ll Pub. Company Ltd., 9th
3. MillmanJ., HalkiasC.C.andSatyabra New Delhi, 2nd edition, 2008.	ttaJit,ElectronicDevicesandCircu	its,TataMcGrawHill,
4. Thomas L. Floyd, Electronic Device	es, Pearson Education Asia, 10th	edition, 2008.
5. WilliamHayt, KemmerlyJ. and Durl Hill Education, 2020.	ban S.M., Engineering Circuit A	nalysis, 9th Edition, Mc Graw
6. Sudhakar, Shyam Mohan and Palli S Hill, New Delhi, 5th edition, 2015.	S., Circuits and Networks: Analy	vsis & Synthesis, Tata McGraw
7. SalivahananS., SureshkumarN. And Graw Hill publishing company, New		es and Circuits, Tata Mc
8. Roy ChowdhuryD. and Jain ShailB 2017.	., Linear Integrated Circuits, Nev	wAgeInt.Pub.,4thedition,
LIST OF EXPERIMENT:		
 Characteristics of PN junction diod Input and Output characteristics of Characteristics of JFET using bread Frequency response of CE amplified Clipper and Clamper using breadb 	f BJT using breadboard and MU dboard and MULTISIM er using breadboard and MULT	LTISIM.
6. Phase shift and Wein Bridge oscill	6 6	

- 7. Astable multivibrator using OP-AMP using breadboard and MULTISIM.
- Voltage Regulator (Zener diode, Transistor series and shunt) using breadboard and MULTISIM. 8.
- Half-wave and Full-wave Rectifier with and without filter using breadboard and MULTISIM.
 Printed Circuit Board design using software for simple circuits.

	-	-	-D-	-
	>	>	1	
Signa	ture of B	OS chair	rman, MCE	

ELECTRICAL MACHINES

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to							
CO1:	Describe the construction, principle of operation and performance of DC motors.	K2						
CO2:	Elucidate the construction, principle of operation and performance of Induction Machines	K2						
CO3:	Summarize the speed control methods of electrical machines	K2						
CO4:	Explain the construction, principle of operation and performance of special machines and Permanent magnet machines.	K2						
CO5:	Select suitable motor for simple applications	K3						

Pre-requisite Nil

CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										М	
CO2	М												М	
CO3	М												М	
CO4	М		М										М	
CO5											М		М	

DIRECT	INDIRECT				
1. Continuous Assessment Test I, II	1.Course end survey				
2. End Semester Examination					
3. Assignment					
DC MACHINES		12 Hours			
DC machines: Principle of working -Construction, -T	Types of DC machines based on				
construction-Back emf, voltage equations, torque equation-Characteristics of DC motors - Speed control of DC series and Shunt motors -Armature and Field control.					
AC MACHINES 12 Hours					
Three phase induction motor: Principle of working -construction - Production of RMF - Torque-slip characteristics, torque equation - cogging – crawling - Speed control of three phase induction motor - Voltage Control-Voltage/frequency control-slip power recovery scheme					

	0
5.	- l
Signature of BOS	chairman, MCE

			0 HOULD
	e of operation -Permanent magnet and va		e: Construction,
principle of operation. BLDC motors	: Construction, principle of operation.		
SPECIAL MACHINES			6 Hours
Stepper motors: Construction, princip Construction of AC and DC servo M	ble of operation Servo motors: Types otors	of servo motors -Serv	
SELECTION OF A MOTOR			9 Hours
Factors influencing the selection of a m	notor - Motor Application Requirements	-Velocity profiles -	Current Density
	Lubrication tests - trends in test autom	nation CASE STUDY:	Selection of a
motor for an industrial application.			
Theory:45 Hours	Practical:30Hours	Total Hours	: 75
REFERENCES:			
1. Theraja B.L and Theraja A.K, "A	A Textbook of Electrical Technology'	", Volume 2: AC and	d DC
machines, student edition, S. Ch			
2. JANARDANAN, E.G. SPECIA	L ELECTRICAL MACHINES. Ind	lia, PHI Learning, 20)14.
3. Nagrath I J and Kothari DP., "El	ectrical Machines", 5th Edition, Tata	McGraw-Hill, New	Delhi, 2017.
4. Pillai SK, "A first course on Elec	ctric drives", Wiley Eastern Limited,	3 rd edition 2012.	
5. Stephen Chapman, "Electric Mac Computer Engineering 7th edition	chinery Fundamentals", McGraw-Hil on, 2020	Il Series in Electrical	and
6. UnivProf. DrIng., Dr. H.C. Go	erhard Henneberger, "Electrical Mac	hines I Basics, Desig	gn, Function,
Operation", Aachen University,	2002.		
LIST OF EXPERIMENT:			
1. Study of Two-point starter			
2. Study of Three-point starter			
3. Load test on DC series motor			
4. Load test on DC Shunt motor			
5. Speed control of DC shunt motor			
6. Speed control of DC shunt motor			
7 Open airquit characteristics of D	Chaparator		

				A
	<	>~	-	L
Signa	ature of	BOS ch	airman,	MCE

6 Hours

PERMANENT MAGNET MACHINES

SP

SE

- 6.

7. Open circuit characteristics of DC Generator
8. Load Test on Three Phase Squirrel Cage Induction motor
9. Speed control of three phase slip ring induction motor

Course Outcomes

After successful completion of this course, the students should be able to							
CO1:	Recognize the elastic response of the materials and calculate the stresses and deflection in simple and compound bars	K2					
CO2:	Calculate the thermal stresses and the material response due to temperature variations	K2					
CO3:	Find the stresses in bi-axial load system and strain energy for different loads	K2					
CO4:	Develop the shear force, bending moment diagram and locate maximum values of shear force and bending moments induced in various types of beams.	K2					
CO5:	Estimate the slope and deflection of beams under various loading conditions and crippling load for a column with different end conditions.	K3					
CO6:	Determine the power transmitting, torque carrying capacities of the circular shafts and required. thickness of the pressure vessel for a given internal pressure.	K2					

Pre-requisite

U18MET2001 Engineering Mechanics

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										S	М
CO2	S		М										S	М
CO3	М		М										S	
CO4	М		М										S	W
CO5	S		М										S	W
CO6	S		S										S	М

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	1.Course end survey
 Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	

< 5 Signature of BOS chairman, MCE

ELASTIC RESPONSE OF MATERIALS	12 Hours
Introduction to elastic response - stresses (tensile, compressive, shear & bending) & strengt	th – strain and
deformation, stress-strain curve for steel. Stresses and deformation of simple and compound ba	ars under axial
loads - Elastic constants and their relations -Thermal stresses and creep.	
BI-AXIAL STRESSES AND STRAIN ENERGY	12 Hours
Principal stresses – Introduction, significance, calculation of principal stresses - Mohr's circle principal stresses. Strain energy in gradually applied loads, suddenly applied loads and Impa	
STRESSES IN BEAMS	12 Hours
Types of beams supports and loads - Cantilever, simply supported and Overhanging beams	- Shear force
and bending moment diagrams. Stresses in beams – theory of simple bending and its applicab	
conditions effect of shape of beams on stress induced - Bending stress and flexural strength.	.,
DEFLECTION OF BEAMS	12 Hours
Elastic curve- Evaluation of beam: Double integration method & Macaulay's method. Colur	nns: End
conditions, equivalent length - Euler's equation and its limitations - slenderness ratio - Ranl	kine's formula
for columns	
TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS	12 Hours
Analysis of torsion of circular bars - shear stress distribution - twist and torsional stiffness -	Bars of solid
and hollow circular sections. Thin cylinders and shells - Hoop stress and longitudinal stresse	s.
Theory:45Hours Practical:30Hours TotalHours:7	/5
REFERENCES:	
	pany, 2014.
1. Ramamrutham S, "Strength of materials", 14th Edition, Dhanpat Rai Publishing Com	pany, 2014.
 Ramamrutham S, "Strength of materials", 14th Edition, Dhanpat Rai Publishing Com Rattan S S, "Strength of materials", 3rd edition, McGraw Hill, 2016. 	
1. Ramamrutham S, "Strength of materials", 14th Edition, Dhanpat Rai Publishing Com	
 Ramamrutham S, "Strength of materials", 14th Edition, Dhanpat Rai Publishing Com Rattan S S, "Strength of materials", 3rd edition, McGraw Hill, 2016. Ferdinand Beer and Russell Johnston Jr., "Mechanics of materials", 8th edition, Tata 2020. 	McGraw Hill
 Ramamrutham S, "Strength of materials", 14th Edition, Dhanpat Rai Publishing Com Rattan S S, "Strength of materials", 3rd edition, McGraw Hill, 2016. Ferdinand Beer and Russell Johnston Jr., "Mechanics of materials", 8th edition, Tata 2020. Nash, William. Schaum's Outline of Strength of Materials, 6th Edition. United King 	McGraw Hill
 Ramamrutham S, "Strength of materials", 14th Edition, Dhanpat Rai Publishing Com Rattan S S, "Strength of materials", 3rd edition, McGraw Hill, 2016. Ferdinand Beer and Russell Johnston Jr., "Mechanics of materials", 8th edition, Tata 2020. 	McGraw Hill

				0
	<	2	-	P
anati	re of B	OS cha	airman I	MCF
	anatu			gnature of BOS chairman, I

U18MCT3104

FLUID MECHANICS AND THERMAL SCIENCES

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Describe the properties of fluids and its importance in selection of fluid for suitable application.	K2
CO2:	Apply the concept of fluid statics to determine the pressure and forces on plane and curved surfaces.	K2
CO3:	Differentiate the types of flow with its characteristics and also calculate the flow rate by applying concept of fluid kinematics and dynamics.	K2
CO4:	Identify the major and minor losses involved in the fluid flow through pipes.	K2
CO5:	Explain the concept of boundary layer and methods of preventing the boundary layer separation.	K3
CO6:	Summarize the laws of thermodynamics and concept of heat transfer mechanisms in energy. interactions.	K2

Pre-requisite

Nil

						CO/I	PO Ma	pping						
		(S/M/W	V indic	ates str	ength o	of corre	lation)	S-S	strong,	M-Medi	um, W-	-Weak		
COs						Pro	ogramn (I	ne Outo POs)	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М													
CO2	S													W
CO3	S	М												W
CO4	S	S												W
CO5	W													
CO6	М				W									W

DIRECT	INDIRECT
 Continuous Assessment Test I, II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1.Course end survey
PROPERTIES OF FLUIDS AND FLUID STATICS	14 Hours
Fluid-definition, distinction between solid and fluid- density, specificweight, specificvolume, specificgravit	

				0
	\leq	Sau	-1	lo -
Signa	ture of B	OS chai	irman, M	CE

pressure, capillary and surface tension. Fluid statics: Pascal law - Hydrostatic law - Pressure me	
using Manometers and pressure gauges - Forces on immersed plane and curved surfaces - Buoya	ancy – Meta-
centre - Stability of floating and submerged bodies.	
FLIUD KINEMATICS AND FLUID DYNAMICS	10 Hours
Fluid Kinematics - Types of flow - velocity and acceleration - continuity equation. Fluid dyn	
equations of motion - Euler's equation along streamline - Bernoulli's equation - Applications	- Venturi
meter, Orifice meter, Pitot tube	
FLUID FLOW AND BOUNDARY LAYER CONCEPTS	12 Hours
Hagen Poiseuille Equation - Darcy Welsbach equation - Friction factor - Major and minor en	
Flow through pipes in series and in parallel. Types of Boundary layer thickness - Boundary la	ayer
separation – Methods of preventing the boundary layer separation.	
LAWS OF THERMODYNAMICS	12 Hours
Zeroth law of thermodynamics - Measuring temperature, Thermal expansion, absorption of h	
and liquids. First law of thermodynamics - First law applied to flow and non-flow process. S	econd law of
thermodynamics – Entropy	
HEAT TRANSFER MECHANISMS	12 Hours
HEAT TRANSFER MECHANISMS Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne	
	wton's law of
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins.	wton's law of LMTD –
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins.	wton's law of
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins.	wton's law of LMTD –
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins.Theory:45 HoursTutorials:15Hours	wton's law of LMTD –
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours REFERENCES: 1. 1. White FM., "Fluid Mechanics", 6 th Edition, Tata McGraw-Hill, New Delhi, 2018. 2. CengelYA., CimbalaJM., "FluidMechanics", 4 th Edition, McGraw Hill higher	wton's law of LMTD –
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours REFERENCES: I. White FM., "Fluid Mechanics", 6 th Edition, Tata McGraw-Hill, New Delhi, 2018. 2. CengelYA., CimbalaJM., "FluidMechanics",4 th Edition, McGraw Hill higher education, 2019.	wton's law of LMTD – Hours:60
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours REFERENCES: 1. White FM., "Fluid Mechanics", 6 th Edition, Tata McGraw-Hill, New Delhi, 2018. 2. CengelYA., CimbalaJM., "FluidMechanics",4 th Edition, McGraw Hill higher education, 2019. 3. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines.	wton's law of LMTD – Hours:60
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours REFERENCES: 1. White FM., "Fluid Mechanics", 6 th Edition, Tata McGraw-Hill, New Delhi, 2018. 2. CengelYA., CimbalaJM., "FluidMechanics",4 th Edition, McGraw Hill higher education, 2019. 3. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019.	wton's law of LMTD – Hours:60 India, Amit
 Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours Total REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi, 2018. CengelYA., CimbalaJM., "FluidMechanics",4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019. Bansal RK., "Fluid Mechanics and Hydraulics Machines", 9th edition, Laxmi publication 	wton's law of LMTD – Hours:60 India, Amit
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours REFERENCES: 1. White FM., "Fluid Mechanics", 6 th Edition, Tata McGraw-Hill, New Delhi, 2018. 2. CengelYA., CimbalaJM., "FluidMechanics",4 th Edition, McGraw Hill higher education, 2019. 3. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019.	wton's law of LMTD – Hours:60 India, Amit
 Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours Total REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi, 2018. CengelYA., CimbalaJM., "FluidMechanics",4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019. Bansal RK., "Fluid Mechanics and Hydraulics Machines", 9th edition, Laxmi publication 	wton's law of LMTD – Hours:60 India, Amit ons (P) Ltd.,
 Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours Total REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi, 2018. CengelYA., CimbalaJM., "FluidMechanics",4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019. Bansal RK., "Fluid Mechanics and Hydraulics Machines", 9th edition, Laxmi publication New Delhi, 2011. Ramamirtham S., "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai Delhi, 2006. 	wton's law of LMTD – Hours:60 India, Amit ons (P) Ltd.,
 Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – Ne cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – NTU – Fins. Theory:45 Hours Tutorials:15Hours Total REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi, 2018. CengelYA., CimbalaJM., "FluidMechanics",4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019. Bansal RK., "Fluid Mechanics and Hydraulics Machines", 9th edition, Laxmi publication New Delhi, 2011. Ramamirtham S., "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai 	wton's law of LMTD – Hours:60 India, Amit ons (P) Ltd.,

	_			0
	V			P
		200	-	1-
Signat	ure of	BOS ch	nairmai	n, MCE

U18INI3600

ENGINEERING CLINIC - III

L	Τ	Р	J	С
0	0	4	2	3

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Identify a practical problem and find a solution.	K2
CO2:	Understand the project management techniques	K2
CO3:	Demonstrate their technical report writing and presentation skills	K2

Pre-requisite

Nil

						CO/P	'O Map	oping						
		(S/M/W	indica	ates stre	ength of	f correl	ation)	S-S	trong, N	M-Med	ium, W	-Weak		
COs						Pro	gramm (P	e Outc Os)	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	
2. Workbook report 10%	1. Course Exit Survey
3. Demonstration & Viva-voce 40%	

Content:

The course will offer the students an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines. In the third semester, students will focus primarily on design project combining concepts. learnt in Engineering clinics I and II

			-0-
	5	an	1
Signa	ture of BO	S chairn	nan, MCE
	10101-0040-0	0000020020	100 C C C C C C C C C C C C C C C C C C

GUIDELINES:

1. Practical based learning carrying credits.

2. Multi-disciplinary/ multi-focus group of 5-6 students.

3. Groups can select to work on a specific task, or projects related to real world problems.

4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.

5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

7. multi-disciplinary/ multi-focus group of 5-6 students.

Total Hours: 90

			A
	5	an	1
Signa	ture of BC	S chairr	man, MCE

SEMESTER IV

< Signature of BOS chairman, MCE

NUMERICAL METHODS AND

PROBABILITY

L	Τ	Р	J	С
3	1	0	0	4

U18MAT4101

Course Outcomes

After	After successful completion of this course, the students should be able to							
CO1:	Apply various numerical techniques for solving non-linear equations and systems of linear equations.							
CO2:	Analyze and apply the knowledge of interpolation and determine the integration and differentiation of the							
	functions by using the numerical data.							
CO3:	Predict the dynamic behaviour of the system through solution of ordinary differential equations by using							
	numerical methods.							
CO4:	Solve PDE models representing spatial and temporal variations in physical systems through numerical							
	methods							
CO5:	Apply the concepts of probability to random variables							
CO6:	Construct probabilistic models for observed phenomena through distributions which play an important role							
	in many engineering applications.							

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes COs (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 Μ S S **CO2** Μ S S CO3 Μ Μ S S М **CO4** S S CO5 S S Μ CO6 Μ S S

< Signature of BOS chairman, MCE

Course Assessment methods:		
DIRECT	INDIRECT	
 Continuous Assessment Test I, II Model Examination (For Practical Courses & Embedded Courses) Assignment, Open Book Test, Cooperative Learning Report, Group Presentation, Problem based Learning, Project based Learning, Mini Projects, Project Report, Quiz, Role Play, Self-Explanatory Videos, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	 Course End Survey Programme Exit Survey Placement/Higher Education Feedback (Students, Emplo Professional Body members, A 	yers, Parents, Alumni)
SOLUTION OF EQUATIONS AND EIGEN VALUE P	ROBLEMS	9+3Hours
Linear interpolation method – Iteration method – Newton' By Gaussian elimination and Gauss-Jordan Methods-Iterat methods – Inverse of matrix by Gauss – Jordan method – E	ive methods: Gauss Jacobi and G	auss-Seidel
INTERPOLATION, NUMERICAL DIFFERENTIA	TION AND NUMERICAL	9+3Hours
INTEGRATION		
Lagrange's and Newton's divided difference interpolation - interpolation – Approximation of derivatives using interpola using Trapezoidal and Simpson's rules.		
NUMERICAL SOLUTION OF ORDINARY DIFFER	ENTIAL EQUATIONS	9+3Hours
Single step methods: Taylor's series method – Euler and Im equations – Fourth order Runge – Kutta method for solving method: Milne's predictor and corrector method.	proved Euler methods for solvin	-
BOUNDARY VALUE PROBLEMS IN PARTIAL DIF EQUATIONS	FERENTIAL	9+3 Hours
Finite difference techniques for the solution of two-dimension rectangular domain–Solution of one dimensional heat equat difference schemes –Solution of one dimensional wave equa	ion using Bender Schmidt and C	
PROBABILITY AND RANDOM VARIABLES		9+3 Hours
Axioms of probability - Conditional probability – Total pro Random variable – Distribution function – properties – Pro density function – moments -Binomial, Poisson and Norma	bability mass function-Probabilit al distributions – Properties.	у
Theory:45Hours Tutorials: 15Hours	Total: 60Hours	
REFERENCES:		
1. Grewal, B.S. and Grewal, J.S., "Numerical methods Edition, Khanna Publishers, New Delhi, 2007.		
 Gerald, C. F. and Wheatley, P. O., "Applied Numeric Education Asia, New Delhi, 2007. 		n
 Chapra, S. C and Canale, R. P. "Numerical Methods McGraw-Hill, New Delhi, 2016. 	for Engineers", 7th Edition, Tata	
4. R.A. Johnson and C.B. Gupta, "Miller and Freund's Engineers", Pearson Education, Asia, 9th Edition, 20	•	

					0	
		<	3	-	P	
1				-	-	
S	ignatur	re of BO	S chair	rman, N	ACE	

- 5. R.E. Walpole, R.H. Myers, S.L. Myers, and K Ye, "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th edition, 2017.
- 6. Gupta S.C, and KapurV.K "Fundamentals of Applied Statistics", Sultan Chand, New Delhi, 4th Edition, 2014.

< Signature of BOS chairman, MCE

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Describe the concept of fluid power and different types of fluid power systems.	K2				
CO2:	Explain the working principles of different types of hydraulic pumps.	K2				
CO3:	Discuss the working principles of different types of hydraulic actuators.	K2				
CO4:	Summarize the working principles of compressors and pneumatic components.	K2				
CO5:	Design hydraulic and pneumatic circuits for simple applications.	K3				
CO6:	Explain the concept of fluid logic control systems, maintenance of fluid power systems.	K2				

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	М													М
CO2	М	М												М
CO3	М													М
CO4	Μ													М
CO5	S	М			S								М	М
CO6	М													М

DIRECT	INDIRECT				
1. Continuous Assessment Test I, II					
2. Assignment: Group Presentation,					
Project report, Prototype or Product	1. Course end survey				
Demonstration etc. (as applicable)					
3. End Semester Examination					
FUNDAMENTALS OF FLUID POWER 6 Hour					
Introduction to fluid power, Advantages of fluid power, Application of fluid power system. Types of fluid					
power systems, Properties of hydraulic fluids – General types of fluids. Fluid power symbols.					

	0
5.	- l
Signature of BOS	chairman, MCE

HYDRAULIC SYSTEM AND COMPONENTS	10 Hours				
Pumping theory – Pump classification – Gear pump, Vane Pump, piston pump, construction and					
pumps – pump performance – Variable displacement pumps. Linear hydraulic actuators – Types					
cylinders-Single acting, Double acting special cylinders like tandem, Rodless, Telescopic-Cons					
application.Cushioningmechanism,Rotaryactuators-Gear,VaneandPistonmotors-SelectionofPumps and actuators.	8				
HYDRAULIC VALVES, ACCUMULATORS AND CIRCUITS	10 Hours				
Directional control value $-3/2$ -way value $-4/2$, $4/3$ way value $-$ Shuttle value $-$ check value. Pres	ssure				
control valves, Flow control valve – Fixed and adjustable, electrical control solenoid valves. Type					
accumulators, Accumulators circuits, Intensifier – Circuit and Application, Speed control circuits					
synchronizing circuit and industrial application circuits – copying circuit and press circuit.	, ,				
PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS	10 Hours				
Properties of air - Compressors - Filter, Regulator, and Lubricator Unit - Air control valves, Qui	ck exhaust				
valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple ap	plications				
using cascade method, Karnaugh – Veitch Mapping method.					
FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE	9Hours				
Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportion	onal valves.				
Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Fa	ilure and				
trouble shooting in fluid power systems.					
Theory:45HoursPractical: 30HoursTotal: 75Hours					
REFERENCES:					
1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016	•				
2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012.					
3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013.					
4. Andrew Parr, "Hydraulics and Pneumatics ", Jaico Publishing House, 2012					
5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education, 2016. LIST OF EXPERIMENTS					

Pneumatic Experiments

- 1. Design of simple pneumatic circuit to control the direction and speed of single acting/double acting cylinder using push button DCV/lever operated DCV and flow control valve.
- 2. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function).
- 3. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pilot operated DCV and roller operated DCV.
- 4. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic cylinder using solenoid operated DCV and magnetic sensors.
- 5. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multiple pneumatic cylinders.
- 6. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multiple pneumatic cylinders.
- 7. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascade method.
- 8. Design of Electropneumatic circuit for sequential operation of multiple cylinders using PLC.

Hydraulic Experiments

- 9. Design of Hydraulic circuit to control the speed and direction of a hydraulic motor.
- 10. Design of Hydraulic circuit for sequential operation of two hydraulic cylinders using pressure sequence valve.
- 11. Study of the working of Counterbalance valve, Accumulator, Proportional control valve.

Software Experiments

12. Design and Simulation of hydraulic and pneumatic circuits using Automation Studio software.

U18MCI4202

SENSORS AND INSTRUMENTATION

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Classify the transducers and instruments based on their working principles, characteristics a nd order of the system.	K2
CO2:	Describe the working principle and characteristics of non-electrical transducers (Displacement, Velocity, Temperature, Radiation Pyrometer, Humidity measurement)	K2
CO3:	Discuss brief about the Non-electrical transducers of another measurements (Force, strain gauge, Vacuum, Light ,Acoustics and Nuclear radiation measurement)	K2
CO4:	Discuss about the construction, working principles and characteristics of bio medical sensors.	K2
CO5:	Brief the signal conditioning parameters used in measurement system.	K2
CO6:	Illustrate the importance of data acquisition system	K2

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes (POs) COs PO1 PO3 PO2 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 S W W CO2 S Μ Μ Μ **CO3** S М Μ Μ CO4 S S S Μ S Μ Μ CO5 Μ Μ S S Μ S Μ CO6 Μ Μ S S S

Course Assessment methods:

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	
2. Assignment: Group Presentation, Project report,	
Prototype or Product Demonstration etc. (as	1.Course end survey
applicable)	
3. End Semester Examination	
MEASUREMENT SYSTEMS	9 Hours

Generalized Measurement System – Performance Characteristics: Static and Dynamic Characteristics – Errors in Measurements – statistical Analysis of errors - Calibration and Standards – Generalized Performance of Zero Order, First Order and Second Order Systems – Classifications of Transducers.

Signature of BOS chairman, MCE

MEASUREMENT OF NON-EL	ECTRICAL PARAMETERS-1		9Hours
Linear and angular displacem	ent: Resistive, capacitive, induc	tive types and Optics (encoders)	, proximity
sensors			· 1 · J
Velocity measurement: tachom	neters, tacho generators and reso	lvers	
Temperature measurement: C	ontact type: Bimetallic, RTD, T	hermocouple and Thermistor No.	on- Contact
type:		-	
Radiation Pyrometer – Optical H			
Humidity: Capacitive and resist	tive and hot and wet bulbs.		
Other sensors: Fire, smoke and			
MEASUREMENT OF NON-E	CLECTRICAL PARAMETER	RS-2	9 Hours
Force measurement: Resistive	type strain gauges: Bridge confi	gurations, Temperature compen-	sation, Load
cells,			
Fiber optic strain gauge- Semico			
Vacuum Measurement: McLeo	od Gauge, Thermal Conductivity	y Gauge – Ionization Gauge.	
Airflow: Anemometers	1 1		
Light: UV, IR, Light emitter an			
Introduction to Acoustics and			crophones
and Hydrophones – Sound level		rs.	
MEASUREMENT OF BIO SI			9 Hours
Basic transducer principal Types			face,
electrode potential, resting and a		their measurement, ECG, EEG.	
SIGNAL CONDITIONING A	ND DATA ACQUISITION		9 Hours
Amplification, Filtering – Level Quantization –	conversion – Linearization - Bu	affering – Sample and Hold circu	uit –
Multiplexer / Demultiplexer – A	nalog to Digital converter – Dig	tital to Analog converter- I/P and	d P/I
converter - Instrumentation Am			
– Data conversion – Introductio			
Theory:45Hours	Practical:30Hours	Total Hours:75	
REFERENCES:			
1. ErnestODoebelin, "Meas	urementSystems-Applicationsan	dDesign",TataMcGraw-Hill,201	12.
2. Patranabis D, "Sensors and	nd Transducers", 2 nd Edition, PH	II, New Delhi,2010.	
3. John Turner and MartynI ,2009	Hill, "InstrumentationforEnginee	ersandScientists",OxfordScience	Publications
	Sawney, "A Course in Mechania anpat Rai & Co, New Delhi,201	cal Measurements and Instrumer 3.	ntation and

1.1	-	C	P
	5-		1
Signature	e of BOS of	chairman	, MCE

LIST OF EXPERIMENTS

- 1. Design and testing of Voltage to frequency converter and frequency to voltage converter.
- 2. Design and testing of sample and hold circuit.
- 3. Displacement measurement using potentiometer and LVDT and plotting the characteristic curves and interface with ARDINUO Board
- 4. Study of Characteristics and calibration of strain gauge and Load Cell
- 5. Measurement of strain using resistive type strain gauges with temperature compensation and various bridge configurations interface with ARDINUO Board.
- 6. Temperature measurement using Thermocouple, Thermistor and RTD and comparing the characteristics interface with ARDINUO Board.
- 7. Comparison of capacitive and resistive type transducer for humidity measurement with their characteristics
- 8. Measurement of sound using microphones and sound level meter.
- 9. Measurement of temperature, strain, displacement, acceleration using NI DAQ and RIO cards.
- 10. Signal conditioning the physical signals using LABVIEW.

5-	-1
Signature of BOS ch	airman, MCE

U18MCT4103

DIGITAL ELECTRONICS AND MICROPROCESSOR

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Use number systems, Boolean algebra and explain various digital logic families.	K2
CO2:	Apply basic logic gates to design simple circuits and simplify logic circuits using K- Map	K3
CO3:	Design various combinational and sequential circuits	K3
CO4:	Explain the architecture of 8085 microprocessor	K2
CO5:	Develop assembly language program for 8085 for the given application.	K3
CO6:	Construct interface for memory and I/O devices.	K3

Pre-requisite

U18MCI3201-Electronics devices and circuits

		CO/PO Mapping												
	((S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	М												М	
CO2	S	W	S										S	
CO3	М	S	S										М	М
CO4	М												S	М
CO5	М				S								М	S
CO6	М		S		S								М	S

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	
2. Assignment: Group Presentation, Project	•
report, Prototype or Product Demonstration	1.Course end survey
etc. (as applicable)	
3. End Semester Examination	

< Signature of BOS chairman, MCE

NUMBER SYSTEMS, DIGITAL LOGIC FAMILIES AND BOOLEAN LOGIC	9 Hours
Introduction to Number systems: Binary, Octal, Hexadecimal, BCD, Gray code, Excess 3 arithmetic: 1's complements, 2's complements, and Code conversions -Digital Logic Fam	ilies: TTL,
CMOS, NMOS, ECL- Performance comparison of various logic families- Boolean algebra Postulates and theorems, switching functions, Canonical forms, Logic gates- Simplification	
maps and Implementation using logic gates. COMBINATIONAL CIRCUITS	9 Hours
CONIDINATIONAL CIRCUITS	9 Hours
Problem formulation and design of combinational circuits: adder, subtractor, Parallel adder Subtractor- Carry look ahead adder- BCD adder, Magnitude Comparator, parity checker H decoder, Multiplexer/Demultiplexer, codeconverters, Functionrealizationusinggates and multiple Implementation of Combinational circuits using Multiplexers and Demultiplexers- Memor and PLAs.	Encoder, plexers.
SEQUENTIAL CIRCUITS	9 Hours
General model of sequential circuits: Latch, Flip Flops, Level triggering, Edge triggering, configuration - Realization of one flip flop using other flip flop- Registers-Counters: Binar Modulo–n counter, Decade, Counters, Ring counter and Johnson counter.	ry counters,
MICROPROCESSOR 8085	9 Hours
Organization of 8085: Architecture, Internal Register Organization and Pin Configuration Set of 8085 – addressing modes - instruction and machine cycles with states and timing di assembly language programming	
MEMORY AND I/O INTERFACING	9 Hours
Address space partitioning – address map – Address decoding – Designing decoder circuit	C (1)
address map -I/O Interfacing- Peripheral ICs*: 8255, 8279 and 8251 A. * Emphasis to be given on architecture with simple applications.	for the given.
	for the given.
* Emphasis to be given on architecture with simple applications.	for the given.
* Emphasis to be given on architecture with simple applications. Theory:45Hours Tutorials:15Hours TotalHours:60 REFERENCES:	
 * Emphasis to be given on architecture with simple applications. Theory:45Hours Tutorials:15Hours TotalHours:60 REFERENCES: 1. Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of In NewDelhi,2008 	dia Pvt.Ltd.,
 * Emphasis to be given on architecture with simple applications. Theory:45Hours Tutorials:15Hours TotalHours:60 REFERENCES: 1. Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of In NewDelhi,2008 2. Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Apedition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special India 2014. 	dia Pvt.Ltd., pplications", 8 th in Edition,
 * Emphasis to be given on architecture with simple applications. Theory:45Hours Tutorials:15Hours TotalHours:60 REFERENCES: Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of In NewDelhi,2008 Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Apedition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special India 2014. Salivahanan S. and Arivazhagan S., "Digital Circuits and Design", 5th edition, oxfor press,2018 	dia Pvt.Ltd., pplications", 8 th in Edition, ord university
 * Emphasis to be given on architecture with simple applications. Theory:45Hours Tutorials:15Hours TotalHours:60 REFERENCES: Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of In NewDelhi,2008 Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Apedition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special India 2014. Salivahanan S. and Arivazhagan S., "Digital Circuits and Design", 5th edition, oxfepress,2018 Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications w 6th edition, Penram International (India),2013. 	dia Pvt.Ltd., pplications", 8 th in Edition, ord university ith the 8085",
 * Emphasis to be given on architecture with simple applications. Theory:45Hours Tutorials:15Hours TotalHours:60 REFERENCES: Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of In NewDelhi,2008 Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Apedition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special India 2014. Salivahanan S. and Arivazhagan S., "Digital Circuits and Design", 5th edition, oxfepress,2018 Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications w 	dia Pvt.Ltd., pplications", 8 th in Edition, ord university ith the 8085",

Г

Sau Signature of BOS chairman, MCE

THEORY OF MACHINES

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Apply concepts of mechanisms to achieve desired motion transformation	K2
CO2:	Choose appropriate gear train and friction drives for a given application	K3
CO3:	Calculate various forces acting on rigid bodies under static and dynamic conditions	K3
CO4:	Solve balancing problems related to rotating and reciprocating masses.	K2
CO5:	Apply the fundamental concepts of vibrating system to predict the natural frequency and force transmitted	K3

Pre-requisite

Nil

						CO/P	'O Maj	pping						
		(S/M/	W indi	icates s	trength	of com	elation) S-Stro	ong, M	-Mediu	m, W-V	Veak		
COs						Pro	gramm (P	e Outc Os)	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S S S M								М				
CO2	М	M								М				
CO3	М		М										М	
CO4	S		W										М	
CO5	S		W										М	

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	
 Assignment: Group Presentation, Project report, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1.Course end survey

5-	1
Signature of BOS cha	airman, MCE

	ECHANISMS		13 Hours
	lechanisms – Introduction to kinema	· ·	
0	Grashoff's law, Kutzback criterion.		
	s of cam and follower, terminologies	•	celeration
GEAR AND FRIC	chain and single slider crank mecha	anism.	12 Hours
profile. Gear meshing	ives - Fundamentals of toothed gear g, contact ratio. Gear trains, simple c ng Problems) – Screw and Brake (C	compound gear trains and epicyclic	
FORCE ANALYS	IS		12Hours
D'Alembert's princip	es in general plane motion – Equation ble –The principle of superposition in Reciprocating Engines.	•	
BALANCING			9 Hours
Balancing of reciproc	cating masses, Hammer blow, Sway	ying couple, Tractive force.	
	requency of undamped and damped used by unbalance-Support motion pration isolation.	l system. Response to periodic force	-
Types of vibration, f Forcing - Forcing car	used by unbalance-Support motion	l system. Response to periodic force	ing - Harmonic
Types of vibration, f Forcing - Forcing can transmissibility - Vib	used by unbalance-Support motion pration isolation.	l system. Response to periodic force - Force transmissibility and amplitu	ing - Harmonic
Types of vibration, fr Forcing - Forcing can transmissibility - Vib Theory:45Hours REFERENCES: 1. Rattan SS., "T Delhi,2019.	used by unbalance-Support motion pration isolation. Tutorials:15Hours Theory of Machines", 5 th Edition, T	I system. Response to periodic force - Force transmissibility and amplitu Total Hours:60 Fata McGraw-Hill Publishing Comp	ing - Harmonic ide pany Ltd., New
Types of vibration, fr Forcing - Forcing can transmissibility - Vib Theory:45Hours REFERENCES: 1. Rattan SS., "T Delhi,2019. 2. R.L. Norton, C Ltd.,2017.	used by unbalance-Support motion pration isolation. Tutorials:15Hours Theory of Machines", 5 th Edition, T "Kinematics and Dynamics of Mach	I system. Response to periodic force - Force transmissibility and amplitu Total Hours:60 Fata McGraw-Hill Publishing Comp ninery", Tata McGraw Hill Publishi	ing - Harmonic ide pany Ltd., New
Types of vibration, fr Forcing - Forcing can transmissibility - Vib Theory:45Hours REFERENCES: 1. Rattan SS., "T Delhi,2019. 2. R.L. Norton, " Ltd.,2017. 3. R.K. Bansal, "	used by unbalance-Support motion pration isolation. Tutorials:15Hours Theory of Machines", 5 th Edition, T "Kinematics and Dynamics of Mach 'Theory of Machines", Lakshmi pul	I system. Response to periodic force - Force transmissibility and amplitu Total Hours:60 Fata McGraw-Hill Publishing Comp ninery", Tata McGraw Hill Publishi blications pvt.ltd.,2016	ing - Harmonic ide pany Ltd., New
Types of vibration, fr Forcing - Forcing can transmissibility - Vib Theory:45Hours REFERENCES: 1. Rattan SS., "T Delhi,2019. 2. R.L. Norton, " Ltd.,2017. 3. R.K. Bansal, " 4. Singiresu S. R	used by unbalance-Support motion pration isolation. Tutorials:15Hours Theory of Machines", 5 th Edition, T "Kinematics and Dynamics of Mach "Theory of Machines", Lakshmi pul Rao, "Mechanical Vibrations", Pears	I system. Response to periodic force - Force transmissibility and amplitu Total Hours:60 Fata McGraw-Hill Publishing Comp ninery", Tata McGraw Hill Publishi blications pvt.ltd.,2016 son,2017.	ing - Harmonic ide any Ltd., New ng Company
Types of vibration, fr Forcing - Forcing can transmissibility - Vib Theory:45Hours REFERENCES: 1. Rattan SS., "T Delhi,2019. 2. R.L. Norton, " Ltd.,2017. 3. R.K. Bansal, " 4. Singiresu S. R	used by unbalance-Support motion pration isolation. Tutorials:15Hours Theory of Machines", 5 th Edition, T "Kinematics and Dynamics of Mach 'Theory of Machines", Lakshmi pul	I system. Response to periodic force - Force transmissibility and amplitu Total Hours:60 Fata McGraw-Hill Publishing Comp ninery", Tata McGraw Hill Publishi blications pvt.ltd.,2016 son,2017.	ing - Harmonic ide any Ltd., New

				^
	\leq		-	P
0		POSah	airman,	MCE

U18INI4600 ENG	ENGINEERING CLINIC IV	L	Т	Р	J	С
	ENGINEERING CLINIC IV	0	0	4	2	3

Course objectives

•	To help the students look into the functioning of simple to complex devices and systems
•	To enable the students to design and build simple systems on their own
•	To help experiment with innovative ideas in design and teamwork
•	To create an engaging and challenging environment in the engineering lab

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Identify a practical problem and find a solution	K2
CO2:	Understand the project management techniques	K3
CO3:	Demonstrate their technical report writing and presentation skills	K3

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Pro	-	e Outco Os)	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

DIRECT	INDIRECT
 Project reviews50% Workbook report10% Demonstration & Viva-voce40% 	1. Course Exit Survey

		_		A
	\leq	>~	-1	-
Signa	ture of E	BOS cha	irman, N	ICE

Content:

The course will offer the students with an opport unity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample

			0
	5.		P
Signatu	re of BOS of	chairman	MCE

opportunity to be innovative in designing and building a range of products from toys to robots and flyingmachines.Inthefourthsemester,studentswillfocusprimarilyonreverseengineeringprojectto improve performance of a product

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific task, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

Environmental Science and Engineering	
(Common to All branches)	

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

Course	
After s	successful completion of this course, the students should be able to
CO1:	Analyze the impact of engineering solutions in a global and societal context.
CO2:	Discuss contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems.
CO3:	Highlight the importance of ecosystem and biodiversity.
CO4:	Consider issues of environment and sustainable development in his/her personal and professional undertakings.
CO5:	Paraphrase the importance of conservation of resources.
CO6:	Play an important role in transferring a healthy environment for future generations.

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		М					S		М					М
CO2						М				М				
CO3							М							
CO4						М	S							
CO5							S							
CO6			W				S					М		

Course Assessment methods:

DIRECT	INDIRECT				
1. Internal Test I					
2. Internal Test II					
3. Assignment	1.Course end survey				
4. End semester					
INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL 14 Hou					
RESOURCES					
Definition, scope and importance – Need for public awareness – Forest resources: Use and over-					
exploitation, deforestation, case studies - Timber extraction, mining, dams and their effects on forests					
and tribal people.					
Water resources: Use and overutilization of surface a	nd ground water, conflicts over water, da	ams-benefits			
and problems – Water conservation, rainwater harves	sting, watershed management. Mineral re	esources: Use			

and problems – water conservation, rainwater narvesting, watersned management. Mineral resources, and exploitation, environmental effects of extracting and using mineral resources, case studies.

0 Signature of BOS chairman, MCE

Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern. agriculture, fertilizer-pesticide problems, case studies.

Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources, case studies.

Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Wasteland reclamation – Role of an individual in conservation of natural resources.

ECOSYSTEMS AND BIODIVERSITY

9 Hours

8 Hours

7 Hours

ECOSYSTEM: Concept of an ecosystem – Structure and function of an ecosystem: Producers, consumers and decomposers, Food chain, Food web, Energy flow in the ecosystem and Ecological Ecological pyramids succession Introduction, types, characteristic features. structure and function of the (a) Forestecosystem (b) Grasslandecosystem (c) Desertecosystem(d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

BIODIVERSITY: Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity – Value Bio geographical classification of India – of biodiversity: consumptive use. productive use, social, ethical, aesthetic values - India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts -Endangered and endemic species of India-Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution – Organic and inorganic pollution - cyclone separator, electrostatic precipitator (b) Water pollution (c) Heavy metal pollution (d) Noise pollution (e) Thermal pollution (f) Nuclear hazards – Role of an individual in prevention of pollution – Pollution case studies - Solid waste and hazardous Management: Causes, effects and control measures from factories, small scale and large-scale industries - Waste minimization - Disaster management: floods, earthquake, cyclone and landslides.

SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable development – Urban problems related to energy – Resettlement and rehabilitation of people; its problems and concerns, case studies – Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion – Environment Production Act – Air (Prevention and Control of Pollution) Act - Water (Prevention and control of Pollution) Act - Wildlife Protection Act - Forest Conservation Act

– Issues involved in enforcement of environmental legislation – Human Rights.

HUMAN POPULATION AND THE ENVIRONMENT

7 Hours

Total Hours:45

Population growth and explosion – Welfare Program – Environment and human health – Communicable disease - Role of Information Technology in Environment and human health - Case studies. **Practical:0Hours**

Theory:45Hours REFERENCES:

- 1. Spoolman, Scott, Miller, G. Tyler. Environmental Science. United States, Cengage Learning, 2018.
- 2. Gilbert M. Masters and Wendell P. Ela, 'Introduction to Environmental Engineering and Science', Third Edition, Pearson Education, 2013.
- 3. Bharucha, Erach. The Biodiversity of India. India, Mapin Pub., 2002.

4. Trivedy, R K, and Goel, P K. An Introduction to Air Pollution. India, BSP Books Pvt. Limited, 2016

5. Trivedy, R. K. Handbook Of Environmental Laws, Acts, Guidelines, Compliances & Standards, 2

Signature of BOS chairman, MCE

Vol. Set, 3Rd Ed. India, BS Publications, 2010.	
6. Cunningham, W.P. Cooper and T.H.Gorhani, 'Environmental Encyclopedia', Jaico Publication	
House, Mumbai, 2011.	
7. WagerK.D., 'EnvironmentalManagement', W.B.SaundersCo., Philadelphia, USA, 1998ColinR	
8. Townsend, Michael Begon and John L. Harper, 'Essentials of Ecology', Third Edition, Blackwell	
Publishing, 2008.	

U18VET4101 UNIVERSALHUMANVALUES 2: L T P J C

	UNDERSTANDING HARMONY (Common to all UG branches from 2020-2024 batch onwards)	2	1	0	0	3		
COURS	E OUTCOMES:							
After su	ccessful completion of this course, the students shall b	e ab	le to					
CO 1:	Develop a holistic perspective based on self- exploration al being), family, society and nature/existence.	oout	them	selve	s (hu	ıman		
CO 2:	Understand (or develop clarity) of the harmony in the human being family society							
CO 3 :	Strengthen their self-reflection.							
CO 4 :	Develop commitment and courage to act.							
Pre-requ	isites: - None. Universal Human Values 1 (Desirable)							
	CO-PO AND CO-PSO MAPPING:							
COURS	E ASSESSMENT METHODS:							
Direct								
1. Ass	essment by faculty mentor							
2. Self	-assessment							
	ially relevant project/Group Activities/Assignments							
4. End	Semester Examination							
Indirec	t							
1.	CO/PO Mapping							
	(S/M/W indicates strength of correlation) S-Strong, M-M	edium.		W-We	ak			
	COs Programme Outcomes (POs)	,				DSO.		

COs		Programme Outcomes (POs)											PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	
CO1						М	М	М	S			М	-	
CO2						S	М		S	S		S	-	
CO3								М	М		W	S	-	
CO4								S	М		М	М	-	

S. Signature of BOS chairman, MCE

COURSE CONTENTS:

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I.
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human beings as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 1. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.
- 2. Understanding the needs of Self ('I') and 'Body' happiness and physical facility.
- 3. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).
- 4. Understanding the characteristics and activities of 'I' and harmony in 'I'.
- 5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.
- 6. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- 1. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship.
- 2. Understanding the meaning of Trust; Difference between intention and competence
- 3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- 4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss

	0
5	- P
Signature of BOS cl	hairman MCE

with scenarios. Elicit examples from students' lives.

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 1. Understanding the harmony in the Nature
- 2. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature.
- 3. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space.
- 4. Holistic perception of harmony at all levels of existence.
- 5. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 1. Natural acceptance of human values
- 2. Definitiveness of Ethical Human Conduct
- 3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 4. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 5. Case studies of typical holistic technologies, management models and production systems
- 6. Strategy for transition from the present state to Universal Human Order:
 - a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers
 - b. At the level of society: as mutually enriching institutions and organizations
- 7. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. To discuss the conduct as an engineer or scientist etc.

COURSE DURATION:

	^
\leq	1
Signature of BOS chairma	IN MCE
Signature of BOS chairma	an, MCE

No	MODULE	HOURS
1	Module 1	[7 Theory+ 3 Tutorial] 10 Hrs
2	Module 2	[6 Theory+ 3 Tutorial] 9 Hrs
3	Module 3	[7 Theory+ 3 Tutorial] 10 Hrs
4	Module 4	[5 Theory+ 3 Tutorial] 8 Hrs
5	Module 5	[5 Theory+ 3 Tutorial] 8 Hrs
	Total	45

TEXTBOOK:

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS:

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)
- 14. <u>https://www.youtube.com/watch?v=E1STJoXCXUU&list=PLWDeKF97v9SP_Kt6jqzA3p</u>Z3yA7g_OAQz
- 15. <u>https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ</u>
- 16. <u>https://www.uhv.org.in/uhv-ii</u>

5	ρ—
Signature of BOS chairman, M	ICE

SEMESTER V

	A
	Sil
	Signature of BOS chairman MCE
3	Signature of BOS chairman, MCE

U18MCI5201

INDUSTRIAL ELECTRONICS AND DRIVES

Т	Р	J	С
0	2	0	4

L

3

Course Outcomes

After successful completion of this course, the students should be able to					
CO1: Relate the basic semiconductor physics to the properties of real power. semiconductor.	K2				
CO2: Describe the concept of operation of AC-DC converters.	K2				
CO3: Identify the operating the single phase and three phase inverter circuits	K3				
CO4: Describe the various PWM techniques.	K2				
CO5: Identify DC equipment with changing DC voltage and choppers for simple. electrical application	K3				
CO6: Describe the speed control method in DC-to-DC converter	K2				

Pre-requisite

U18MCI3202- Electrical Machines

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
Cos		Programme Outcomes (Pos)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S				М					М			S	
CO2	S												М	
CO3	S				М								М	
CO4	S	S	S										W	
CO5		М	S		М						М		S	
CO6	S				М					М			S	

Direct	Indirect					
1. Continuous Assessment Test I, II						
2. Assignment: Group Presentation, Project report,						
Poster preparation, Prototype or Product	1. Course end survey					
Demonstration etc. (as applicable)						
3. End Semester Examination						
POWER SEMICONDUCTOR DEVICES		9 Hours				
Thyristors – Volt-Ampere Characteristics – Switching Characteristics-Power MOSFET – Volt						
AmpereCharacteristics-SwitchingCharacteristics-Pov	verIGBT-Volt-Amper	eCharacteristics				
Switching Characteristics						

AC to DC CONVERTERS	9 Hours
Diode Rectifiers – Single phase Bridge – R, RL – Thyristor Converter – S	Single phase bridge – RL
– Three phase fully controlled converter -R-RL Load.	
INVERTERS	9 Hours
Single-phase VSI – Half-bridge – Centre tapped inverter – Full bridge inv Square-wave–Control of induction motor by voltage source inverter.	verter -Three-phase VSI –
PWM TECHNIQUES	9 Hours
PWM Inverter – fundamental concepts of PWM – naturally sampled PWM	
duty cycle variation	vi - r vv ivi analysis Uy
DC-DC CONVERTER	9 Hours
DC Chopper - Step Down Converter – Step Up Converter -Buck Boost C	
Fly Back converter-speed control of PMDC motor.	inverter introduction
Theory:45Hrs Practical:30Hrs	Total Hours: 75
REFERENCES:	
1. Bimbhra P S, "Power Electronics" Tata McGraw Hill, 2012	
2. Rashid M H, "Power Electronics - Circuits Devices and Application",	4 th Edition, Prentice
Hall International, New Delhi, 2013.	
3. Dubey G K., Doradia S R., Joshi A. and Singh, R.M., "Thyristorised P	ower Controllers", 2 nd
Edition, Wiley Eastern Limited, 2010.	
4. Joseph Vithayathil, "Power Electronics – Principle and Applications", New Delhi, 2010.	Tata McGraw-Hill Inc,
5. Bimal K Bose "Modern power electronics and AC Drives" Prentice Ha	all International New
Delhi, 2001.	
6. D. Grahame Holmes, Thomas A. Lipo "Pulse Width Modulation for Po	ower Converters:
Principles and Practice", John Wiley & Sons, 2003.	
LIST OF EXPERIMENTS:	
1. Voltage-Current characteristics of SCR	
2. Voltage-Current characteristics of IGBT/MOSFET	
3. AC-DC uncontrolled converter	
4. AC-DC converter for half wave controlled using phase control met	
5. Speed control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully controlled control of PMDC motor using three phase fully control of PMDC motor using three phase ful	onverter
6. DC Voltage control using DC – DC Converter	
7. Buck – boost converters	
8. Single phase IGBT based PWM inverter	
 8. Single phase IGBT based PWM inverter 9. Speed control of three phase induction motor using AC to AC volt 10. Speed control of BLDC/servo motor 	age control

5.1	9—
Signature of BOS chairman, M	CE

MANUFACTURING TECHNOLOGY

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Select and justify appropriate casting methods.	K2					
CO2:	Summarize various bulk deformation processes and the explain the working. machineries.	K2					
CO3:	Describe the working principles of machines and various machining processes.	K2					
CO4:	Choose a suitable metal joining process for a given application.	K2					
CO5:	Perform various lathe and drilling operation for a given drawing.	K2					
CO6:	Perform machining operation in special purpose machine.	K2					
п	• • .						

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М					Μ							W	М
CO2	М												W	М
CO3	М												W	М
CO4	М					Μ							W	М
CO5	М								М	М			W	М
CO6	М								М	М			W	М

DIRECT	INDIRECT					
1. Internal test I						
2. Internal test II						
3. End semester Examination.						
4. Assignment						
FOUNDRY TECHNOLOGY						
Pattern and Core making – Melting furnaces: Cupola and	I Induction furnaces – Special casting	g processes –				
Shell, Investment, Die casting – Defects in casting.						
FORMING PROCESSES 7 Hour						
Hot and Cold Working - Rolling - Introduction - Rolling Mills - Rolling Operations - Forging-						
Introduction–ForgingOperations–Dropforging-Extrusion	nandDrawing-ExtrusionPractice-Hot	,				

≤ 1	0
Signature of BOS chairman, MC	CE

Cold, Impact and Hydrostatic extrusion. Drawing Process – Defects and Residual Stresses Equipment.	– Drawing
CONVENTIONAL MACHINING PROCESS	8 Hours
Lathes and Lathe Operations, Drilling and Drilling Machines, Reaming and Reamers, Tapping	g and Taps
- Tool nomenclature, cutting speed, feed. Milling, Shaping and Grinding Machines and opera	tions.
PRINCIPLES & APPLICATIONS OF JOINING PROCESSES	8 Hours
Gas welding, Basic Arc Welding Processes, Thermit Welding, Ultrasonic Welding, Friction W	velding,
Resistance Welding and Explosive Welding. Principles and applications of Brazing and Solder	ring.
Theory: 30 Hours Practical: 30 Hours Total Hours: 60	
REFERENCES:	
 KalpakjianS., "Manufacturing Engineering and Technology", 8th edition, Pearson educat 2020. 	ion India,
2. Hajra Choudhury S K. and Hajra Choudhury A K., "Elements of Workshop Technology and II, Media Promoters and Publishers Private Limited, Mumbai, 2008.	", Volume I
3. Paul Degarma E, Black J T. and Ronald A Kosher, "Materials and Processes in Manufac	cturing", 8 th
edition, Hall of India, 2008.	
4. Sharma P C., "A Textbook of Production Technology", S. Chand and Co., Ltd., 2009.	
LIST OF EXPERIMENTS	
1. Study on measurement (Linear and angular measurements)	
2. Step Turning	
3. Taper Turning	
4. Thread cutting operation.	
5. Knurling operation	
6. Boring operation	
7. Surface Milling operation	
8. Gear Cutting operation.	
9. Grinding operation (surface, cylindrical and centerless)	

10. Shaping operation (Dove tail and slotting operation)

6	-		P
Signature of	BOS ch	nairman	, MCE

PROGRAMMABLELOGIC CONTROLLERS

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Outline the importance of PLC, DCS, SCADA in industrial automation	K2				
CO2:	Describe the architecture of PLCs with the analogy of relay logic components	K2				
CO3:	Develop ladder logic program for applications	K3				
CO4:	Integrate PLCs with electro-mechanical systems	K3				
CO5:	Classify the communication protocols	K2				
CO6:	Design SCADA system for industrial applications	K3				

Pre-requisite

Nil

CO/PO Mapping

		(S/M/W	⁷ indica	ates stro	ength o	f correl	lation)	S-S	trong, l	M-Med	ium, W	-Weak		
COs		Programme Outcomes (POs)												
							``````````````````````````````````````	· /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	М	М		М	S					S			S	Μ
CO4	М	М	М		S								М	
CO5	М												М	
CO6	М	М	М	М	S					S			S	S

#### **Course Assessment methods:**

Course Assessment memous.				
DIRECT	INDIRECT			
1. Continuous Assessment Test I, II				
2. Assignment: Group Presentation, Project report,				
Poster preparation, Prototype or Product	1.Course end survey			
Demonstration etc. (as applicable)				
3. End Semester Examination				
INTRODUCTION		6 Hours		
Role of automation in industries, Benefits of automation –Introduction to automation tools: Low-cost automation				
PLC, DCS, SCADA - Automation strategy evolution.				
PLC HARDWARE MODULES AND PROGI	RAMMING	6 Hours		
CPU – processor function – processor operating modes	s – PLC system memory and application r	nemory – input		
modules - output modules - module selection - PLC inte	ernal operation and signal processing – inpu	t and output		
processing.		_		
PROGRAMMING OF PLC SYSTEM		11 Hours		
Introduction to IEC 61131 - System functions - seque	ence control – ladder logic – programming	g sequences –		

limitation of ladder programming – logic instruction sets – standard PLC functions – special function relays – data. handling instructions – arithmetic instructions – data manipulation – program subroutines –programming examples.

C	-	P
Signature o	BOS chair	rman. MCE

# INDUSTRIAL COMMUNICATION PROTOCOLS

Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII & RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), Foundation Fieldbus (H1&HSC). Comparison of Foundation Fieldbus, Modbus, Device net, Profibus, Industrial Ethernet.

#### SCADA SYSTEMS

11 Hours

Concept of SCADA systems, Programming techniques for: Creation of pages, Sequencing of pages, creating graphics & animation, Dynamos programming with variables, Trending, Historical data storage & Reporting, Alarm management, reporting of events and parameters, Comparison of different SCADA packages, Interfacing PLC and SCADA using communication links, Development stages involved for PLC based automation systems, Application. Development using SCADA system.

# Theory:45 HoursPractical:30HoursTotal Hours: 75

#### **REFERENCES:**

- 1. John W Webb and Ronald A Reis, "Programmable logic controllers: Principles and Applications", 5th Edition, Prentice Hall India, 2002.
- 2. Michael P Lukas, "Distributed Control systems", Van Nostrand Rein fold Company, 1995.
- 3. Frank D Petruzella, "Programmable Logic Controllers", 5thedition, McGraw-Hill Companies, March 2019.
- 4. Ian G Warnock, "Programmable Controllers Operation and Application", Prentice Hall International, UK, 1992.
- 5. Krishna kant, "Computer Based Industrial Control", 2nd revised edition, Prentice Hall of India, 2011.

#### LIST OF EXPERIMENTS

- 1. Construct a circuit to control a simple process using Relay and Timer module.
- 2. Design a T-junction traffic light controller using PLC.
- 3. Design a PLC Program for automating bottle filling systems.
- 4. Develop a PLC system to control a simple conveyor system.
- 5. Study of industrial process automation and communication network architecture
- 6. Develop an HMI design for a simple pump tank system.
- 7. Develop a simple SCADA application using Dynamos.
- 8. Develop a SCADA panel to control a PLC based system.
- 9. Design a PLC ladder logic program to control the Speed of a motor.
- 10. Design a PLC ladder logic program to control the Position of a servomotor.

	<	-		P	_
Sign	ature o	of BOS of	hairmar	n, MCE	•

**11 Hours** 

# **CONTROL ENGINEERING**

L	Т	Р	J	С
3	0	0	0	3

# **Course Outcomes**

After	successful completion of this course, the students should be able to	
1 ( ( ) )	Know the significance to control engineering and the basic construction of control. systems.	K2
	Develop mathematical equations for model mechanical, electrical systems and can be able to	K3
-	compute transfer function using block diagram and signal flow graph methods	
	Analyze the 1st and 2nd order systems in time domain for various test signals and	K3
	calculate steady state errors and derive generalized error series in the time domain analysis	
CO4	Analyze the 1st and 2nd order systems in frequency domain using Bode and Polar plots	K3
C05	Calculate the stability of the system using Routh Hurwitz, Nyquist and Root Locus techniques.	K3
	Explain about PID control and tuning, time delay responses and also discuss sequence. control in process industry	K2

# **Pre-requisite**

U18MAT3101 Partial differential Equations and Transforms

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs				-		Prog		e Outco Os)	omes					
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S												М	
CO3	S		М										М	
CO4	S			М										
CO5			М	М										
CO6	S				М									
Course	Assess	sment i												
			Dire	ct						In	direct			

	<	-	1	θ—
Signa	ture of BC	OS chai	rman, N	ICE

1.	Continuous Assessment Test I, II	
2.	Assignment: Group Presentation, Project report,	1.Course end survey
	Poster preparation, Prototype or Product	2
	Demonstration etc. (as applicable)	
3.	End Semester Examination	

			0
	0	-	P
0			
Signa	ture of BO	15 chair	man, MCE

INTRODUCTION	12Hours
Open loop and closed loop systems - Examples - Elements of closed lo	pop systems - Transfer function
of elements - Modeling of physical systems - Mechanical systems - Tra	
systems - Electrical networks - Block diagram - Signal flow graph - M	lason's gain formula. Transfer
function - Transfer function of DC servomotor, AC servomotor.	
TIME DOMAIN ANALYSIS	12Hours
Standard Test signals – Time response of second order system - Time criteria - Types of systems - Steady state error constants - Generalized	
FREQUENCY RESPONSE OF SYSTEMS	12Hours
Frequency domain specifications - correlation between time and frequency	ency response for second order
systems-Bode plots- Polar Plot -Assessment of stability - Gain Margin	and phase Margin Assessment
-Lead, lag and Lead lag compensation using Bode Plot. Tutorials: Bo	ode plot and polar plot using
MATLAB.	
STABILITY OF CONTROL SYSTEMS	12Hours
Characteristic equation - Routh Hurwitz criterion of stability - Nyquist	
criterion-Assessment of relative stability-Gain and Phase Margin. Root Location and Phase Margin. Content of the stability	1
procedure - Root Locus construction - Root contours- Tutorials: Stabi	lity analysis of higher order
systems using MATLAB	
AUTOMATIC CONTROL	12Hours
Introduction to Automatic Control -P-I-D Control - PID Control Tunin	0
Ratio Control - Time Delay Systems and Inverse Response Systems us	ing MATLAB tool.
Theory:60 Hrs Total Hours: 60	
REFERENCES:	
REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th editi	on, Prentice Hall of India, New
<ul> <li><b>REFERENCES:</b></li> <li>1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5th editi Delhi, 2009.</li> </ul>	
<ul> <li><b>REFERENCES:</b></li> <li>1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5th editi Delhi, 2009.</li> <li>2. Katsuhiko Ogata, "Modern Control Engineering", 5th edition, Prenti</li> </ul>	ce Hall India, 2011.
<ul> <li><b>REFERENCES:</b></li> <li>1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5th editi Delhi, 2009.</li> </ul>	ce Hall India, 2011. , Pearson India, 2014.

5	ρ—
Signature of BOS chairman, M	ACE

U18MCT5105

# DESIGN OF MACHINE ELEMENTS

L	Т	Р	J	С
3	1	0	0	4

# **Course Outcomes**

After successful completion of this course, the students should be able to						
C01	Recognize the design process and the factors influencing it and design the simple components for static loading	K3				
CO2	Apply the basic concepts of design to Estimate the life of the components subjected to varying loads.	K3				
CO3	Design the circular shafts based on strength and rigidity, keys and couplings for power. transmitting elements	K3				
<b>CO4</b>	Apply the basics of power transmission to select the belts	K3				
CO5	Design the welded joints, threaded joints and springs subjected to static and dynamic loads.	К3				
<b>CO6</b>	Select the rolling contact bearings for static and cyclic loads	K3				
<b>D</b>						

# **Pre-requisite**

# CO/PO Mapping

	(S/M/W indicates strength of correlation)						tion)	S	-Strong	g, M-M	edium,	W-We	eak	
		Programme Outcomes (POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S		М		М								М	W
CO2	S				М								М	
CO3	S												М	
CO4	М												W	
CO5	S												М	
CO6	М												W	
Course	Assess	sment	metho	ds:										

	Direct	Indirect
1.	Continuous Assessment Test I, II	
2.	Assignment: Group Presentation, Project	
	report, Poster preparation, Prototype or	1.Course end survey
	Product Demonstration etc. (as applicable)	· - · · · · · · · · · · · · · · · · · ·
3.	End Semester Examination	

0 Signature of BOS chairman, MCE

DESIGN PROCESS AND DESIGN FOR STATIC LOAD	9 Hours
Machine Design – Design Process – Factors influencing design – Calculation of str	resses for various.
load combinations - theories of failure - Factor of safety - Design of curved beams	s – Crane hook
and 'C' frame – Design of levers	
DESIGN OF FLUCTUATING LOAD	8 Hours
Stress concentration - causes & remedies - fluctuating stresses - fatigue failures -	S-N curve –
endurance limit - notch sensitivity - endurance strength modifying factors - des	sign for finite and
infinite life - cumulative damage in fatigue failure - Soderberg, Gerber, Go	odman, Modified
Goodman diagrams - Fatigue design of components under combined stresses	
DESIGN OF POWER TRANSMITTING ELEMENTS	8 Hours
Shaft design on the basis of strength, torsional rigidity and lateral rigidity and A.S.	M.E. code –
Design of keys and splines - Design of flange coupling and flexible bushed pin cou	upling – Belt drive
Selection of Flat belts, V-belts and ribbed belts.	
DESIGN OF JOINTS AND SPRINGS	10 Hours
Threaded fasteners - Bolts of uniform strength - Bolts under tension - Eccentrical	ly loaded bolted
	of Welded Joints
joints Welded joints – Welding symbols – Stresses in butt and fillet welds, Design	or werded Johns
joints Welded joints – Welding symbols – Stresses in butt and fillet welds, Design for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints	
for static loads - Axially loaded unsymmetrical welded joints, Eccentric load in the	
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa	eplane of welds – tions for helical
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Styleofends–Stress and tensionsprings–Styleofends–Stress and tensionsprings–Styleofends–Stress and tensionsprings–Styleofends–Stress and tensionsprings–Styleofends–Stress and tensionsprings–Styleofends–Styleofends–Stress and tensionsprings–Styleofends–Styleofends–Stress and tensionsprings–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–Styleofends–	plane of welds – tions for helical pringsin series
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sgrand parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mu	plane of welds – tions for helical pringsin series
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mulleaf springs – Surge in springs	e plane of welds – tions for helical pringsin series lti-
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mul leaf springs – Surge in springs <b>ROLLING CONTACT AND SLIDING CONTACT BEARINGS</b>	tions for helical pringsin series lti- <b>10 Hours</b>
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mulleaf springs – Surge in springs <b>ROLLING CONTACT AND SLIDING CONTACT BEARINGS</b> Types of rolling contact Bearings – Static and dynamic load carrying capacities, S	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mulleaf springs – Surge in springs <b>ROLLING CONTACT AND SLIDING CONTACT BEARINGS</b> Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mulleaf springs – Surge in springs <b>ROLLING CONTACT AND SLIDING CONTACT BEARINGS</b> Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> stribeck's Equation arings – Design for
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mulleaf springs – Surge in springs <b>ROLLING CONTACT AND SLIDING CONTACT BEARINGS</b> Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies.	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design fo bearings – causes
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints <b>Design of springs</b> Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs <b>ROLLING CONTACT AND SLIDING CONTACT BEARINGS</b> Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies.	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> stribeck's Equation arings – Design for bearings – causes <b>ours:45</b>
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He REFERENCES: 1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill F Ltd., 2020.	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes <b>ours:45</b> Publication Co.
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Ss and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He REFERENCES: 1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill F Ltd., 2020. 2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition,	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes <b>ours:45</b> Publication Co.
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sg and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He REFERENCES: 1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill F Ltd., 2020.	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes <b>ours:45</b> Publication Co.
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Ss and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Muleaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He REFERENCES: 1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill F Ltd., 2020. 2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition,	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes <b>Durs:45</b> Publication Co. McGraw Hill
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–S and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mul leaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bear cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He REFERENCES: 1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill F Ltd., 2020. 2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, International, 2020. 3. Prabhu T J, "Fundamentals of Machine Design", Bharat Institute of Science and 2010.	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes <b>Durs:45</b> Publication Co. McGraw Hill Technology,
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equa compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–S and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Mu leaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS Types of rolling contact Bearings – Static and dynamic load carrying capacities, S Equivalent bearing load – Load-life relationship – Selection of rolling contact bea cyclic loads and speed – mounting of bearings – Types of failure in rolling contact and remedies. Theory:45 Hrs Total He EFERENCES: 1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill F Ltd., 2020. 2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, International, 2020. 3. Prabhu T J, "Fundamentals of Machine Design", Bharat Institute of Science and	e plane of welds – tions for helical pringsin series lti- <b>10 Hours</b> Stribeck's Equation arings – Design for bearings – causes <b>Durs:45</b> Publication Co. McGraw Hill Technology,

McGraw Hill, 2007.

5. Signature of BOS chairman, MCE

L	Τ	Р	J	С
0	0	4	2	3

#### **Course objectives**

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own.
- To help experiment with innovative ideas in design and teamwork.
- To create an engaging and challenging environment in the engineering lab

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

**CO1:** Identify a practical problem and find a solution

**CO2:** Understand the project management techniques

**CO3:** Demonstrate their technical report writing and presentation skills

### **Pre-requisite**

Nil

#### CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO	Programme Outcomes													
COs		(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S	S	М
CO2											S		S	М
CO3										S			S	М

#### **Course Assessment methods:**

DIRECT	INDIRECT					
1. Project reviews 50%						
2. Workbook report10%	1. Course Exit Survey					
3. Demonstration & Viva-voce 40%						
Content:						

The course will offer the students with an opportunity to gain a basic understanding of computer.

controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the fifth semester, students will focus primarily on design project combining concepts learnt in Engineering clinics I and II

5.	ρ—
Signature of BOS chairman, M	ACE

# **GUIDELINES:**

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific task, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

**Total Hours: 90** 

Signature of BOS chairman, MCE		0
	$\langle$	P
	Signature of BOS	chairman MCE

# SEMESTER VI



L	Т	Р	J	С
3	0	2	0	4

# **Course Outcomes**

After s	After successful completion of this course, the students should be able to					
<b>CO1:</b>	Describe the fundamentals of Computer Aided Design.	K2				
<b>CO2:</b>	Describe the basic and constructional features of CNC machines.	K2				
CO3:	Develop a CNC part programming for the basic turning and milling operation.	K3				
CO4:	Explain the importance of group technology and computer aided process plan.	K2				
CO5:	Generate CNC part program for a given components.	K3				
CO6:	Draft, model and assemble a given dimensional engineering components.	K3				

# **Pre-requisite**

1.	U17MCT2001 – Manufacturing Technology
	CO/PO Manning

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S									W				
CO2	М												W	
CO3	М	М	М		М								М	
<b>CO4</b>	М		W											
CO5	М				S									
CO6	S				S					М			S	

DIRECT	INDIREC T				
1. Internal Test I					
2. Internal Test II	1.Course	e end survey			
3. End semester Examination.		-			
4. Assignment					
FUNDAMENTALS OF COMPUTER GRAPHICS	9 Hours				
Product Cycle- Design Process- Sequential and Concurrent Engineering- Computer Aided Design					
- CAD System Architecture- Computer Graphics - Co-Ordinate Systems- 2D And 3D					
Transformations- Homogeneous Coordinates – Line Drawing -Clipping- Viewing Transformation					
INTRODUCTION TO CNC		8 Hours			

< Signature of BOS chairman, MCE

	1.01
History - Classification, Introduction to NC machine - Introduction to Computer Numerica	
Features of CNC Machines - Different types of CNC machines - Advantages and disadvar	itages of CNC
machines DNC and Adaptive control - Maintenance features of CNC Machines.	
COMPONENTS OF CNC MACHINES AND TOOLING10 Hour	
Description of CNC components: Structure, Drive Mechanism, gearbox, Main drive, feed	· •
Motors, Axesmotors-Spindlebearing-Slideways-Recirculatingballscrews-Backlashmeasu	
compensation, linear motion guide ways - Tool magazines, ATC, APC, Chip conveyor	rs - Types of
measuring systems in CNC machines –Magnetic Sensors for Spindle	
Orientation. Qualified and pre-set tooling – Principles of location – Principles of clamping –	Work holding
devices. Retrofitting of Conventional Machine Tools.	44.77
CNC PART PROGRAMMING AND MAINTENANCE	11 Hours
Part Program Terminology- G and M Codes – Types of interpolation Methods of CNC par	
programming-Manual part programming: Fixed cycle, canned cycle-Computer Assisted pa	
programming – APT language – CNC part programming using CAD/CAM-Introduction to	-
Automated Part Programming. Factors influencing selection of CNC Machines - Practical a	spects of
introducing CNC machines in industries.	
Group Technology and CAPP	7 Hours
Introduction, part families, part classification and coding systems: OPITZ, PFA, Benefits o	
technology. Approaches to Process Planning, Different CAPP system, application and bene	fits. Flexible
Manufacturing System (FMS) – Components – Layout.	
Theory:45 HrsPracticals:30 HrsTotal Hours:	75
REFERENCES	
1. Radhakrishnan P., "Computer Numerical Control Machines", New Central Book Ag	ency. 2013.
2. Groover M P., "Automation, Production Systems and Computer Integrated Manufac	
Prentice Hall, 2007.	,
3. YoremKoren, "Computer Control of Manufacturing Systems", Pitman, London, 201	7.
4. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufa	
management "Second Edition, Pearson Education, 1999	
5. Ibrahim Zeid, Sivasubramanian R, "CAD/CAM: Theory & Practice" 2 nd edition, Mc	Graw Hill,
Singapore, 2009.	
LIST OF EXPERIMENTS:	
1.Drafting	
2. Modeling	
3. Assembly	
4.Part Programming - CNC Turning Centre	
i) Step and Taper Turning	
ii) Thread cutting.	
iii) Drilling	
5. Part Programming - CNC Milling Centre	
i) Contouring	
ii) Drilling	
iii) Pocketing	

Sau Signature of BOS chairman, MCE

~

# **ROBOTICS ENGINEERING**

L	Т	Р	J	С
3	0	2	0	4

Course	Course Outcomes							
After s	After successful completion of this course, the students should be able to							
CO1:	Explain the robotic terminologies for various configurations	K2						
<b>CO2:</b>	Select an appropriate gripper for a given application and use a gripper for pick and place. application	K3						
CO3:	Calculate the forward kinematics, inverse kinematics and Jacobian for a serial robot	K3						
CO4:	Apply Lagrangian and Newton-Euler methods to analyze dynamic characteristics of a robot	K3						
CO5:	Describe various robot motion planning algorithm and robot interfaces	K2						
<b>CO6:</b> Explain and practice various programming techniques used in industrial robots								
Pre-ree	quisite							

Nil

# **CO/PO** Mapping

(S/M/W indicates strength of correlation) S – Strong, M – Medium, W – Weak														
Cos	Programme Outcomes (PO's)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S			W					М	М			М	М
CO3	S	М	М		М				М	М			М	М
CO4	S	М	М										М	М
CO5	М													W
CO6					S				М	М			М	М
Cours	se Asse	ssmen	t meth	ods:										
			Dire	ct							Indir	ect		
<ol> <li>Continuous Assessment Test I, II</li> <li>Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable)</li> <li>End Semester Examination</li> </ol>														
	RODU												6	Hours
Brief History, Types of robots, Overview of robot subsystems, resolution, repeatability and accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace, Mechanisms and transmission - Applications.														
	KINEMATICS OF ROBOTS9 Hours													
Introduction - Matrix Representation - Homogeneous transformation matrices – Forward and Inverse kinematics Equations: Position and Orientation -Denavit- Hardenberg Representation of forward kinematics equations of robots- Degeneracy and Dexterity.														

# DYNAMICS OF ROBOTS

11 Hours

< >. Signature of BOS chairman, MCE

<b>ROBOT MOTION PLANNING</b>	G AND ROBOT INTERFACES	5 5 Hours
Robot Motion Planning: Cartesian S	Space vs Configuration space, Intro	duction to motion planning
algorithms. Robot interfaces: Low l and connections	level interfaces, IO digital signals, F	ieldbuses – Data protocols
END EFFECTORS		4 Hours
End effectors and Different types of force analysis-Gripper Design-Simp	of grippers, vacuum and other metho ple problems	ods of gripping - Grippers.
<b>ROBOT PROGRAMMING</b>		10 Hours
programming, teach pendant progra Introduction to Robotic operating Syst Manipulation with MoveIt, - Simulat		guages – Simulation. , Moving the robot in Gazebo
Theory:45 Hrs.	Practical:30Hrs	Total Hours:75
REFERENCES:		
	to Robotics', 2 nd edition, Prentice H	
	Robots - Technology, Programming	g and Applications",
McGraw Hill, New York, 200		estions for the Fosteries of
	bots programming: Building Applic	ations for the Factories of
<ul> <li>the Future', 1st edition, Spring</li> <li>4. Nagrath and Mittal, "Robotic</li> </ul>	ss and Control", Tata McGraw-Hill,2	2003
-	bbot Dynamics and Control", John V	
	C S G, "Robotics, control, sensing, V	-
McGraw Hill International, 19		ision and intelligence,
,	gorithms", Cambridge Univ. Press, N	New York,2006.
	Seth Hutchinson, George Kantor, V	
	, "Principles of Robot Motion: Theo	
Implementations", Prentice H		
	rique Fernandez, Aaron Martinez, 'Eff	fective Robotics Programmin
with ROS', 3 rd Edition, Packt,2	2016.	
LIST OF EXPERIMENT:	iss simulation software	
1. Study of different type of robot		thematical Coftware
	inematics for robotic arm using Mat	
	strial robot using a Robotics simulat	
	object profile tracking using a Robo	
	or a robot using a simulation softwar	
and place operation	Robot with a pneumatic vacuum gr	ipper for a simple pick
7. Writing and verifying a Program		
<ul><li>8. Robot programming and simulat</li><li>9. Setup and Program a robot to avoid</li></ul>		

< 5 Signature of BOS chairman, MCE

U18MCI6203

# MICROCONTROLLER AND EMBEDDED SYSTEMS

L	Т	Р	J	С
2	0	2	0	3

# **Course Outcomes**

After	After successful completion of this course, the students should be able to						
CO1:	Compare various cores of embedded systems	K2					
CO2:	Brief the architecture, instruction set and interrupts of microcontroller	K3					
CO3:	Describe the features of ARM Cortex-M4 controller	K2					
CO4:	Interface the peripherals of ARM Cortex-M4 controller	K3					
CO5:	Develop embedded systems through hardware and software integration	K3					
CO6:	Explain the concepts of real time operating systems	K2					

#### **Pre-requisite**

1. U18MCT4103- Digital Electronics and Microprocessor

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
		Programme Outcomes												
							(]	Pos)						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										М	М
CO2	М		S	М	S								S	S
CO3	W		М										М	М
CO4	М		S		S								S	S
CO5	W	М	S		S								S	S
CO6	S	S	Μ	М									М	М

Direct	Indirect						
1. Continuous Assessment Test I, II							
2. Assignment; Group Presentation, Project report,							
Poster preparation, Prototype or Product	1.Course end survey						
Demonstration etc. (as applicable)							
3. End Semester Examination							
INTRODUCTION TO EMBEDDED SYSTEM	IS	3 Hours					
Embedded system overview and applications, features - Brief introduction to embedded.							
microcontroller cores: CISC, RISC, ARM and DSP.							
THE MICROCONTROLLER ARCHITECTURE 9 Hours							
Introduction to 8051 Microcontroller: Architecture, Pin configuration, Memory organization, Input							
/Output Ports, Counter and Timers, Serial communication and Interrupts, Instruction set,							
INTRODUCTION TO TIVA ARM CORTEX M4 9 Hours							
Key Features – Functional Block Diagram - Pin Configuration –I/O pin multiplexing, pull.							
up/down registers, GPIO control, Memory Mapped Peripherals, programming System registers,							
Watchdog Timer, need of low power for embedded systems, System Clocks and control,							
Hibernation Module on Tiva, Active vs Standby cu	rrent consumption. Introduction	to Interrupts,					

Signature of BOS chairman, MCE

Interrupt vector table, interrupt programming.

# PERIPHERALS OF TIVA ARM CORTEX

9 Hours

Timer, Basic Timer, Real Time Clock (RTC), Timing generation and measurements, Analog interfacing and data acquisition: ADC, Analog Comparators, DMA, Motion Control Peripherals: PWM Module & Quadrature Encoder Interface (QEI)

#### HARDWARE/SOFTWARE INTEGRATION:

6 Hours

Host and Target Machines. Getting Embedded Software into Target System: Programmers, Display, Keyboard, Relay, Stepper and DC Motor Interfacing

#### **REAL TIME OPERATING SYSTEMS**

9 Hours

Survey of Software Architectures, Tasks and Task States, Tasks and Data, Semaphores and Shared Data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memory Management and Interrupt Routines in RTOS Environment. Study of embedded product design with real time concepts using RTOS.

# Theory: 45 Hrs Practical: 30 Hrs. Total Hours: 75

#### **REFERENCES:**

- 1. Kenneth J Ayala and Dhananjay V Gadre, "The 8051 Microcontroller & Embedded Systems using Assembly and C" Cengage Learning (India edition), 2010
- 2. Jonathan W Valvano, "Introduction to Arm Cortex -M Microcontrollers", 2012.
- 3. Steve Furber, "ARM System-on-Chip Architecture", Pearson Education, 2009.
- 4. David E Simon, "An Embedded Software Primer", Pearson Education Asia, New Delhi, 2009
- 5. Rajkamal," Embedded Systems: Architecture, Programming and Design", Tata McGraw-Hill, New Delhi, 2017
- 6. Mazidi M A, Mazidi J G. and McKinlay R D., "The 8051 Microcontroller & Embedded
- 7. systems", 2nd Edition, Pearson, 2011
- 8. Shibu K V., "Introduction to Embedded Systems" McGraw Hill, 2016.
- 9. Andrew N Sloss, Dominic Symes and Chris Wright, "ARM system developer's guide", Elsevier, 2010.

#### **List of Experiments**



#### 8051 Program using Assembly Language

1. Basic programming using 8051 ALP (addition, subtraction, multiplication, division, ascending, descending etc.)

2. 8051 peripheral programming (ADC, DAC, TIMER)

3. Motor control using 8051(DC motor and stepper motor)

#### Program using Embedded C

- 1. LED programming
- 2. Interface with Relay, Buzzer, seven segment display, LCD.
- 3. Interface and control the speed of a DC Motor.
- 4. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
- 5. Interface DAC and generate waveforms.
- 6. Measure Ambient temperature using LM35 TEMPERATURE SENSOR and ADC

τιιοινίτζοοο	CONSTITUTION OF INDIA	L	Т	Р	J	C
U18INT6000	(Mandatory course)	2	0	0	0	0
Course Outcomes	s					

After	successful completion of this course, the students should be able to
CO1:	Gain Knowledge about the Constitutional Law of India
<b>CO2</b> :	Understand the Fundamental Rights and Duties of a citizen
CO3:	Apply the concept of Federal structure of Indian Government
CO4:	Analyze the Amendments and Emergency provisions in the Constitution
CO5:	Develop a holistic approach in their life as a Citizen of India

## Pre-requisite

Nil

CO/PO Mapping														
						CO/I	'O Ma	appm	g					
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
aa	Programme Outcomes													
COs		(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						М			W			S		
CO2						S		S				М		
<b>CO3</b>									М	S		W		
<b>CO4</b>								W	М			М		
CO5						М		М				S		
<b>CO6</b>														

Signature of BOS chairman, MCE

DIRECT	INDIRECT	ſ
1. Group Activity / Quiz/ Debate / Case studies.	1. Surveys	
2. Class test /Assignment		
THEORY COMPONENT CONTENTS	·	
MODULE.1: INTRODUCTION TO INDIAN	CONSTITUTION	4 Hours
Meaning of the constitution law and constitutiona	1 1	of the
Constitution - Salient features and characteristics	of the Constitution of India	
MODULE.2: FUNDAMENTAL RIGHTS		8 Hours
Scheme of the fundamental rights - Right to Equa		
Scope of the Right to Life and Liberty - Fundame	ental Duties and its legal statu	s - Directive
Principles of State Policy – Its importance and im	plementation	
MODULE.3: FEDERAL STRUCTURE		8 Hours
Federal structure and distribution of legislative and fin	nancial powers between the Uni	on and the States -
Parliamentary Form of Government in India - The co	nstitutional powers and status	of the President of
India		
MODULE.4: AMENDMENT TO CONSTITU		6 Hours
Amendment of the Constitutional Powers and Pro	ocedure - The historical perspe	ectives of the
constitutional amendments in India		
MODULE.5: EMERGENCY PROVISIONS		4 Hours
National Emergency, President Rule, Financial En Constitutional Scheme in India	nergency Local Self Governm	nent –
Theory:30 Tutorial:0 Practical:0	Project:0 Tota	al:30
Hours		
<b>REFERENCES:</b>		
1. Constitution of India - Ministry of Law & J awmin.nic.in/coi/coiason29july08.pdf\	ustice – PDF format	
2. Introduction to the Constitution of India by	Durgadas Basu	
3. The Constitution of India – Google free ma	terial -	
www.constitution.org/cons/india/const.html		
4. Parliament of India – PDF formatdownload	.nos.org/srsec317newE/317E	L11.pdf
5. The Role of the President of India – By Pro	f. Balkrishna	
6. Local Government in India – E Book - Prad	eep Sachdeva	
https://books.google.com/books//Local_Go	1	

5. Signature of BOS chairman, MCE

## SEMESTER VII



## ENGINEERING ECONOMICS AND FINANCIAL MANAGEMENT

L	Т	Р	J	С
3	0	0	0	3

#### **Course Outcomes**

After s	successful completion of this course, the students should be able to	
<b>CO1:</b>	Evaluate the economic theories, Cost concepts and pricing policies	K2
<b>CO2:</b>	Analyze the market structures and integration concepts	K2
CO3:	Apply the concepts of national income and understand the functions of banks and concepts of globalization	K2
CO4:	Apply the concepts of financial management for project appraisal and working capital management	K2
CO5:	Understand accounting systems	K2
<b>CO6:</b>	Analyze financial statements using ratio analysis	K2
Due	agnicita	

## **Pre-requisite**

NIL

	CO/PO Mapping													
	(S/N	1/W in	dicate	s strei	ngth o	f corre	elation	) S – Strong, M – Medium, W –Weak						
		Programme Outcomes (PO's)												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		М				М					М		W	
CO2											М		W	
CO3				М		М					М			
CO4											S			
CO5						М					S			
CO6			М		М						S			
Cours	se Asse	essmen	t meth											
			Dir	ect							Indi	rect		
1. Int	ternal 7	Fest I												
2. Int	ternal 7	Fest II												
3. As	signme	ents						1.	Course	End Su	rvey			
4. En	d Sem	ester E	lxam											
Cour	se Coi	ntent:						•						

< 5. Signature of BOS chairman, MCE

	AND PRICING CONCEPTS	9 Hours
Economic theories – Dem	nand analysis – Determinants of demand – Demand forecasting	g – Supply – Actual
	st – Incremental Cost and sunk Cost – Fixed and variable Cost -	-MarginalCosting-
	ost-Costcurves-Breakevenpointandbreakevenchart	
	ven chart – Interpretation of break-even chart – Contribution	– P/V-ratio, profit-
	hip – Price fixation – Pricing policies – Pricing methods.	0.77
	IS AND MANUFACTURING PRACTICES	9 Hours
Firm – Industry – Market – Horizontal integration.	t – Market structure – Diversification – Vertical integration –	Merger.
NATIONAL INCOME, ENVIRONMENT	, MONEY AND BANKING, ECONOMIC	9 Hours
	s – GNP – NNP – Methods of measuring national income – In noney – Value of money – Functions of bank – Types of banks ion – Globalization	
<b>CONCEPTS OF FINAN</b>	NCIAL MANAGEMENT	9 Hours
profitability – Sources of	Scope – Objectives – Time value of money – Methods of app finance – Working capital and management of working capit	al
ACCOUNTING SYSTE	EM, STATEMENT AND FINANCIAL ANALYSIS	9 Hours
	stems of book-keeping – Journal – Ledger – Trail balance – Fisis – Types of ratios – Significance – Limitations.	inancial
Theory:45hours	Tutorials:0hour Total Hours: 45	
<b>REFERENCES:</b>		
1 Presenne Chandre "	'Financial Management (Theory & Practice), "TMH	
1. I fasanna Chanula,	T manetar Wanagement (Theory & Thattee), Thirt	
	"Essentials of Managerial Finance"	
2. Weston & Brigham,	"Essentials of Managerial Finance"	
<ol> <li>Weston &amp; Brigham,</li> <li>Pandey, I. M., "Final</li> </ol>	"Essentials of Managerial Finance" ancial Management"	
<ol> <li>Weston &amp; Brigham,</li> <li>Pandey, I. M., "Finat</li> <li>James C. van Horne.</li> </ol>	"Essentials of Managerial Finance"	a Agencies,
<ol> <li>Weston &amp; Brigham,</li> <li>Pandey, I. M., "Finat</li> <li>James C. van Horne.</li> <li>Bhaskar S. "Enginee Chennai</li> </ol>	"Essentials of Managerial Finance" ancial Management" . Fundamentals of Financial Management	a Agencies,
<ol> <li>Weston &amp; Brigham,</li> <li>Pandey, I. M., "Finat</li> <li>James C. van Horne.</li> <li>Bhaskar S. "Enginee Chennai</li> <li>James C. van Horne</li> </ol>	"Essentials of Managerial Finance" ancial Management" E. Fundamentals of Financial Management ering Economics and Financial Accounting", (2003) Anuradh	a Agencies,
<ol> <li>Weston &amp; Brigham,</li> <li>Pandey, I. M., "Finat</li> <li>James C. van Horne.</li> <li>Bhaskar S. "Engineer Chennai</li> <li>James C. van Horne</li> <li>James C. van Horne</li> <li>Management Account</li> </ol>	"Essentials of Managerial Finance" ancial Management" E. Fundamentals of Financial Management ering Economics and Financial Accounting", (2003) Anuradh E Financial Management & Policy	
<ol> <li>Weston &amp; Brigham,</li> <li>Pandey, I. M., "Finat</li> <li>James C. van Horne.</li> <li>Bhaskar S. "Enginee Chennai</li> <li>James C. van Horne</li> <li>James C. van Horne</li> <li>Management Accourt</li> <li>M. Y. Khan &amp; P. K.</li> <li>Ramachandra Aryast</li> </ol>	"Essentials of Managerial Finance" ancial Management" e. Fundamentals of Financial Management ering Economics and Financial Accounting", (2003) Anuradh e Financial Management & Policy unting & Financial Management . Jain Management Accounting Principles & Practice -P. Sara sri. A., and Ramana Murthy V.V., "Engineering Economics &	vanavel
<ol> <li>Weston &amp; Brigham,</li> <li>Pandey, I. M., "Finated Astronomy of Content of Content of Content of Chennai</li> <li>Bhaskar S. "Engineer Chennai</li> <li>James C. van Horne</li> <li>Management Account</li> <li>M. Y. Khan &amp; P. K.</li> <li>Ramachandra Aryastronomy of Content of Content</li></ol>	"Essentials of Managerial Finance" ancial Management" e. Fundamentals of Financial Management ering Economics and Financial Accounting", (2003) Anuradh e Financial Management & Policy anting & Financial Management . Jain Management Accounting Principles & Practice -P. Sara	vanavel Financial

Sau Signature of BOS chairman, MCE

U18MCT7001	MODILE DODOTICS	L	Τ	Р	J	С
	MOBILE ROBOTICS	3	0	0	0	3
<b>C O (</b>						

After successful completion of this course, the students should be able	to
CO1: Explain different types of mobile robot locomotion	K2
CO2: Apply mobile robot kinematics and constraints	K2
<b>CO3:</b> Choose sensors for the perception of mobile robots.	K2
CO4: Implement robot localization techniques	K3
CO5: Explain planning and navigation in robotics	K2
CO6: Apply obstacle avoidance techniques in mobile robots	K3

## Pre-requisite

Nil

	CO/PO Mapping													
	(	S/M/W	v indica	ates sti	ength	of con	relation	ı) S	S-Stron	ıg, M-M	edium,	W-Wea	k	
COs						Pr			tcomes	8				
	PO1	PO2	PO3	PO4	PO5	PO6	( PO7	POs) PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S			-							_			М
CO2	S	М	М		М									S
CO3	S				М								М	S
CO4	S				М									S
CO5	S												М	S
CO6	S				Μ								М	S
Cours	e Ass	essmer						-						
1 9				rect							Indirec	t		
		ous Ass			,	<b>.</b>		1.0		1				
	0	ent; G	-					1. C	ourse e	nd surve	ey			
		Demo					a)							
		nester E			(as app	mean	-)							
LOC	ΟΜΟ	TION											9 H	Iours
Introd	luction	n to Ro	botics	– key	issues	in robc	ot locor	notion	- Type	es of Lo	comotio	on -legg	ed robo	ots –
				•					• 1	naneuve		00		
		ROBO												Iours
									nomic d	constrair	nts, kine	matic n	nodels	of
-		nd legg			mulati	on of r	nobile	robots						
ROB	OT PI	ERCE	PTIO	N									9 I	Iours

5. Signature of BOS chairman, MCE

Proprioceptive/Exteroceptive and passive/active sensors, performance measures of sensors, sensors for mobile robots like global positioning system (GPS), Doppler effect-based sensors, vision-based sensors, uncertainty in sensing, filtering.

< Signature of BOS chairman, MCE

MOBILE ROBOT LOCALIZATION	9 Hours				
Introduction to localization – challenges in localization – localization and navigation – belief					
representation – map representation – probabilistic map-based localization – Markov lo	calization,				
Kalman localization.					
PATH PLANNING AND NAVIGATION	9 Hours				
Introduction to planning and navigation – planning and reacting – path planning algorith on A-star, Dijkstra, Voronoi diagrams – obstacle avoidance techniques	hms based.				
Theory:45Hours Tota	al Hours: 45				
<b>REFERENCES:</b>					
1. Roland Seigwart, IllahReza Nourbakhsh, and Davide Scaramuzza, "Introduction to a mobile robots", Second Edition, MIT Press, 2011.	autonomous				
<ol> <li>Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, LydiaE.Kavraki,SebastianThrun, "PrinciplesofRobotMotion:Theory,Algorithms,and Implementations", A Bradford Book, 2005.</li> </ol>					
3. Gregory Dudek and Michael Jenkin, "Computational Principles of Mobile Robotics" Edition, Cambridge University Press, 2010.	', Second				
4. Peter Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, S Tracts in Advanced Robotics, 2011.	Springer				

5. S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006.



## **IMAGE PROCESSING AND**

## U18MCT7002

## **COMPUTER VISION**

L	Т	Р	J	С
3	0	0	0	3

#### **Course Outcomes**

After successful completion of this course, the students should be able to	
CO1: Summarize the fundamentals of digital image processing	K2
<b>CO2:</b> Apply image enhancement techniques in spatial and frequency domain.	K3
<b>CO3:</b> Apply image segmentation and clustering techniques	K3
CO4: Describe 3D vision concepts	K2
<b>CO5:</b> Choose appropriate techniques for different applications	K4

#### Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	W											S	
CO2	М	М	S		S								W	М
CO3	М	М	S		S								W	М
CO4	М	М		S									М	S
CO5	S	S	S	S	S								S	S

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. End semester Examination.	
4. Assignment	

< Signature of BOS chairman, MCE

FUNDAMENTALS OF IMAGE PROCESSING	7 Hours				
Introduction to Image processing and Computer Vision; Digital image representation;					
digital image processing systems; Structure of the human eye; a simple image model; brightness					
adaptation and discrimination; Electromagnetic Spectrum. Image Sensing and Acquis	ition. Some				
Basic Relationships Between Pixels. IMAGE ENHANCEMENT	10 Hours				
Basic gray level transformations-histogram equalization- Arithmetic/logic Operations					
spatial filtering-comparison between smoothing and sharpening spatial filters. 2D Fou					
transform -Smoothing & sharpening Frequency domain filters (Ideal, Butterworth, Ga					
SEGMENTATION AND CLUSTERING	10 Hours				
Segmentation – Thresholding, Edge detection and Region growing, watershed, Binar					
and grey morphology operations. boundary descriptors-chain codes -Fourier descript	ors –region				
descriptors, moments Clustering: K-means Clustering. Pattern recognition.					
<b>3D VISION GEOMETRY</b>	9 Hours				
3D vision tasks, Basics of projective geometry, A single perspective camera , Scene re					
from multiple views, Two cameras stereopsis, Three cameras and trifocal tensor, 3D r	nodel-based				
vision, 2D view based representations of a 3D scene	0.77				
APPLICATIONS	9 Hours				
Industrial automation and quality inspection, Object detection; Gesture Recognition; recognition, Vision for robot control-Selection of camera based on applications.	Fingerprint				
Theory:45Hrs Total Hor	urs·45				
REFERENCES:					
1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th Indi	an Reprint.				
Pearson Education Asia/Addison Wesley publishing company, 2017.	······································				
2. William K Pratt, "Digital Image Processing", 2 nd edition, Wiley-Inter Science 1991.	ce Publication,				
3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Brooks/Cole, Singapore,2008.					
vision, brooks/core, singapore,2000.					
<ol> <li>4. Davies E. R., "Computer &amp; Machine Vision", Academic Press, 2012.</li> </ol>					
<ol> <li>Davies E. R., "Computer &amp; Machine Vision", Academic Press, 2012.</li> <li>Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 2011.</li> </ol>					
4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012.	ıbridge				

5. Signature of BOS chairman, MCE

#### **PROJECT PHASE I**

L	Т	Р	J	С
0	0	0	6	3

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

**CO1:** Design, analyze, realize / simulate a physical system by using the technology they learnt. during the program.

**CO2:** Integrate various systems into one Mechatronics product.

**CO3:** Work in a team with confined time duration.

**CO4:** Disseminate his work both in oral and written format.

#### **Pre-requisite**

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S		М	М				S	S	S
CO2	S	S	S	S	S	М	М	М				S	S	S
CO3									S					
CO4										S	S			

#### **Course Assessment methods:**

Direct	Indirect
1. Interdisciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing.	
5. End Semester Viva Voice	

Students in the form of a group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer-based simulation projects. This exception should be recorded and approved by the department committee. Management-related projects will not be allowed. The interdisciplinary projects will carry more weightage.

Signature of BOS chairman, MCE

# SEMESTER VIII



	<b>PROJECT PHASE II /</b>	L	Т	Р	J	С
U18MCP8701	INTERNSHIP	0	0	0	24	12

After successful completion of this course	e, the students should be able to
meet buccebbild completion of this could	y the students should be usie to

**CO1:** Design, analyze, realize / simulate a physical system by using the technology they learnt. during the program.

CO2: Integrate various systems into one Mechatronics product.

**CO3:** Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

#### **Pre-requisite**

Nil

#### CO/PO Mapping

	(S/M/W indicates strength of correlation)							S-Stro	ong, M	-Mediu	um, W-	Weak		
COs		Programme Outcomes												
		(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	S	S	S	S		М	М				S	S	S
CO2	S	S	S	S	S	М	М	М				S	S	S
CO3									S					
CO4										S	S			

#### **Course Assessment methods:**

Direct	Indirect
1. Inter disciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing.	
5. End Semester Viva Voice	

Students in the form of a group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer-based simulation projects. This exception should be recorded and approved by the department committee. Management related project will not be allowed. The interdisciplinary projects will carry more weightage.

Signature of BOS chairman, MCE

## **PROGRAMME ELECTIVES**



## U18MCE0001

## **AUTOMOTIVE ELECTRONICS**

L	Т	Р	J	С
3	0	0	0	3

## **Course Outcomes**

After successful completion of this course, the students should be able to								
<b>CO1:</b>	Explain the basics concepts of automobile engines	K2						
<b>CO2:</b>	Describe the components of Engine Control system	K2						
<b>CO3:</b>	State the working principle of automotive sensors.	K2						
<b>CO4:</b>	Describe the principle of vehicle network protocols	K3						
CO5:	Explain the working of various comfort system embedded in automobile	K2						
<b>CO6:</b>	Describe the working principle of automobile safety systems	K2						

## **Pre-requisite**

U18MCI4202 - Sensors and Instrumentation

	CO/PO Mapping													
(S/M/	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
	Programme Outcomes (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	S						Μ					W		
CO2	S					W	W	М					М	М
CO3	S	М											W	М
CO4	S	М	М	W		W		W					S	М
CO5	S		М		М	W	Μ					W		М
CO6	S		М		М	М	М	W				W	S	S
Cours	e Asse	essmen	nt met	hods:		•	•		•				•	

Direct	Indirect					
<ol> <li>Continuous Assessment Test I, II</li> <li>Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable)</li> <li>End Semester Examination</li> </ol>						
INTRODUCTION 9 How						
Automobile physical configuration - Evolution of electronics in automobiles - Operating principles						

Signature of BOS chairman, MCE

of IC engine – Two stroke – Four stroke - Major engine components – Engine	ne cylinder
arrangements – working of simple carburetor- Ignition system – definition of engine	•
terms	performance
ENGINE CONTROL SYSTEM	9 Hours
Motivation For Electronic Engine Control - Electronic Engine Control System - Eng	ine Functions
and Control - Electronic Fuel Control System- Engine Mapping- Effect of Air/Fuel	Ratio, Spark
Timing on Performance, Exhaust Gas Recirculation on Performance- Electronic Ign	nition. Digital
Engine Control System - Engine Crank (Start) - Engine Warm-Up - Open-Loop Contro Loop Control - Hard Acceleration - Deceleration and Idle	ol - Closed-
AUTOMOTIVE SENSORS AND COCK PIT ELECTRONICS	9 Hours
Role of sensors and actuators in automotive control- construction and working principal	le of Mass air
flow (MAF) rate sensor - Exhaust gas oxygen sensor - Throttle plate angular post	
Crankshaft angular position/RPM sensor - Coolant temperature - Intake air temperature	
Manifold absolute pressure (MAP) sensor - Differential exhaust gas pressure sensor -	Vehicle speed
sensors- Introduction to Cockpit Electronics – Visual displays	0.77
VEHICLE NETWORKS	9 Hours
Vehicle Tracking System GPS, Vehicle networks CAN, CAN FD, LIN, Flex Ray- I/O	Modules –
Features- Advantages- Protocol formats – on board diagnostics systems.	
COMFORT AND SAFETY SYSTEMS	9 Hours
Traction control system – Cruise control system – electronic control of automatic transi	
antilock braking system – electronic suspension system –airbag systems – centralized of	-
system – Navigation systems – climate control of cars- Maintenance and charging of b	atteries.
Theory: 45 Hrs.Total Hours: 45	
REFERENCES:	
1. David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, Wiley, 20	
<ol> <li>David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, Wiley, 20</li> <li>Tom Denton, "Automobile Electrical and Electronics Systems", 2nd edition Edw Publishers, 2017.</li> </ol>	ard Arnold
<ol> <li>David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, Wiley, 20</li> <li>Tom Denton, "Automobile Electrical and Electronics Systems", 2nd edition Edw Publishers, 2017.</li> <li>William B Ribbens, "Understanding Automotive Electronics", 5th edition, Newr 2003</li> </ol>	ard Arnold less Publishing
<ol> <li>David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, Wiley, 20</li> <li>Tom Denton, "Automobile Electrical and Electronics Systems", 2nd edition Edw Publishers, 2017.</li> <li>William B Ribbens, "Understanding Automotive Electronics", 5th edition, Newr</li> </ol>	ard Arnold less Publishing
<ol> <li>David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, Wiley, 20</li> <li>Tom Denton, "Automobile Electrical and Electronics Systems", 2nd edition Edw Publishers, 2017.</li> <li>William B Ribbens, "Understanding Automotive Electronics", 5th edition, Newn 2003</li> <li>Robert Bosch GmbH, "BOSCH Automotive Handbook", 9th edition, Bentley pu</li> <li>Barry Hollembeak, "Automotive Electricity, Electronics and Computer Controls Delmar Publishers, 2001.</li> </ol>	ard Arnold hess Publishing blishers, 2014 ", 3 rd edition,
<ol> <li>David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, Wiley, 20</li> <li>Tom Denton, "Automobile Electrical and Electronics Systems", 2nd edition Edw Publishers, 2017.</li> <li>William B Ribbens, "Understanding Automotive Electronics", 5th edition, Newn 2003</li> <li>Robert Bosch GmbH, "BOSCH Automotive Handbook", 9th edition, Bentley pu 5. Barry Hollembeak, "Automotive Electricity, Electronics and Computer Controls</li> </ol>	ard Arnold bess Publishing blishers, 2014 ", 3 rd edition,



U18MCE0002

## **CONDITION MONITORING**

#### **Course Outcomes**

After s	After successful completion of this course, the students should be able to							
CO1	Recognize the types of failures and maintenance strategies	K2						
CO2	Illustrate the fundamental principles of machinery vibration	K2						
CO3	Explain signal analysis, fundamentals of FFT and signal conditioning	K2						
CO4	Explain the vibration and noise-based condition monitoring techniques	K3						
CO5	Explain the thermography and wear analysis for condition monitoring	K2						
CO6	Identify and explain the appropriate condition monitoring technique for a given application	K3						

## **Pre-requisite**

Nil

	CO/PO Mapping													
	(5	S/M/W	indica	tes st	rength o	of corre	elation	h) S-Strong, M-Medium, W-Weak						
COs	s Program								nme Outcomes (POs)					
	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М
Course	e Asses	ssment												
			Dir								Indir	ect		
					est I, II									
2. Assignment: Group Presentation, Project							•	1.0		d				
	<ul><li>report, Poster preparation, Prototype or Product Demonstration etc. (as applicable)</li><li>3. End Semester Examination</li></ul>								1.Course end survey					



FAILURES AND PRINCIPLES OF MAINTENANCE	07 Hours
System failure and component failure, Types of failure, Causes of failure principles, Human factors in failure incidents, Maintenance strategies: Pr Predictive Maintenance, Bathtub Curve, Failure Modes Effects and Criti	eventive Maintenance,
FUNDAMENTALS OF MACHINERY VIBRATION	10 Hours
Simple harmonic motion and vibration, Vibration and Spring Mass syst	em, Degrees of freedom,
Free vibration and Natural frequency, forced vibration and Vibration isc	, , ,
Freedom Motion, Forced Vibration Response, Base Excitation, For	
Vibration Isolation, Tuned Vibration Absorber, Unbalanced Response, Cl Systems, Vibration of Continuous Systems, Mode Shapes and Operation Shapes	
DIGITAL SIGNAL PROCESSING	10 Hours
Classification of Signals, Signal Analysis, Frequency Domain Signal An Fast Fourier Transform, Computer-Aided Data Acquisition, Signal Cond Demodulation, Cepstrum Analysis, Illustrative examples: Representation frequency domain, Compressor Vibration and Engine Vibration	itioning, Signal
VIBRATION AND NOISE MONITORING	06 Hours
Shaft, Bowed and Bent Shaft, Unbalanced Shaft, Looseness, Rub, Bearin Machines, Acoustical Terminology, Noise Sources, Sound Fields, Noise Noise Source Identification	Measurements,
THERMOGRAPHY	06 Hours
Thermal Imaging Devices, Use of IR Camera, Industrial Applications Condition Monitoring	of Thermography in
WEAR DEBRIS ANALYSIS	06 Hours
Mechanisms of Wear, Detection of Wear Particles, Oil Sampling Technic of Oil Analysis	que, Oil Analysis, Limits
Theory:45Hours Total	Hours:45
REFERENCES:	<b>REFERENCES:</b>
<ol> <li>Amiya R. Mohanty, "Machinery Condition Monitoring: Principles Press, 2015</li> </ol>	and Practices", CRC
2. R.A. Collacott, "Mechanical Fault Diagnosis and Condition Monit	oring", Springer,2012.
<ol> <li>W.T. Becker, R.J.Shipley, "ASM Handbook: Volume 11: Failure A Prevention", ASM International, 2002.</li> </ol>	Analysis and
<ol> <li>V.P. Singh, "Mechanical Vibrations", Dhanpat Rai &amp; Co., 2014.</li> </ol>	

5. Signature of BOS chairman, MCE

#### MICRO ELECTROMECHANICAL

L	Т	Р	J	С
3	0	0	0	3

## U18MCE0003

## SYSTEMS

Course Outcomes							
After successful completion of this course, the students should be able to							
CO1: Explain the evolution of micro and smart system.	K2						
CO2: Illustrate about various sensors and actuating system.	K2						
CO3: Classify the Micro machining techniques in MEMS.	K2						
<b>CO4:</b> Evaluate a proper scaling method.	K2						
CO5: Determine packaging techniques in MEMS and smart system.	K2						
CO6: Discuss various applications of MEMS.	K2						
CO6: Discuss various applications of MEMS.	K2						

## **Pre-requisite**

Nil

(S/M/	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Program Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М

Course Assessment methods:	
Direct	Indirect
1. Continuous Assessment Test I, II	1. Course end survey
2. Assignment: Group Presentation,	
Project report, Poster preparation,	
Prototype or Product	
Demonstration etc. (as applicable)	
3. End Semester Examination	

5. Signature of BOS chairman, MCE

IN	TRODUCTION	9 Hours
Ove	erview - Microsystems and microelectronics - definition-MEMS materials-scaling la	ws scaling in
geo	metry-scalinginrigidbodydynamics-scalinginelectrostaticforces-scalinginelectricity-s	caling.
	luid mechanics- scaling in heat transfer.	-
MI	CRO SENSORS AND ACTUATORS	9 Hours
Wo	orking principle of Microsystems - micro actuation techniques - micro sensors-types-	-Micro
actu	uators – types – micro pump – micro motors – micro – valves – micro grippers –	
mic	pro-Accelerometers	
FA	BRICATION PROCESS	9 Hours
Sub	ostrates-single crystal silicon wafer formation-Photolithography-Ion Implantation-Di	ffusion –
Oxi	idation-CVD-Physical vapor deposition-Deposition by epitaxy-etching process.	
MI	CRO SYSTEM MANUFACTURING	9 Hours
	k Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro system	packaging-
Bul	k Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro system terials - die level-device level-system level-packaging techniques - die preparation -s	
Bul mat	k Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro system terials - die level-device level-system level-packaging techniques - die preparation -s nding -wire bonding - sealing.	
Bul mat bon	terials - die level-device level-system level-packaging techniques - die preparation -s	
Bul mat bon <b>MI</b>	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing.	surface. 9 Hours
Bul mat bon <b>MI</b> Des	terials - die level-device level-system level-packaging techniques - die preparation -s nding -wire bonding - sealing. CRO SYSTEM DESIGN	surface. 9 Hours
Bul mat bon <b>MI</b> Des syst	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-application	surface. 9 Hours
Bul mat bon MI Des syst The	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications <b>eory:45 Hours</b> <b>Total Hours:45</b>	surface. 9 Hours
Bul mat bon MI Des syst The REFI	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications eory:45 Hours ERENCES:	9 Hours       ons of micro
Bul mat bon <b>MI</b> Des syst <b>The</b> <b>REFI</b> 1.	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications <b>eory:45 Hours</b> <b>ERENCES:</b> Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGraw	<b>9 Hours</b> ons of micro
Bul mat bon MI Des syst The EFI 1. 2.	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications <b>eory:45 Hours</b> <b>ERENCES:</b> Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGraw Mohamed Gad-el-Hak, "The MEMS Handbook", CRC press, 2005.	9 Hours         ons of micro         -Hill, 2017.
Bul mat bon <b>MI</b> Des syst <b>The</b> <b>REFI</b> 1.	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications <b>eory:45 Hours</b> <b>ERENCES:</b> Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGraw Mohamed Gad-el-Hak, "The MEMS Handbook", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensors ME	9 Hours         ons of micro         -Hill, 2017.
Bul mat bon <b>MI</b> Des syst <b>The</b> <b>EFI</b> 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications <b>eory:45 Hours</b> <b>ERENCES:</b> Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGraw Mohamed Gad-el-Hak, "The MEMS Handbook", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensors ME Smart Devices", John Wily and sons Ltd., 2001.	9 Hours         ons of micro         -Hill, 2017.         EMS and
Bul mat bon MI Des syst The EFI 1. 2.	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications <b>eory:45 Hours</b> <b>Total Hours:45</b> <b>ERENCES:</b> Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGraw Mohamed Gad-el-Hak, "The MEMS Handbook", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensors ME Smart Devices", John Wily and sons Ltd., 2001. Fatikow S, Rembold U, "Microsystem Technology and Micro robotics", Springer	9 Hours         ons of micro         -Hill, 2017.         EMS and
Bul mat bon <b>MI</b> Des syst <b>The</b> <b>EFI</b> 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparation -s ading -wire bonding - sealing. <b>CRO SYSTEM DESIGN</b> sign considerations-process design-mask layout design- mechanical design-application tems in automotive industry, bio medical, aerospace and telecommunications <b>eory:45 Hours</b> <b>ERENCES:</b> Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGraw Mohamed Gad-el-Hak, "The MEMS Handbook", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensors ME Smart Devices", John Wily and sons Ltd., 2001.	9 Hours ons of micro -Hill, 2017. EMS and -Verlag

5. Signature of BOS chairman, MCE

U18MCE0004

## ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

L	Т	Р	J	С
3	0	0	0	3

**10 Hours** 

#### **Course Outcomes**

After s	After successful completion of this course, the students should be able to						
CO1	Express the basic concepts of Artificial Intelligence	K2					
CO2	Demonstrate the usage of planning and decision making.	K3					
CO3	Interpret the ideas of machine learning by supervised and unsupervised learning methods	K3					
CO4	Apply Linear Regression and Logistic Regression machine learning methods.	K3					
CO5	Summarize the concepts of Artificial Neural Networks	K2					
CO6	Describe various Artificial Neural Networks methodology	K2					

#### **Pre-requisite**

Data Warehousing and Data Mining

		CO/PO Mapping												
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progra	mme (	Outcon	nes (P	Os)				
COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	Μ		S	S			S	Μ		Μ	М	М
CO2	S	Μ	Μ							Μ		М	W	Μ
CO3	S	S	Μ		Μ					Μ		М	W	М
CO4	S	S	Μ		Μ					Μ		М	W	М
CO5	S	S	Μ		S	S			S	Μ		М	S	М
CO6	S	S	М		S	S		W	S	М		М	S	S
Course	Asse	ssment	metho	ods:										

Direct	Indirect				
1. Internal Test I					
2. Internal Test II					
3. Assignment	1.Course end survey				
4. Group Presentation					
5. End semester exam					
INTRODUCTION TO ARTIFICIAL INTELLIGENCE 9 Hou					

Defining Artificial Intelligence, Intelligent Agents, Solving Problems by searching-Problem-solving agents-Example problems – Searching for Solutions-Uninformed search strategies – Informed search strategies – Heuristic functions

## KNOWLEDGE REPRESENTATION AND PREDICATE LOGIC

Knowledge Representation and Mappings, Approaches to knowledge representation Representing simple facts in logic, Computable functions and predicates, Procedural vs Declarative knowledge, Logic Programming, Forward vs backward reasoning. Classical Planning, Making simple. Decisions

Signature of BOS chairman, MCE

IDEA OF MACHINE LEARNING	9 Hours
Idea of Machine learning from data, Supervised Learning: Learning a Class from Examp	ples-Noise-
Learning Multiple Classes- Regression-Model Selection and Generalization, Unsuperv	
Introduction, k-Means Algorithm, Optimization objective, Random Initialization, Choose	sing number
of clusters -Deep learning.	
LINEAR REGRESSION AND LOGISTIC REGRESSION	9 Hours
Linear Regression -Model representation for single variable, Single variable Cost Function, M	
function, Gradient Decent for Linear Regression, Multivariable model representation, Logis	U
Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced C	Optimization,
Classification (One vs All), Problem of Overfitting, Regularization	0.11
APPLICATIONS	9 Hours
Applications of AI- Natural Language Processing – Machine Translation – Robot – Gaming Artificial Neural Networks and Convolution Neural networks – Applications Use of Tenso	
Theory:45Total Hours:	45Hours
REFERENCES:	
1. Stuart Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", 3rd Edit Education / Prentice Hall of India,2015.	ion, Pearson
3. Elaine Rich, Kevin Knight, Shivashankar. B. Nair, "Artificial Intelligence", Tata McG Edition, 2009	raw Hill, Third
5. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 200	
<ol> <li>George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex Proble Pearson Education / PHI,2008</li> </ol>	em Solving",
8. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Compute Cambridge University Press, 2010.	ational Agents",
9. EthemAlpaydin, "Introduction to Machine Learning", Second Edition, MIT Press, 201	5
10. Tom M. Mitchell, -Machine Learning, McGraw-Hill Education (India) Private Limite	d, 2013
11. Stephen Marsland,Machine Learning: An Algorithmic Perspective, CRC Press, 200	
12. Y. S. Abu-Mostafa, M. Magdon-Ismail, and HT. Lin, "Learning from Data", AML B 2012	ook Publishers,
13. K. P. Murphy, "Machine Learning: A probabilistic perspective", MIT Press, 2012.	
14. M. Mohri, A. Rostamizadeh, and A. Talwalkar, "Foundations of Machine Learning"	", MIT Press,
2012.	



U18MCE0005	DATABASE MANAGEMENT SYSTEMS	L	Т	Р	J	С
UI6MICE0005	DATADASE MANAGEMENT SISTEMS	3	0	0	0	3

After successful completion of this course, the students should be able to						
CO1	Understand the functional components of DBMS and Relational Model.	K2				
CO2	Devise queries using SQL to develop database application	K2				
CO3	Describe the database design approaches.	K2				
CO4	Understand data storage and retrieval techniques.	K2				
CO5	Explore concepts for transaction processing, concurrency control and NOSQL.	K2				
CO6	Illustrate the concepts of NOSQL	K2				

## Pre-requisite

NIL														
		CO/PO Mapping												
		(5	S/M/W	indicat	tes stren	gth of a	correlati	ion) S	S-Stron	ig, M-N	<i>l</i> edium	, W-W	eak	
00						Progra	amme (	Outcomes	s (POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	Μ					S		М					Μ
CO2				Μ	S			М		Μ	S	Μ		Μ
CO3			М				Μ						М	
CO4			М				S							
CO5	S						S			Μ				
CO6	S	М	М							М			М	Μ

Course Assessment methods:									
Direct Indirect									
1. Internal Test I									
2. Internal Test II 1.Course end survey									
3. Assignment: Group Presentation									
4. End semester exam	U I								
<b>INTRODUCTION TO DATABASE AND REI</b>	LATIONAL MODEL	9Hours							
Introduction: Database applications, Purpose, Accessir	ng and modifying databases, Architecture	e of DBMS.							
Relational Databases: Relational model, Database sche	ma, Keys, Formal Relational Query Lan	guages							
DATABASE APPLICATION DEVELOPMEN	T	9 Hours							
Guidelines for Database Design. SQL: Data definition, Basic SQL query structure, specifying integrity constraints in									
SQL, set operations, Nested subqueries, Aggregation, Join expressions, Views. Functions, Procedures and Triggers.									
Accessing Databases from Programs using JDBC, Buil	ding Web Applications using PHP & My	SQL. Case							
Study: Open-Source Relational DBMS									

< > Signature of BOS chairman, MCE

DATABASE DESIGN	9 Hours
Database Design: E-R model, E-R diagram, Reduction to relational schema, E-R design issue	es, Relational
Database Design: features of good design, Functional Dependency theory, decomposition usi	ing functional
dependency, Normal forms. (Optional: multi-valued dependency and 4th normal form).	
STORAGE AND INDEXING	7 Hours
Storage and File structure: File Organization, RAID. Indexing: Concepts, Clustered and Non-clust tree and B+-tree. Basics of Hashing (Static, Dynamic). Overview of Query processing.	tered Indices, B-
TRANSACTION MANAGEMENT	11 Hours
Transactions: Concept and purpose, ACID properties and their necessity, transactions in SQL. Transa	
Conflicts and Aborts, Serializability, Recoverability. Concurrency Control: lock-based protocols, 2	
Timestamp based protocols. Deadlock handling. Case Study: NoSQL: CAP Theorem and BASE	
Properties, Types of NoSQL Systems. <b>Theory:</b> 45 Total Hours: 45Hou	na
u u u u u u u u u u u u u u u u u u u	18
REFERENCES:	
1. Abraham Silberschatz, Henry Korth, and S. Sudarshan, "Database System Concepts", Sixth Edi	tion, McGraw-
Hill.2016.	
2. R. Elmasri and S. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson E	Education,2016
3. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 3rd Edition, McC	Graw Hill,2014.
4. Thomas M. Connolly and Carolyn E. Begg, "Database Systems - A Practical Approach to I	Design,
Implementation and Management", Fifth edition, Pearson Education, 2014	
5. C.J. Date, A. Kannan and S.Swamynathan, "An Introduction to Database Systems", Eighth	Edition, Pearson
Education, 2006.	



	SOFT COMPUTING	L	Т	Р	J	С
U18MCE0006	SOFT COMPUTING	3	0	0	0	3

After	successful completion of this course, the students should be able to	
CO1	Identify and describe soft computing techniques and their roles in building intelligent. machines	K2
CO2	Recognize the feasibility of applying a soft computing methodology for a particular problem	K2
CO3	Identify and select a suitable classification/clustering algorithm to solve the problem	K2
CO4	Apply evolutionary algorithms and Fuzzy logic to solve the problem	K2
CO5	Discuss the soft computing systems by hybrid soft computing techniques	K2
CO6	Describe the various optimization techniques used in soft computing	K2

#### **Pre-requisite** NII

		CO/PO Mapping												
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
~ ~						P	rogram	me Ou	tcomes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	М	S										S	S
CO2	S	М											М	
CO3	S		S	S				S	S				М	S
CO4	S		S		S	М		S	S				М	S
CO5	S				S			S						
CO6	S	S						S					W	W
~														

#### **Course Assessment methods:**

Direct	Indirect		
1. Internal Test I			
2. Internal Test II	1.Course end survey		
3. Assignment: Group Presentation			
4. End semester exam			
INTRODUCTION TO FUZZY SETS AND FUZZ	Y LOGIC SYSTEMS 9 Hours		

Fuzzy sets and Fuzzy logic systems-Classical Sets and Fuzzy Sets and Fuzzy relations- Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions: Features of membership functions, standard forms and boundaries, different fuzzification methods Fuzzy to Crisp conversions: Lambda Cuts for fuzzy sets, fuzzy Relations, Defuzzification methods.

#### **FUZZY RULE BASED SYSTEMS**

9 Hours Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication - Linguistic Hedges, Fuzzy

Rule based system - Aggregation of fuzzy Rules, Fuzzy Inference System - Mamdani Fuzzy Models - Sugano Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting

Signature of BOS chairman MCE

Signature of BOS chairman MCF

#### **INTRODUCTION TO NEURAL NETWORKS**

Advent of Modern Neuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neurons. Learning Methods: Hebbian, competitive, Boltzmann etc., Neural Network models: Perceptron, Adaline and Madaline networks; single layer network; Back propagation and multi-layer networks. Competitive learning networks: Kohonen self-organizing networks, Hebbian learning; Hopfield Networks.

#### **GENETIC ALGORITHMS**

Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA) Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based clustering Algorithm, Image processing and pattern Recognition. 9 Hours

#### HYBRID SOFT COMPUTING TECHNIOUES

Introduction - Neuro-Fuzzy Modelling-Applications of Neural Networks- Pattern Recognition and classification Genetic-Neuro Hybrid System, Genetic-Fuzzy Hybrid System, Fuzzy-Genetic Hybrid System, Simplified Fuzzy ARTMAP, Application of Soft Computing, CASE Study.

Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle Swarm Optimization (PSO).

#### Theory: 45Hrs Total Hours: 45 Hrs.

#### **REFERENCES:**

- Samir Roy, Udit Chakraborty, -Introduction to soft computing neuro-fuzzy and genetic algorithm, Person 1. Education, 2013
- Timothy J. Ross, -Fuzzy Logic with Engineering applications, Tata McGraw Hill New York, Third edition, 2. 2016
- DavidE.Goldberg, —GeneticAlgorithmsinSearchOptimizationandMachineLearning,PearsonEducation, 3. 2007.

4. J.-S. R Jang., C.-T Sun., & E. Mizutani, -Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligencel, Prentice-Hall of India Pvt. Ltd., 2005.

9 Hours

9 Hours

## **UNDER WATER ROBOTICS**

L	Т	Р	J	С
3	0	0	0	3

## **Course Outcomes**

After	successful completion of this course, the students should be able to	
CO1	Express the basic concepts of underwater vehicle and Manipulator Systems	K2
CO2	Describe the rigid body kinematics of Autonomous Underwater vehicle and	K2
	manipulators	
CO3	Summarize the dynamics of Autonomous Underwater vehicle and manipulators.	K2
CO4	Apply controllers for dynamic control of Autonomous Underwater vehicles.	K2
CO5	Discuss the concepts of kinematic control of Underwater manipulator systems.	K2
CO6	Describe various dynamic control theories of Underwater manipulator systems.	K2
_		

#### Pre-requisite NIL

CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Pr	0	me Ou (POs)	tcomes	8				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S											W		
CO2	S	М												
CO3	S	М				М							М	S
CO4	S	W		W	Μ								S	S
CO5	S	М		W	Μ								W	W
	CO6     S     M     W     M     M     M							M						
Cours	se Ass	essmei												
1 1	. 1	<u> </u>	Dir	ect							Indirect	,		
		Test I Test I						1 Can						
		nent: C		Dragan	otion			1.Cou	rse end	l survey				
	0	nester	-	riesem	ation									
-				NDER	WAT	FRR R	ROBO	TS					91	Hours
	MODELLING OF UNDER WATER ROBOTS9 HoursIntroduction to Underwater Vehicles -Sensorial Systems, Actuation, Localization, Autonomous													
	Underwater Vehicles (AUV) Control Fault Detection/Tolerance for UUVs, Underwater													
Vehicle Manipulator Systems (UVMS) Coordinated Control, Future Perspectives.														
	MODELLING OF UNDER WATER ROBOTS 10 Hours													
Rigid Body's Kinematics-Attitude Representation by Euler Angles, Attitude Representation by														
-				-		ation,6	-DOFs	Kinen	natics,	Rigid B	ody's D	ynamic	s-Rigid	l
Body	's Dyn	amics	in Mat	rix Fo	rm.									

Signature of BOS chairman, MCE

DYNAMIC CONTROL OF AUVS	9 Hours					
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, No	n model Based					
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/Vehicle						
Fixed Frame Based Controller.						
KINEMATIC CONTROL OF UVMS	8 Hours					
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, No.	n model Based					
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/Vehicle Fixed Fixe	ehicle Fixed					
Frame Based Controller.						
DYNAMIC CONTROL OF UVMS	9 Hours					
Feed forward Decoupling Control, Feedback Linearization, Non-regressor-Based	Adaptive Control,					
Sliding Mode Control, Adaptive Control, Output Feedback Control.						
	<b>Total Hours: 45</b>					
<b>REFERENCES:</b>						
1. Gianluca Antonelli, Underwater Robots: Motion and Force Control of Vehi	cle-Manipulator					
Systems, Springer Berlin Heidelberg, Second Edition 2010						
2. C. Vasudevan, K. Ganesan, Underwater Robots, Springer, Third Edition, 20	)15.					
3. Frank Kirchner, Sirko Straube, Daniel Kühn, AI Technology for Underwate	er Robots, First					
Edition 2019.						
4. Steven W. Moore, Harry Bohm, Vickie Jensen, Underwater Robotics: Scien	ce, Design &					
Fabrication, Marine Advanced Technology Education (MATE) Center, 201	0.					

5. Daniel R. Faust, Underwater Robots, The Rosen Publishing Group, Inc, First Edition, 2016.

< Signature of BOS chairman, MCE

## **INDUSTRIAL IOT**

L	Т	Р	J	С
3	0	0	0	3

#### **Course Outcomes**

After	successful completion of this course, the students should be able to	
CO1	Explain the basic principles of smart manufacturing.	K2
CO2	Illustrate the importance of IoT in smart manufacturing	K2
CO3	Describe the functions of internet of things (IoT).	K2
CO4	Explain the key elements of Industrial internet of things (IIoT).	K2
CO5	Explain the functions of big data analytics.	K2
CO6	Discuss various applications of Industrial IoT.	K2

## **Pre-requisite**

NIL

## **CO/PO Mapping**

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	Μ

#### **Course Assessment methods:**

Direct	Indirect					
1. Continuous Assessment Test I, II						
2. Assignment: Group Presentation, Project						
report, Poster preparation, Prototype or						
Product Demonstration etc. (as applicable)						
3. End Semester Examination						
INTRODUCTION		9 Hours				
Globalization and Emerging Issues, The Fourth Rev	volution, LEAN Production System	stems, Smart and				
Connected Business Perspective, Smart Factories						
IoT COMPONENTS9 Hour						
Cyber Physical Systems and Next Generation Sensors, Collaborative Platform and Product						
Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data						

Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data And Advanced Analysis, Cyber security inIndustry4.0, Basics of Industrial IoT, Industrial Sensing & Actuation, Industrial Internet Systems.

Signature of BOS chairman, MCE

INDUSTRIAL IOT	9 Hours
Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Bu	siness Models,
IIoT Reference Architecture, Industrial IoT- Layers: IIoT Sensing, IIoT Processing	, IIoT
Communication, IIoT Communication, IIoT Networking.	
INDUSTRIAL IOT: BIG DATA ANALYTICS	9 Hours
IIoT Analytics - Introduction, Machine Learning and Data Science, IoT Platforms,	Data
Management tool, Software-Defined Networking, Data Center Networks, Cloud G	Computing
INDUSTRIAL IOT- APPLICATION	9 Hours
Power Plants, Oil, chemical and pharmaceutical industry, Inventory Management	& Quality
Control, Plant Safety and Security (Including AR and VR safety applications), Fa	
Management.	-
Theory:45Hours	Total Hours: 45
<b>REFERENCES:</b>	
1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress,	2016.
2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Indus	trial Internet of
Things: Cyber manufacturing Systems", Springer, 2017.	
3. Andrew Minteer, "Analytics for the Internet of Things (IoT): Intelligent ana	lytics for your
intelligent devices", Packt Publishing, 2017.	
4. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The	Evolving World of
M2M Communications", Willy Publications, 2013.	
5. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the I	nternet of Things",
Springer, 2011.	

5. Signature of BOS chairman, MCE

		L	Т	Р	J	С
U18MCE0008	STATISTICAL QUALITY CONTROL	3	3 0 0	0	0	3

After successful completion of this course, the students should be able to					
CO1	Define the concept of probability and quality control	K2			
CO2	Explain various sampling method to measure quality and the attributes of quality.	K2			
CO3	Summarize the process behavior based on various control charts for variables.	K2			
CO4	Summarize the process behavior based on various control charts for attributes	K2			
CO5	Select the appropriate samples for the study.	K2			
CO6	Apply various techniques to improve the overall quality.	K2			

## Pre-requisite

	CO/PO Mapping													
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
						Progra	amme C	Outcom	es (POs)	)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S		М					S					
CO2	S			М					S					
CO3	S	М		S										
CO4	S				S	М				S				
CO5														
CO6														

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. Assignment: Group Presentation	
4. End semester exam	

5. Signature of BOS chairman, MCE

INTRODUCTION	9 Hours
Probability concepts, Review of distribution: Normal, Poison's, and Binomial, Problem	ms, Measuring of
quality and control, Value and quality, Quality costs, Quality assurance	
CONTROL CHARTS FOR VARIABLES	9 Hours
Chance and assignable causes of quality variation, Control charts for variables, X-bar, Warning and modified control limits, Process capability study, Ranges, Moving Aver, limits, multivariate charts.	
CONTROL CHARTS FOR ATTRIBUTES	9 Hours
Limitation of variable chart, p-chart, problems with variable sample size, np-chart, c-ku-chart, Demerits per unit control chart.	chart, u-chart, and
ACCEPTANCE SAMPLING	9 Hours
Economics of sampling, Lot formation, OC-Curve-Producer's and Consumer's risk, S sampling plans, AOQ, AOQL, ATI, ASN, Sequential sampling plan, MIL – STD – 10 STD – 414 tables, IS 2500 Standard.	050 tables, MIL –
QUALITY IMPROVEMENT	9 Hours
Zero defects program, Quality circle, Fishbone diagram, scatter diagram, Pareto Analy Introduction to Reliability function, System reliability of series, parallel, and combine Reliability improvement techniques.	
Theory: 45Hours Total	l Hours:45
REFERENCES:	
1. Grant E.L. and Leavenworth, "Statistical Quality Control", Tata McGraw-Hill Pub edition 2002.	
2. Douglas C. Montgomery, "Statistical Quality Control", John Wiley and Sons, 200	1.
3. Fiegenbaum, A.V., "Total Quality Control", McGraw-Hill Inc., 1991.	<b>D</b> 11 1 <b>D</b> 00 1
4. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, Ne	w Delhi, 2006
5. Srinath L.S "Reliability Engineering", Affiliated East west Press, 2005.	

Signature of BOS chairman, MCE

## U18MCE0009

## COMPOSITE AND SMART MATERIALS

L	Τ	Р	J	С
3	0	0	0	3

#### **Course Outcomes**

After s	After successful completion of this course, the students should be able to						
CO1	Recognize the need and characteristics of the composite materials	K2					
CO2	Explain the manufacturing processes of composite materials	K2					
CO3	Explain the applications of composites and its sustainability	K2					
CO4	Explain the principle and working of Piezoelectric and Magnetostricitve materials	K2					
CO5	Explain the electro active materials and shape memory alloys	K2					
CO6	Understand the concept behind smart composites	K2					

#### **Pre-requisite** Nil

CO – PO Mapping														
(S/M/W indicates strength of correlation) S – Strong, M – Medium, W - Weak														
	Program Outcomes													
CO's	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	P10	P11	P12	PSO1	PSO2
CO1	S													
CO2													М	
CO3							М							
CO4	S												М	
CO5													М	
CO6	М													
Cours	Course Assessment Methods:													

Course Assessment methous.								
Direct	Indirect							
1. Continuous Assessment Test I, II								
2. Assignment: Group Presentation, Project								
report, Poster preparation, Prototype or	1.Course end survey							
Product Demonstration etc. (as applicable)								
3. End Semester Examination								
INTRODUCTION TO COMPOSITE MATERI	ALS 9 Hours							
Need and general characteristics of composite materials- mechanical advantages and limitations								
Characteristics of fibers and matrixes – classification of composites – Prepregs – Lamina, Laminate and								

sandwich construction. Ceramics.

< Signature of BOS chairman, MCE

MANUFACTURING AND QUALITY INS	SPECTION	9 Hours						
Fundamentals of curing – Bag molding process – compression and vacuum molding – filament winding								
- Quality inspection methods for raw materials - cure cycle monitoring - cured composite parts.								
APPLICATIONS OF COMPOSITES AND SUSTAINABILITY 9 Hour								
Applications of composites - Natural fibers needs and its significance - Recycling of composites								
PIEZOELECTRIC AND MAGNETOSTR	RICTIVE MATERIALS	9 Hours						
Introduction to Smart Materials, Principles of Piezoelectricity, Perovskyte Piezoceramic Materials, Single Crystals vs Polycrystalline Systems, Piezoelectric Polymers, Modelling Piezoelectric Actuators, Amplified Piezo Actuation – Internal and External Amplifications. Principles of Magnetostriction, Rare earth Magneto strictive materials, Giant Magnetostriction and Magneto-resistance effect. Magneto strictive Actuation, Joule Effect, Wiedemann Effect, Magneto volume Effect, Magneto strictive								
Mini Actuators.								
	ELECTRO ACTIVE MATERIALS AND SHAPE MEMORY ALLOYS9 HoursIntroduction to Electro-active Materials, Electronic Materials, Electro-active Polymers, Ionic Polymer							
Matrix Composite (IPMC), Shape Memory E		•						
Electro-rheological Fluids, Magneto Rheologi		•						
Memory Actuators.	iour Fluids. If file and Forymone Flotations, St	liupe						
Theory: 45 Hours	Tota	d: 45 Hours						
References:								
1. Mallick P K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 3rdEdition, Maneel Dekker Inc, 2008.								
2. Brian Culshaw, Smart Structures and Materials, Artech House, 2000								
3. Gauenzi, P., Smart Structures, Wiley, 2009								
4. Cady, W. G., Piezoelectricity, Dover Publication								

5. Signature of BOS chairman, MCE

		L	Τ	Р	J	С		
U18MCE0010	ADDITIVE MANUFACTURING	3	0	0	0	3		
Course Outcomes:								

Court	se outcomes.						
After successful completion of this course, the students should be able to							
CO1	Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.	K2					
CO2	Acquire knowledge on process of transforming a concept into the final product in AM. technology.	K2					
CO3	Elaborate the vat polymerization and material extrusion processes and its applications.	K2					
CO4	Acquire knowledge on powder bed fusion processes and its applications.	K2					
CO5	Acquire knowledge on direct energy deposition processes and its applications.	K2					
CO6	Evaluate the advantages, limitations, applications of binder jetting, material jetting and laminated object manufacturing processes.	К3					

## Pre-requisite:

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	Programme Outcomes (POs)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	S													М
CO2	S		М										М	М
CO3	S		М										М	М
CO4	S		М										М	М
CO5	S		М										М	М
CO6	S		М										М	М

Direct	Indirect
1. Continuous Assessment Test I, II	
2. Assignment: Group Presentation, Project	
report, Poster preparation, Prototype or	
Product Demonstration etc. (as	1.Course end survey
applicable)	
3. End Semester Examination	

< > Signature of BOS chairman, MCE

INTRODUCTION	9 Hours							
Overview - Need - Development of Additive Manufacturing (AM) Technology: Ra	pid Prototyping-							
Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain- Classification -								
Benefits. Applications: Building Printing-Bio Printing-Food Printing-Printing Electronics. Business								
Opportunities and Future Directions - Intellectual Property.								
DESIGN FOR ADDITIVE MANUFACTURING (DFAM)	9 Hours							
Concepts and Objectives- AM Unique Capabilities: Part Consolidation-Topolog	• •							
Lightweight Structure - DFAM for Part Quality Improvement. Data Processing								
Preparation –Part Orientation and Support Structure Generation -Model Slicing - Tool								
Generation-Customized Design and Fabrication for Medical Applications- Case Studi								
VAT POLYMERIZATION AND MATERIAL EXTRUSION	9 Hours							
Photo polymerization: Stereolithography Apparatus (SLA) - Materials -Proces	Ū.							
Limitations-Applications. Digital Light Processing (DLP) - Materials – Process								
Applications. Extrusion Based System: Fused Deposition Modeling (FDM) - Process-	Materials -							
Applications and Limitations.	0 Houng							
POWDER BED FUSION AND DIRECT ENERGY DEPOSITION	9 Hours							
Powder Bed Fusion: Selective Laser Sintering (SLS): Process – Powder Fusion Mech								
Parameters – Typical Materials and Application. Selective Laser Melting (SLM) and								
Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposition Engineered Net Shaping (LENS) – Process – Material Delivery – Process Parameters – N								
Engineered Net Shaping (LENS) - Process -Material Delivery - Process Parameters - M Benefits - Applications.	lateriais -							
OTHER ADDITIVE MANUFACTURING PROCESSES	9 Hours							
Binder Jetting: Three-Dimensional Printing - Materials -Process - Benefits and Limita								
Jetting: MultiJet Modeling- Materials- Process- Benefits. Sheet Lamination Process: I								
Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bon								
Bonding- Materials-Application and Limitation.	ang memu							
	Total Hours: 45							
REFERENCES:								
1. Andreas Gebhardt and Jan-Steffen Hotter "Additive Manufacturing: 3D Printin	ng for							
Prototyping and Manufacturing", Hanser publications, United States, 2015,	-8 -01							
2. Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Tech	nologies: Rapid							
Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United St	ates, 2015,							
<ol> <li>Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition United States, 2015,</li> </ol>	on, CRC Press.,							
4. AndreasGebhardt, "Understanding Additive Manufacturing: Rapid Prot	totyping, Rapid							
Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2012,								
5. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Spring States, 2011,	ger., United							
6. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A prototype development", CRC Press., United States, 2019,	A toolbox for							
	hnologies, and							
Applications", Woodhead Publishing., United Kingdom,2016,								

5. Signature of BOS chairman, MCE

### DESIGN OF MATERIAL HANDLING SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

#### **Course Outcomes**

After	After successful completion of this course, the students should be able to							
CO1	Recognize the need and types of the Material Handling Equipment	K2						
CO2	Calculate the power requirements for a given belt conveyor	K3						
CO3	Select the components for the belt conveyors	K3						
CO4	Select and design the conveyors for the particular application	K3						
CO5	Differentiate the conveyors and elevators and design the bucket and cage elevators	K3						
CO6	Explain the various elements of the hoists	K2						

### **Pre-requisite**

Nil

#### **CO/PO Mapping** (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes Cos (POs) PO7 PO8 PO9 PO10 PO1 PO2 PO3 PO4 PO5 PO11 PO6 PO12 PSO 1 PSO 2 **CO1** М **CO2** М **CO3** М М М **CO4** Μ W S W Μ W CO5 М W М М **CO6** М М М Course Assessment methods:

Course Assessment methods:								
Direct	Indirect							
1. Continuous Assessment Test I, II								
2. Assignment: Group Presentation, Project report,								
Poster preparation, Prototype or Product	1.Course end survey							
Demonstration etc. (as applicable).								
3. End Semester Examination								
MATERIAL HANDLING EQUIPMENTS (MI	HE)	4 Hours						
Materials and Bulk materials – Types of material hand	lling equipment – selection an	nd applications of						
MHE. Automation in material handling system.								
BELT CONVEYORS 10 Hou								
General components of belt conveyors - Selection of belt speed and belt width – Drive unit design:								
Power requirement $-$ coupling types and selection $-$ S	peed reduction: gearbox types	s and selection –						
Shaft and Pulley design – selection of Idlers and Idler	s spacing – Safety devises for	belt conveyors						

< Signature of BOS chairman, MCE

DESIGN OF OTHER CONVEYORS	10 Hours
Apron conveyors, Screw conveyors, Cleat conveyors and Pneumatic conveyors	
ELEVATORS	11 Hours
Conveyors and Elevators – Bucket elevators: centrifugal type and continuous type b	ucket elevators-
Design of bucket elevators – Safety devices for bucket elevators Cage elevators: Sha	ıft way, guides,
counterweights – safety devises	10.77
HOIST	10 Hours
Design of Hoisting elements: Welded and roller chains – Hemp wire and ropes – De Pulley – sprockets and drums	sign of ropes –
Load handling attachments – Forged and Eye hooks – crane grabs – lifting magnets attachments – arresting gears and brakes	– Grabbing.
Theory:45Hrs To	otal Hours:45
REFERENCES:	
1. Rudenko N., "Materials handling equipment", ELnvee Publishers, 1970.	
2. Fenner & Dunlop, "Conveyor Handbook"	
2. David VHutton "FundamentalsofFiniteElementAnalysis", McGraw-HillInternati 2004.	onalEdition,
2. Alexandrov M, Materials Handling Equipments, MIR Publishers, 1981.	
4. <u>A. Spivakovsky</u> (Author), <u>V. Dyachkov</u> (Author), <u>D. Danemanis</u> (Translator)	

4. <u>A. Spivakovsky</u>(Author), <u>V. Dyachkov</u>(Author), <u>D. Danemanis</u> (Translator) Conveyors and Related Equipment, 1966.

< Signature of BOS chairman, MCE

### DESIGN FOR MANUFACTURE AND ASSEMBLY

L	Τ	P	J	С	
3	0	0	0	3	

#### **Course Outcomes**

After su	After successful completion of this course, the students should be able to							
CO1	Explain the design principles for manufacturability and factors influencing it							
CO2	List and explain the factors influencing form design.							
CO3	Explain the design considerations for cast steel and casting process							
CO4	Explain the design considerations various machining process.							
CO5	Explain the use of computer in DFMA.							
CO6	Describe the Design considerations and Guidelines for assembly.							

### **Pre-requisite**

Nil

#### **CO/PO** Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak COs Programme Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO PSO 1 2 **CO1** М **CO2** М Μ CO3 М М W W М S Μ **CO4** CO5 М W М W Μ **CO6** М М Μ

### **Course Assessment methods:**

	DIRECT	INDIRECT		
1.	Continuous Assessment Test I, II			
2.	Assignment: Group Presentation, Project report,			
	Poster preparation, Prototype or Product	1.Course end survey		
	Demonstration etc. (as applicable).			
3.	End Semester Examination			
IN	FRODUCTION		9 Hours	

#### INTRODUCTION

General design principles for manufacturability –Factors influencing design-Types of problems to be solvedevaluation of customer's requirements-Systematic working plan for the designer-Types of problems to be solved-Possible Solutions-Evaluation method- Process capability - Feature.

tolerances -Geometric assembly. tolerances - Assembly limits -Datum features - Tolerance stacks-Interchangeable part manufacture and selective

# FACTORS INFLUENCING FORM DESIGN9 HoursMaterials choice - Influence of basic design, mechanical loading, material, production method, size and

Signature of BOS chairman MCE

weight on form design- form design of welded members and forgings-case studies							
COMPONENT DESIGN – CASTING CONSIDERATION	9 Hours						
Form design of grey iron, steel, malleable iron and aluminum castings. Redesign of castings ba	ased on parting						
line considerations - Minimizing core requirements, machined holes, redesign of cast memb	pers to obviate						
cores-case studies							
COMPONENT DESIGN - MACHINING CONSIDERATION	9 Hours						
Design features to facilitate machining - drills - milling cutters - keyways - Doweling proce	dures, counter						
sunk screws - Reduction of machined area- simplification by separation - simplification by a	malgamation -						
Design for machinability - Design for economy - Design for clampability - Design for accessi	bility - Design						
for assembly. Identification of uneconomical design - Modifying the design - Computer Applications for							
DFMA- case studies							
DESIGN FOR ASSEMBLY	9 Hours						
Design for assembly (DFA) - The assembly process - Economic production quantities - Design	gn						
considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - Metal stite	ching.						
- Fits - press-fits - snap-fits. Weldments - Characteristics and applications of arc weldments	- Economic						
Production Quantities - Design Recommendations.							
Theory:45Hrs	Total Hours:45						
REFERENCES:							
1. Geoffrey Boothroyd, G,, Assembly Automation and Product Design. New York, Ma	rcel						
Dekker,2011							
2. Bralla, Design for Manufacture handbook, McGraw hill, 1999.							
3. Kevien Otto and Kristin Wood, Product Design. Pearson Publication, 2004.							

	~	-	-	0	1
Signa	ture of	BOS ch	airman	MCE	

**PRECISION MANUFACTURING** 

### **Course Outcomes**

After s	After successful completion of this course, the students should be able to							
CO1:	Describe different types of Unconventional Machining processes and principle of mechanical energy based unconventional machining processes.	K2						
CO2:	Explain the working principle of electrical energy based unconventional. machining processes.	K2						
CO3:	Explain the working principle of chemical energy based unconventional. machining processes.	K2						
CO4:	Explain the working principle of electro chemical energy based unconventional. machining processes.	K2						
CO5:	Explain the working principle of thermal energy based unconventional machining. processes.	K2						
CO6:	Describe the working principle of super finishing process.	K2						

### Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	COs Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	W												
CO2	М	М												
CO3	М	М											М	
CO4	М	М				W							М	W
CO5	М	М											М	
CO6	М	М											М	

**Course Assessment methods:** 

Direct	Indirect
<ol> <li>Internal Test I</li> <li>Internal Test II</li> <li>End semester Examination Assignment</li> </ol>	1.Course end survey

11	-		P
	2-		1
Signatur	e of BOS	chairman	, MCE

MECHANICAL ENERGY BASED PROCESSES	9 Hours			
Introduction Unconventional Machining Process, Need, Classification, Brief overview	w of all techniques,			
Abrasive Jet Machining - Water Jet Machining - Abrasive Water Jet Machining- U	trasonic Machining			
(AJM, WJM, AWJM, USM). Working Principles - equipment used - Process param	eters – MRR –			
Applications.				
ELECTRICAL ENERGY BASED PROCESSES	9 Hours			
Electric Discharge Machining (EDM) - working Principles-equipment-Process P				
electrodes Used - Power Circuits - Dielectric - Flushing - Applications, Wire C	ut EDM			
Applications.				
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED	9 Hours			
PROCESSES				
Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchan	ts – Maskant-			
techniques of applying maskants - Process Parameters - Surface finish and MRR	-Applications.			
Principles of ECM- equipment - MRR -Process Parameters- ECG and ECH - Ap	oplications.			
THERMAL ENERGY BASED PROCESSES9 Ho				
Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Bea	m Machining			
(EBM), Principles-Equipment – MRR - Process Parameters - Applications.				
SUPER FINISHING PROCESS	9 Hours			
Super finishing process - Honing - honing machines, Process parameter, MRR -	Lapping –			
characteristics, Types of lapping, lapping machines, and Super finishing - Burnis	hing, Magnetic			
float polishing, Magnetic field assisted polishing, Electro polishing				
Theory:45Hrs	<b>Total Hours:45</b>			
REFERENCES:				
1. Vijay K Jain "Advanced Machining Processes", first edition, Allied Publishers	Pvt. Ltd., New			
Delhi, 2007.				
2. Benedict G F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc.,	New York,			
1987				
3. Pandey P C and Shan H S. "Modern Machining Processes", Tata McGraw-Hil	l, New Delhi,			
3. Pandey P C and Shan H S. "Modern Machining Processes", Tata McGraw-Hil 1980.	l, New Delhi,			

Machining Processes" Tata McGraw-Hill, New Delhi, 2005



### **OPERATION RESEARCH**

Р J С Т L 0 3 3 0 0

### **Course Outcomes**

After successful completion of this course, the students should be able to					
CO1:	Apply linear programming model and assignment model to domain specific situations.	K2			
CO2:	Analyze the various methods under transportation model and apply the model for testing. the closeness of their results to optimal results	K2			
CO3:	Apply the concepts of PERT and CPM for decision making and optimal management. projects	K2			
CO4:	Analyze the various replacement and sequencing models and apply them for arriving at optimal decisions.	K2			
CO5:	Analyze and apply appropriate inventory techniques in domain specific situations.	K2			
CO6:	Analyze and apply appropriate queuing theories in domain specific situations.	K2			
	<b>Pro requisito</b>				

#### **Pre-requisite**

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
<b>CO1</b>	S	S		S									W	
CO2	S	S		S									W	
CO3	S	S		S						S			W	
<b>CO4</b>	S	S		S									W	
CO5	S	S		S									W	
CO6	S	S		S									W	

Nil

#### **Course Assessment methods:**

Course rissessment memous.						
Direct						
1. Internal Test I						
2. Internal Test II	1.Course end survey					
3. Assignment						
4. End semester Examination						
LINEAR MODEL	9 Hours					
The phases of OR study – formation of an L.P model	The phases of OR study – formation of an L.P model – graphical solution – simplex algorithm –					
artificial variables technique (Big M method, two phase method), duality in simplex.						
TRANSPORTATION AND ASSIGNMENT P	ROBLEM	9 Hours				

### TRANSPORTATION AND ASSIGNMENT PROBLEM

Transportation model – Initial solution by Northwest corner method – least cost method – VAM. Optimality test – MODI method and steppingstone method. Assignment model – formulation – balanced and unbalanced assignment problems. Traveling salesman problem

	0	< - c	P
Signat	ure of BOS	chairman.	MCE

				A
	<	5-	-	Ľ
Sigr	nature o	f BOS ch	airman,	MCE

# **PROJECT MANAGEMENT BY PERT & CPM**

Basic terminologies – Constructing a project network – Scheduling computations – PERT - CPM – Resource smoothening, Resource leveling, PERT cost 9 Hours

**REPLACEMENT AND SEQUENCING MODELS** 

Replacement policies - Replacement of items that deteriorate with time (value of money not changing with time) - Replacement of items that deteriorate with time (Value of money changing with time) -Replacement of items that fail suddenly (individual and group replacement policies).

Sequencing models- n job on 2 machines – n jobs on 3 machines – n jobs on m machines, Traveling salesman problem

### **INVENTORY AND QUEUING THEORY**

Variables in inventory problems, EOQ, deterministic inventory models, order quantity with price break, techniques in inventory management. Queuing system and its structure – Kendall's notation – Common queuing models - M/M/1: FCFS/∞/∞ - M/M/1: FCFS/n/∞ - M/M/C: FCFS/∞/∞ - M/M/1: FCFS/n/m

**Theory:45Hrs** 

### **Total Hours:45**

### **REFERENCES:**

1. Taha H A., "Operation Research", Pearson Education, 2007.

2. Hira and Gupta "Introduction to Operations Research", S. Chand and Co.2012

3. Hira and Gupta "Problems in Operations Research", S. Chand and Co.2010

4. Wagner, "Operations Research", Prentice Hall of India, 2000

9 Hours

9 Hours

### FINITE ELEMENT ANALYSIS

### **Course Outcomes**

After	After successful completion of this course, the students should be able to					
CO1:	Develop the governing equations for a continuum.	K3				
CO2:	Model and assemble the stiffness matrices for 1D, 2D elements.	K3				
CO3:	Explain about plane stress and plane strain	K3				
CO4:	Choose the appropriate element type for a particular application.	K3				
CO5:	Apply the FEM for plate bending and thermal analysis	K3				
CO6:	Apply different case study of finite element analysis	K3				

# Pre-requisite Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	COs Programme Outcomes													
	(POs)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO 1         PSO							PSO2						
CO1	S	S							S		S	S		
CO2	S	S	М								S	S	М	
CO3	S		S		S						S		S	
CO4	S		S			S					S		S	
Cours	Course Assessment methods:													
			irect								Indire	ct		
2. Int 3. En	ernal Test ernal Test d semeste signment	II	ninatio	on.			Co	ourse e	end su	rvey				
	ODUCT	ION											9	Hours
elimina Potent	Historical background – Introduction to FEA – Review of Matrix Algebra and Gaussian elimination – Governing equations for continuum – Spring assemblage – Stiffness method & Potential Energy Approach – Galerkin''s weighted residual method.													
ONE	DIMEN	SION	AL F	CLEM	ENTS	$\mathbf{S} - \mathbf{B}$	AR, I	PLAN	E TI	RUSS	& BEA	M	9	Hours
Bar ele	ement - S	tiffnes	ss Mat	rix in	local a	and glo	obal c	oordin	ates,	Compu	tation o	of Stress	- Poten	tial
	yandGale									amelem	ent-Sti	ffnessan	d asseml	bly
	fness mat				0.								-	
PLAN	IE STRE	ESS 8	z PLA	NE S	STRA	IN –	CST	& LS	T AP	PROA	CH		8	Hours

0 Signature of BOS chairman, MCE

Binomial, Poisson and Normal distributions – properties- Fitting of Binomial, Poisson and normal distributions to data

# AXISYMMETRIC ELEMENTS AND ISOPARAMETRIC FORMULATION

**10 Hours** 

Axisymmetric formulation – Stiffness Matrix – Pressure Vessel Analysis – Applications – Isoperimetric formulation – Formulation for Bar and Plane Elements – Numerical Integration – Gaussian & Newton-Cotes Quadrature – Evaluation of Stiffness Matrix by Gaussian Quadrature.

#### PLATE BENDING AND THERMAL ANALYSIS

9 Hours

Basic Concepts of Plate Bending – Element Stiffness Matrix and Equations – Heat Transfer – Basic Differential Equation and Units – 1d and 2d formulation.

**CASE STUDY:** Finite Element Analysis on Bicycle Frame, Finite Element Analysis on Vbelt pulley of a fodder crushing machine.

Total Hours:45

### **REFERENCES:**

**Theory:45Hrs** 

- 1. Daryl, L. Logan, "A First course in the Finite Element Method", Thomson Learning, 4th edition, 2007.
- 2. Chandrupatla T.R., and Belegundu A.D.," Introduction to Finite Elements in Engineering", Pearson Education, 3rd Edition, 2002.
- 3. David V Hutton "Fundamentals of Finite Element Analysis", McGraw-Hill International Edition, 2004.
- 4. Rao S.S., "The Finite Element Method in Engineering", Pergammon Press, 1989.

5. N. Reddy, "An Introduction to the Finite Element Method", Tata McGraw Hill, 3rd Edition, 2005.



### MAINTENANCE ENGINEERING

L	Т	Р	J	С	
3	0	0	0	3	

### **Course Outcomes**

After	After successful completion of this course, the students should be able to				
<b>CO1:</b>	Extend the concept and function of maintenance department and costs associated.	K2			
<b>CO2:</b>	Plan for preventive maintenance.	K2			
CO3:	Schedule and evaluate the maintenance.	K2			
<b>CO4:</b>	Test the reliability in maintenance.	K2			
<b>CO5</b> :	Analyze manpower requirement.	K2			
<b>CO6:</b>	Explain the maintenance of mechanical and electrical systems.	K2			

#### **Pre-requisite**

N	il
---	----

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes (POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	Μ								S				S	
CO2		М	М									W		S
CO3			М										М	
<b>CO4</b>											S		S	
CO5									S					S
CO6	S													S

#### **Course Assessment methods:**

Internal test I	Internal test I
<ol> <li>Internal Test I</li> <li>Internal Test II</li> <li>Group Presentation</li> <li>End Semester exam</li> </ol>	Course end survey
MAINTENANCE CONCEPT	9 Hours

Maintenance objectives, levels, types of systems, benefits, effects – Responsibilities of maintenance department – Concept of maintainability – Principles of Maintenance – R&D, Overhauling and Expert systems in Maintenance, Maintenance cost and budget.

### PLANNED PREVENTIVE MAINTANANCE

Scope and elements of PPM, Implementation, work planning and scheduling Planned maintenance procedure, effectiveness of preventive maintenance, development of checklist.

### MAINTENANCE EVALUATION, PLANNING AND SCHEDULING

9 Hours

0	P
Signature of BOS chairman,	MCE

9 Hours

9 Hours

Maintenance evaluation, planning of maintenance function, development of maintenance department, estimation of maintenance work maintenance scheduling.

#### **RELIABILITY IN MAINTENANCE**

9 Hours

Reliability, failure functions and their models, application, design for reliability, quality and reliability, reliability improvement and testing.

# MANPOWER PLANNING MAINTENANCE OF MECHANICAL AND ELECTRICAL SYSTEMS

9 Hours

Manpower planning: Objectives, stages, Timescale, Estimation Mode, Maintenance of Bearings, Friction clutches, Couplings, Fastening devises, Chains, Gear Drives, Support Equipment, Electrical Equipment.

#### **Theory:45Hrs**

**Total Hours:45** 

#### REFERENCES

- 1. Mishra, R.C., K. Rathak, Maintenance Engineering and Management, Prentice Hall of India, 2ndEdition, 2012.
- 2. Er. Sushil Kumar Srivastava, Maintenance Engineering (Principles, Practices and Management) S. Chand



### **MEDICAL MECHATRONICS**

L	Т	Р	J	С
3	0	0	0	3

### **Course Outcomes**

After s	After successful completion of this course, the students should be able to					
CO1	Explain different measurement techniques used in physiological parameters measurement.	K2				
CO2	Describe the different sensors and transducer principles used in bio medical application	K2				
CO3	Describe the signal conditioning circuits used in biomedical engineering.	K2				
CO4	Comment on various measurement systems used in diagnostics.	K2				
CO5	Comment on various monitoring systems used in diagnostics	K2				
CO6	Differentiate the working of recorders and explain the advanced systems used in medicine.	K2				
Pre-requisite						

### Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
00						Program	mme O	utcome	es (POs					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	М											М	М	М
CO2	Μ			W								М		
CO3	М			М								М	W	
<b>CO4</b>	М	W										М		М
CO5	Μ	W										М	М	
CO6	М				Μ							М		

#### **Course Assessment methods:**

Internal test I	Internal test I	
Internal test I	Course end survey	
Internal test II		
End semester Examination.		
Assignment		
INTRODUCTION	·	9 Hours

9 Hours

Introduction to the physiology of cardiac, nervous & muscular and respiratory systems. Transducers and Electrodes: Different types of transducers & their selection for biomedical applications. Electrode theory, selection criteria of electrodes & different types of electrodes such as, Ag – Ag Cl, pH, etc.

### **BIO-MEDICAL SENSORS AND TRANSDUCERS**

9 Hours

Basic transducer principle Types — resistive, inductive, capacitive, fiber-optic, photoelectric, chemical, active and passive transducers and their description and feature applicable for biomedical instrumentation - Bio, Nano sensors and application.

<	Sant	P
Signature	of BOS chai	irman, MCE

#### Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier - right leg driven ECG amplifier. Band pass filtering, isolation amplifiers – transformer and optical isolation - isolated DC amplifier and AC carrier amplifier. Chopper amplifier. Power line interference MEDICAL MEASUREMENT AND MONITORING SYSTEMS 9 Hours Blood pressure measurement: by ultrasonic method – plethysmography – blood flow measurement by electromagnetic flow meter, cardiac output measurement by dilution method - phonocardiography - vector cardiography. Heart lung machine - artificial ventilator - Anesthetic machine - Basic ideas of CT scanner - MRI and ultrasonic scanner - cardiac pacemaker -defibrillator patient safety - electrical shock hazards -

Centralized patient monitoring system.

### **RECORDERS AND ADVANCED SYSTEMS**

Oscillography – galvanometric - thermal array recorder, photographic recorder, storage oscilloscopes, electron microscope. Biotelemetry, Diathermy, Audiometers, Dialyzers, Lithotripsy. CASE STUDIES: Hot wire Anemometry for respiratory flow measurements.

### **Theory:45Hrs**

REFERENCES

**BIO AMPLIFIER** 

- 1. Khandpur R S., "Handbook of Biomedical Instrumentation", TMH, 2014
- 2. Cromwell, Weibel and Pfeiffer, "Biomedical Instrumentation and Measurements", 2nd edition, Prentice Hall of India, 2011.
- 3. Geddes L.A., and Baker, L.E., Principles of Applied Bio-medical Instrumentation, 3rd Edition, John Wiley and Sons, 2010
- Tompkins W J., "Biomedical Digital Signal Processing", Prentice Hall of India, 2000. 4.
- Arumugam M," Bio-Medical Instrumentation", Anuradha Agencies, 2006. 5.



9 Hours

9 Hours

**Total Hours:45** 

# **OPEN ELECTIVES**



### U18MCO0001

### **ROBOTICS FOR ENGINEERS**

L	Т	Р	J	С
3	0	0	0	3

**Course Outcomes** 

After	After successful completion of this course, the students should be able to					
<b>CO1:</b>	Describe about the robot laws, kinematics and dynamics	K3				
<b>CO2:</b>	Discuss about various robotic drives and control	K2				
CO3:	Illustrate the various sensor used in robotic control	K2				
<b>CO4:</b>	Brief about the image optimization techniques	K3				
CO5:	Discuss about the application of robots in various fields	K2				
<u> </u>						

### **Pre-requisite**

	• •
	1
11	п

	CO/PO Mapping											
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
					Progra	amme O	utcomes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12
CO1	S										S	S
CO2	S		М								S	S
CO3	S	S				W					S	
<b>CO4</b>	S					W					S	S
CO5	S		М					М			М	М

**Course Assessment methods:** 

DIRECT	INDIRECT				
1. Continuous Assessment Test I, II	1. Course -end survey				
2. Open book test; Cooperative learning report,					
Assignment; Journal paper review, Group					
Presentation, Project report, Poster preparation,					
Prototype or Product Demonstration etc. (as					
applicable)					
3. End Semester Examination					
INTRODUCTION		10 Hours			
Evolution of robotics - Laws of robotics - classificatio	n - robot anatomy – specification	– Resolution,			
repeatability and precision movement. Introduction to re	obot arm kinematics and dynamics	– planning of			
manipulator trajectories.					
<b>ROBOTIC DRIVES AND CONTROL</b>	ROBOTIC DRIVES AND CONTROL10 Hours				
Hydraulic, Electric and Pneumatic drives – linear and rotary actuators – end-effectors – classification-control of					
robot manipulator - variable structure control – non-linear de					
disturbance - PID control scheme - resolved motion control	- computed torque control, force con	trol of robotic			

< Signature of BOS chairman, MCE

	0
	Cl
-	Saul
5	ignature of BOS chairman, MCE

manipulators. Adaptive control.

SENSORS

Need for sensing system - classification of robotic sensors - status sensors, environmental sensors, quality control sensors, safety sensors and work cell control sensors. – non-optical and optical position sensors – velocity sensors – proximity sensors – contact and noncontact type – touch and slip sensors – force and torque sensors – selection of right sensors.

### MACHINE VISION SYSTEM

Image Sensing and Digitizing - Image definition, Image acquisition devices, specialized lighting techniques. Digital Images - Sampling, Quantization and Encoding. Image storage. Image Processing and Analysis Data reduction – digital conversion and windowing. Segmentation – Thresholding, Edge detection and Region growing. Binary Morphology and grey morphology operations. Feature Extraction, Object recognition, Depth measurement.

### APPLICATION

Introduction - Delivery Robots - Intelligent vehicles - Survey and inspection robots - Space Robots - Autonomous aircrafts - Underwater Inspection - Agriculture and Forestry.

### **Theory:45Hrs**

### **REFERENCES**

- Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India, 2010.
   S. R. Deb and S. Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill
- Education Pvt. Ltd, 2010.
- 3. Mikell P. Groover, "Industrial Robots Technology, Programming and Applications", McGraw Hill, New York, 2008.
- 4. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987

5. Ramesh Jam, Rangachari Kasturi, Brain G. Schunck, "Machine Vision", Tata McGraw-Hill, 1995.

6. Yoremkoren, "Robotics for Engineers", McGraw-Hill, USA, 1987.

7. P.A. Janaki Raman, "Robotics and Image Processing", Tata McGraw-Hill, 1991.

5 Hours

**Total Hours:45** 

10 Hours

**10 Hours** 

### U18MCO0002

### AUTOMATION IN AGRICULTURE

L	Т	Р	J	С
2	0	1	0	3

### **Course Outcomes**

After	After successful completion of this course, the students should be able to					
<b>CO1:</b>	To understand the basics of automation in agriculture.	K2				
<b>CO2:</b>	To understand the concepts of Precision agricultural systems and trends	K2				
CO3:	To understand importance of automation in Irrigation systems	K2				
<b>CO4:</b>	To understand the various Automation Practices in agriculture through case studies.	K2				
CO5:	To know the Applications in material handling and packaging industries	K2				

### **Pre-requisite**

Nil

#### **CO/PO Mapping** (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes (POs) COs PSO PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 1 S S **CO1** S W Μ **CO2** S S Μ CO3 S S W S **CO4** S S W Μ CO5

#### **Course Assessment methods:**

DIRECT	INDIRECT				
5.Internal Test I	Course end survey				
6.Internal Test II					
7.Assignment					
8. Group Presentation					
9.End semester exam					
AUTOMATION IN AGRICULTURE		10 Hours			
Introduction to automation- Robot farming system –whe planting robot, robot combine harvester – sensing crop st	• 1	e robot tractor, rice			
PRECISION AGRICULTURAL SYSTEMS		10 Hours			
Soil sensors- crop sensors – yield monitors –remote sens imaging-satellite imaging system- Principle – application	0	nyperspectral			
IRRIGATION SYSTEMS		15 Hours			

	-			0
	5		1	/
Signatu	re of BO	S chair	man. M	CE
Signatu	ire of BO	S chair	man, M	CE

Introduction –Types of irrigation system GIS in irrigation -Planning and design – rain fall monitoringdrought monitoring- automated controller-based irrigation system-IOT based irrigation system- case study evaluation of irrigation system in agriculture.

#### AUTOMATION PRACTICES

10 Hours

Field crop production automation – Mechanization, Sensing and Control in cotton production – Automatic Rubber Tapping

Theory:	45
---------	----

**Total Hours:45** 

RE	FERENCES
1.	Qin Zhang, Francis J. Pierce, "Agricultural Automation: Fundamentals and Practices", CRC Press, A Chapman and
	Hall Book, 2013
2	Qin Zhang, "Precision Agriculture Technology for Crop Farming", CRC Press, 2016.
3	Irrigation Systems, A Laycock, Irrigation Systems-Design, Planning and Construction ,2011
4	Shimon Y Nof, Springer Handbook of Automation ,2009.
5	Jensen, J.R., 2004. "Introductory Digital Image Processing: A Remote Sensing Perspective". Prentice – Hall.
	New Jersey.
6.	A.M. Michael, 2010. Irrigation - theory and practice, Vikas publishers, New Delhi.
7	http://cyber.sci-hub.tw/MTAuMTIwMS9iMTkzMzYtMTE=/10.1201%40b19336-11.pdf /
8	https://link.springer.com/chapter/10.1007/978-3-540-78831-7_63
9	https://www.safaribooksonline.com/library/view/agricultural-systems-agroecology/9780128020951
10	http://sci-hub.tw/10.1080/10106048709354084
11	https://www.safaribooksonline.com/library/view/sustainable-water-engineering/9781118541029/
12	https://www.coursera.org/specializations/gis





TT1	<b>QN</b> <i>I</i> (	C <b>O</b> 00	0.4			NA	ATURE INSPIRED						, ]	Г Р	(
UI	.01910	2000	/04	(	OPTI	MIZ	ZATION TECHNIQUES						6 0	) 0	
Cour	se Ou	itcom	ies												
After	· succ	essfu	l com	pletio	on of	this c	ourse	e, the	stude	nts sh	o <mark>uld b</mark>	e able	to		
С	01:	Under	rstand	the im	portan	ice of	optim	ization	(K2)						
C	02:	Under	stand	nature	inspir	red op	timiza	tion al	gorithi	ns (K2	)				
С	03:	Apply	natur	e inspi	ired op	otimiza	ation to	echniq	ues to	solve p	oroblem	ns (K4)			
		•													_
Pre-r	equis	sites:	Nil												_
						co	/PO I	Маррі	ng						
(S/M/	W ind	icates	streng	gth of	correl	ation)	S	-Stron	g, M-l	Mediun	n, W-W	/eak			
COs								e Out	-						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	M	M	1	F04	FUJ	FOU	F07	FUO	F03	1010	FUII	F012		Î	
			M										М	M	
CO2	M	S	S										М	М	
CO3	S	S	М	М	S								S	S	
					1	1			1						
Cour	se Ass	sessme	ent me	ethods	5:										
		]	Direct							Ir	ndirect				
		ignmei	nt							Course	end su	ırvey			
Case S Simul	Studies	8													
SIIIIUI	ation														_
															_
MOD	ULE	1											9	Hours	
			Intimi	zation	– Sii	ngle a	nd M	ulti-O	hiectiv	ve. Ont	imizati	on – N			
			1			0			5	1	Studies.		uture 1	inspired	
	ULE			0	-			0	0				9	Hours	
			Optimi	zation	– An	t Col	ony O	ptimiz	ation	- Bees	s Algor	ithm –			
		imizat	-				-	-							
MOD	ULE	3											9	Hours	;
Cucke	oo Sea	urch A	lgorith	m - 1	Firefly	Algo	rithm	- Fish	Swar	m Alg	orithm	- Case	Studies	s.	
MOD	ULE	4											9	Hours	;
Grey	Wolf .	Algori	thm –	Bat A	lgorit	hm –	Ant L	ion O	otimiz	ation –	Case S	tudies.			
MOD	ULE	5											9	Hours	;
Flowe	er Poll	inatio	n Alg	orithm	n - Cr	ow Se	earch .	Algori	thm –	- Water	r Wave	Optim	ization	- Case	•

S. Signature of BOS chairman, MCE

Tł	neory: 45 Hrs Total Hours: 45
RI	EFERENCES:
1.	Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, 2016.
2.	Omid Bozorg-Haddad (Editor), Advanced Optimization by Nature-Inspired Algorithms, Studies in Computational Intelligence, Springer, 2017.
3.	Ke-Lin Du, M.N.S. Swamy, Search and Optimization by Metaheuristics, Techniques and Algorithms Inspired by Nature, Birkhauser, 2016.
4.	www.ieeeexplore.org
5.	www.elsevier.com
6.	www.springer.com



U18MCO0005	Mechanics in Cricket	L	Т	Р	J	C
01810100005	Miechanics in Cricket	3	0	0	0	3

### **Course OBJECTIVES**

- 1. To encourage, support and motivate the students to learn and understand concepts with a real-time thing or with a sport related activity
- 2. To know the design aspects and mechanics behind the sports equipment designs
- 3. To develop goal oriented synergetic approach by rectifying errors in the pressure situations
- 4. To develop team spirit and be a team worker.
- 5. To analyze and anticipate the changes in the game and thereby reacting according to the situation

### **Course Outcomes**

After	successful completion of this course, the students should be able to	
CO1:	Understand the basic principles, rules and regulations and the skills of the game, tactics, field	K2
	placement and umpiring signals	K2
<b>CO2:</b>	Interpret the technical knowledge in the aspects of cricket	K3
CO3:	Illustrate and make use of material science concepts in the design of cricket equipments	K3
<b>CO4:</b>	Apply and interpret the knowledge of solid mechanics and fluid mechanics in the batting and	K3
	bowling aspects of cricket	K3
<b>CO5</b> :	Discover and explain the applications of sensor and instrumentation in the game of cricket	K3

### **Pre-requisite**

U17MET2003 Engineering Mechanics

#### **CO/PO Mapping**

Programme Outcomes (POs)		
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO	2 PSO	PSO
	- 1	2
CO1         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M		
CO2     S     S     W     M     M	Μ	М
CO3         W         W         S         M         M         M	Μ	М
CO4     S     S     M     M	Μ	М
CO5         M         M         S         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M	Μ	М

#### Course Assessment methods:

DIRECT	INDIRECT	Г
1. Continuous Assessment Test I, II	1. Course-end survey	
2. Assignments, Journal paper review, Group		
Presentation, Prototype or Product Demonstration		
Open book test, Quiz etc. (as applicable)		
3.End Semester Examination		
Introduction to the Game of Cricket		9 Hours
Introduction – Evolution of cricket – Basic rules and reg	ulations – Various types or levels	of cricket – Ground,

Signature of BOS chairman, MCE

Pitch and equipment's, Ground and pitch preparation, Physical conditioning for cricket,	Stamina improvement
exercises for batting, bowling and fielding.	
Batting – Batting posture - Stance, Bat lift, Position and orientation of bat for various type	
Bowling - Bowling – Ball grip, seam position and its effects in trajectory of the ball – S	
bowling - Various Slower delivery techniques - Naku Ball, Split Finger, Leg cutter, Off	
orientation for various Spin Bowling - Leg Spin, Off Spin, Top spin, Chinaman, Googl	y, Carom ball
Various Aspects of Cricket Player and Umpire	9 Hours
Fielding – Fielding Positions, Judgments according to field positions, Field adjustments a	ccording to trajectory
of bowlers, catching - Low, Flat, High catches at different positions, Slip catching, Th	rowing – Under arm,
Flat, Long throw.	
Wicket-keeping – Stance for spin and pace / seam bowling – Upto the stumps, Behind t	he stumps, Stumping,
Run-outs.	
Umpiring - 42 laws of cricket - interpretation and its application, Different signals - Sta	ance and movements
for runouts, Eligibility criteria, Calculations for Organizing a cricket tournament - Matc	
Material Science and Composite Materials in Cricket	9 Hours
Various types of cricket – Depends on ball usage – White, Red, Pink - SG, Kookaburra	, Dukes – Various
design considerations in the design of cricket bats and balls - CNC Machines in design	of bats - Various
materials used for the design of cricket bat - Aluminum, Carbon composite, Graphite -	Handle materials –
Cane, Willow, Rubber, Polyurethane – Design modifications in Cricket Bat – Selection	of cricket bats –
Knocking of bats	
Solid Mechanics and Fluid Mechanics in Cricket	9 Hours
Fluid mechanics related to Ball Swing – Inswing, Out Swing, Reverse Swing – Laminar	and Turbulent flow.
Case studies: Smith, Warner and Bancroft ban issue - Various ball tampering incidents	- Captaincy – Player
managements, Field Placements related to bowlers and strengths of batsmen, Pressu	re situation analysis,
reacting according to the situations on and off the field, motivational aspects for players	5.
Solid mechanics related to Ball - Bat Contact and Trajectory - Conservation of moment	tum, Impact of elastic
bodies, Curvilinear motion - Projectile motion - Ball validation related to Co-efficient of	of restitution
Sensor and Instrumentation in Cricket	9 Hours
Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter –	Hot Spot – Light
Meter - LED Stumps - Ball Speed Sensor - Bat Swinging Speed Sensor (Intel) - Dron	e for Pitch Analysis -
Bowling action verification	
Theory: 45 Hours To	otal: 45 Hours
REFERENCES	
1. The Handbook of Cricket, K. V. Andrew	
2. The Skills of Cricket, K. V. Andrew	



### **OTHER REFERENCES**

- 1. Cricket The Techniques of the Game, Andrew, Carter, Lenham
- 2. A History of Cricket, B. Green
- 3. The MCC Cricket Coaching Book (Fourth Edition)
- 4. Wisden Cricketers' Almanack (Printed Annually)
- 5. Test Cricket in Clubs and Schools (Available from NCA)
- 6. How to Coach Cricket, R. Dellor
- 7. Games for Cricket Training, A. Oakman
- 8. The Laws of Cricket (1980 Code) Second Edition 1992.



### U18MCO0006

### LOW-COST AUTOMATION

L	Τ	Р	J	С
3	0	0	0	3

**12 Hours** 

### **Course Outcomes**

After	successful completion of this course, the students should be able to	
CO1:	To provide basic knowledge to implement low-cost Automation in various industries	K2
<b>CO2:</b>	To study the pneumatics devices and circuits and its applications	K2
CO3:	To understand the Hydraulic devices and circuits	K2
CO4:	To configure the Automation assembly lines used in industries	K2
CO5:	To know the Applications in material handling and packaging industries	K2

#### **Pre-requisite**

U17MET2003 Engineering Mechanics

						CC	)/PO M	Iappin	5					
		(S/I	M/W in	dicates	strengt	th of co	rrelatio	n) S-	Strong,	M-Med	ium, W-V	Veak		
00						Prog	ramme	Outcon	nes (PC	Ds)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
<b>CO1</b>	S												S	М
CO2	S												S	М
CO3	S		M		М								S	М
<b>CO4</b>	S		М		М								S	М
CO5	S												S	М

#### **Course Assessment methods:**

INDIRECT
Course end survey
5 Hours

Automated manufacturing systems, fixed /programmable /flexible automation, Need of automation, Basic elements of automated systems- power, program and control. Levels of automation; control systems: Continuous and discrete control; Low-cost automation, Economic and social aspects of automation.

### **BASICS OF PNEUMATICS AND CIRCUIT DESIGN**

Operational principles and application, air compressors, Pneumatic cylinders and air motors, Pneumatic<br/>valves, Design of pneumatic circuits: speed control, reciprocating, synchronization and sequencing circuits.<br/>Hydro-pneumatic, Electro pneumatic Control in pneumatic systems.12 HoursBASICS OF HYDRAULICS AND CIRCUIT DESIGN12 Hours

Signature of BOS cl	hairman MCE

Pri	nciples of hydraulics, Hyd	draulic fluids, Filtration technology, Hydi	raulic- pumps, valves, and actuators.
Sta	indards in circuit diagram	representation, Power pack design layout	t, Basic hydraulic circuits.
AS	SEMBLY AUTOMATI	ON:	8 Hours
Typ	es and configurations, Pa	rts delivery at workstations-Various vibra	atory and non-vibratory devices for
fee	ding, hopper feeders, rota	ry disc feeder, centrifugal and orientation	, Product design for automated
asse	embly.		C C
AP	PLICATIONS AND CA	SE STUDIES:	8 Hours
Ma	terial handling- sorting- d	loor opening- labelling Alignment method	d examples- Direction Change-
	tomatic Screw Fastening-		
	connucle belew i uscennig	· locking and clamping devices.	
			Total House 45
	Theory: 45	Tutorials: 0-hour	Total Hours:45
			Total Hours:45
	Theory: 45 FERENCES		
RE	Theory: 45 FERENCES Anthony Esposito, "Fluid	<b>Tutorials: 0-hour</b> d Power with applications", Prentice Hall in	nternational, 2014.
RE 1.	Theory: 45 FERENCES Anthony Esposito, "Fluid	Tutorials: 0-hour	nternational, 2014.
RE 1.	Theory: 45 FERENCES Anthony Esposito, "Fluid Mikell P Groover, "Autor Publications, 2016.	<b>Tutorials: 0-hour</b> d Power with applications", Prentice Hall in	nternational, 2014. Integrated Manufacturing", Prentice Hall
RE 1. 2	Theory: 45 FERENCES Anthony Esposito, "Fluid Mikell P Groover, "Autor Publications, 2016. Kuo.B.C, "Automatic co	<b>Tutorials: 0-hour</b> d Power with applications", Prentice Hall in mation, Production System and Computer	nternational, 2014. Integrated Manufacturing", Prentice Hall Delhi, 2007.
RE 1. 2 3	Theory: 45 FERENCES Anthony Esposito, "Fluid Mikell P Groover, "Autor Publications, 2016. Kuo.B.C, "Automatic co James A Sullivan, "Fluid	<b>Tutorials: 0-hour</b> d Power with applications", Prentice Hall in mation, Production System and Computer 1 ntrol systems", Prentice Hall India, New D	nternational, 2014. Integrated Manufacturing", Prentice Hall Delhi, 2007.

	<	5	-	P	-
Signa	ture of	BOSC	hairma	n, MCE	

U18MCO0007

### MAGICS AND MECHANICS

 L
 T
 P
 J
 C

 2
 0
 1
 0
 3

#### **Course OBJECTIVES**

- 1. To understand the mechanical engineering terminologies related to electrical/control/instrumentation engineering.
- 2. To understand the Modes of Heat transfer.
- 3. To understand thermoelectric power generation.

### **Course Outcomes**

### After successful completion of this course, the students should be able to

<b>CO1:</b>	Illustrate the mechanical terminologies and compare them with appropriate electrical	
	terminologies.	
<b>CO2:</b>	Find the resultant of force system, resolution of forces.	

**CO4:** Describe inertia and its effects on drive selection.

**CO5:** Analyze the heat transfer rate and thermoelectric power generation.

### **Pre-requisite**

U17MET2003 Engineering Mechanics

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
<b>CO</b>	Programme Outcomes (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
0.01	C	C			***					М				2
<b>CO1</b>	S	S			W					M	M	М	M	
CO2	S	S												
CO3	S	S										S		М
<b>CO4</b>	М													
CO5	М	Μ												
0		4		1										

#### **Course Assessment methods:**

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	1. Course-end survey
2. Assignments, Journal paper review, Group	
Presentation, Prototype or Product Demonstration	
Open book test, Quiz etc. (as applicable)	
3. End Semester Examination	
4. Classroom teaching.	
5. Magic Demonstrations.	
6. Peer learning.	

Signature of BOS chairman, MCE

FORCE AND MECHANICS	12 Hours
Engineering Mechanics, units and dimensions, mass, weight, pressure, velocity, acceleration, force and reaction, resultant, resolution of forces.	electrical analogy,
THE MAGIC BALL AND THE NECESSARY EVIL	8 Hours
Friction, laws of friction, calculation of frictional forces, losses due to friction, Electrical a	inalogy.
WILL THE DUSTER MOVE ALONG WITH PAPER?	10 Hours
Mass, inertia, applications of inertia, inertial effect on drivers. Moment of inertia, Calculation o and inertial effects on drivers.	f moment of inertia
WORK ENERGY AND POWER	4 Hours
Moment, torque, work, energy, power, electrical analogy.	_
INTRODUCTION TO HEAT TRANSFER AND THERMOELECTRIC POWER GENERATION	11 Hours
Electrical heat generation, Modes of heat transfer, thermoelectric power generation.	
Theory: 45 Hours Tota	al: 45 Hours
TEXTBOOKS	
<ol> <li>Ferdinand P. Beer&amp; E. Russell Johnston., "Vector Mechanics for Engineers, Statics and McGarw Hill 2017.</li> </ol>	d Dynamics",
<ol> <li>Frank P. Incropera, David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine, "Print and Mass transfer", Wiley 2015.</li> </ol>	ciples of Heat
REFERENCE BOOKS	
<ol> <li>David Halliday, Jearl Walker, and Robert Resnick, "Fundamentals of Phy Wiley.2015</li> </ol>	vsics",4th edition,

Sal
Signature of BOS chairman, MCE

# **INDUSTRY OFFERING ELECTIVE**



### **PRODUCT DESIGN AND DEVELOPMENT**

L	Τ	Р	J	С
3	0	0	0	3

#### **Course Outcomes**

After s	After successful completion of this course, the students should be able to								
CO1:	Apply concepts of product development and outline product planning process								
<b>CO2:</b>	Apply relative importance of customer needs in establishing product specifications								
CO3:	Identify concept generation activities and summarize the methodology involved in concept								
	selection and testing								
CO4:	Outline supply chain considerations in product architecture and understand theindustrial								
	design process								
CO5:	Apply design for manufacturing concepts in estimating manufacturing costs								
CO6:	Apply principles of prototyping in product development economics and highlight								
	importance of managing projects								
D	• •								

### **Pre-requisite**

Nil

#### **CO/PO Mapping** (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes (POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO8 PO10 PO11 PO12 PSO1 PSO2 PO7 PO9 CO1 М М М W М CO2 М М CO3 S М М W CO4 S М М М CO5 S Μ S М CO6 М М S S **Course Assessment methods:**

Direct	Indirect						
1. Internal Test I	Course end survey						
2. Internal Test II							
3. Assignment							
4. Group presentation.							
5. End semester exam							
INTRODUCTION - DEVELOPMENT PROCESSES AND ORGANIZATIONS – 9 Hours							
PRODUCT PLANNING							
Characteristics of successful product development	to Design and develop products, d	uration and					
cost of product development, the challenges of product development. A generic development							
process, concept development: the front-end process, adapting the generic product development							
process, the AMF development process, product de	velopmentorganizations, the AMF o	rganization.					

6	-	Ð
Signature of BO	Schairman N	ICE

The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process.

### IDENTIFYING CUSTOMER NEEDS - PRODUCT SPECIFICATIONS

9 Hours

Gathering raw data from customers, interpreting raw data in terms of customer needs, organizing the needs into a hierarchy, establishing the relative importance of the needs and reflecting on the results and the process. Specifications, establish specifications, establishing target specifications setting the final specifications.

### CONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING 9 Hours

The activity of concept generation clarify the problem search externally, search internally, explore systematically, reflects on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey population and a survey format, communicate the concept, measuring customer response, interpreting the result, reflecting on the results and the process.

### PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN - 9 Hours DESIGN FOR MANUFACTURING - 9 Hours

Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors.

# PROTOTYPING PRODUCT DEVELOPMENT ECONOMICS MANAGING PROJECTS

9 Hours

Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode, Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing tasks, baseline project planning, accelerating projects, project execution, postmortem project evaluation.

Theory	v <b>: 4</b> 5	Tutorial: 0	Practical:	0 P	roject: 0	Tota	l: 45 Hours
REFER	RENC	CES:					
1.	Karl	Ulrich, T, Stev	en Eppinger, D,	"Product	Design	and Developm	ent", McGraw

- Hill,2015.
  - 2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013.
  - 3. Timjones, "New Product Development: An Introduction to a multifunctional process", Butterworth-Heinemann, 1997.
  - 4. Geoffery Boothroyd, Peter Dewhurst and Winston Knight, A, "Product Design forManufacture and Assembly", CRC Press, 2011.

Signature of BOS chairman, MCE

		L	Т	Р	J	С
U18MCE0020	PRODUCT LIFECYCLE MANAGEMENT	2	0	2	0	3

#### **Course Outcomes**

After s	After successful completion of this course, the students should be able to								
<b>CO1:</b>	Apply concepts of product lifecycle management and visioning								
<b>CO2:</b>	Apply relative importance of product concepts, processes and workflow								
CO3:	Apply principles of collaborative product development								
CO4:	Outline considerations in system architecture understand the industrial process								
CO5:	Apply product lifecycle management strategy and assessment								
CO6:	Apply the infrastructure assessment, assessment of current systems and applications.								
Dro roc	Pro requisite								

### Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes (POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		Μ		Μ					W			Μ	
CO2			М										Μ	
CO3	Μ		М										Μ	
CO4			S			W				М	М		Μ	
CO5			S		М	М								S
C06						М							М	

#### **Course Assessment methods:**

Direct	Indirect				
1. Internal Test I	Course end survey				
2. Internal Test II					
3. Assignment					
4. Group presentation.					
5. End semester exam					
INTRODUCTION TO PRODUCT LIFE CYCL	E MANAGEMENT 6 Hours				

Definition, PLM Lifecycle Model, Threads of Product Lifecycle Management, Need for Product Lifecycle Management, Opportunities and Benefits of Product Lifecycle Management, Views, Components and Phases of Product Lifecycle Management, Product Lifecycle Management feasibility study, Product Lifecycle Management Visioning.

PLM CONCEPTS, PROCESSES AND WORKFLOW								
Characteristics of Pro	luct Lifecycle Manager	ment, Environment Driving	Product Lifecycle					

<Signature of BOS chairman, MCE

Management, Product Lifecycle Management Elements, Drivers of Product Lifecycle M	-
Conceptualization, Design, Development, Validation, Production, Support of Produ	ct Lifecycle
Management.	6 Hours
COLLABORATIVE PRODUCT DEVELOPMENT	
Engineering Vaulting, Product Reuse, Smart Parts, Engineering Change Managem	
Materials and Process Consistency, Digital Mock-Up and Prototype Development	, Designfor
Environment, Virtual Testing and Validation, Marketing Collateral.	< <b>TT</b>
SYSTEM ARCHITECTURE	6 Hours
Introduction, Types of Product Data, Product Lifecycle Management systems,	
Features of Product Lifecycle Management System, System architecture, Product	
information models, Functionality of the Product Lifecycle Management Systems	
DEVELOPING A PLM STRATEGY AND ASSESSMENT	9 Hours
Strategy, Impact of strategy, implementing a PLM strategy, PLM Initiatives to Suppo	rt Corporate
Objectives, Infrastructure Assessment, Assessment of Current Systems and Application	s.
PRACTICAL:	30 Hours
1. Streamline collaboration to capture and manage the creation,	
revision, release of CADdata simulation models and documentations.	
2. Create, assign and mange task, setting priorities of task to the teams on trac	k,
3. Resolving issues (issue management)	
4. View and markup complex 3D product design	
5. Change management capabilities.	
6. Customization and implementation of various industrial practices	
7. Conceptualization for Product Lifecycle Management	
8. Validation for Product Lifecycle Management	
9. Building Product information models	
Theory: 45 Tutorial: 0 Practical: 0 Project: 0 Total: 45 Ho	urs
REFERENCES:	<b>u</b> 15
1. Michael Grieves, Product Lifecycle Management: Driving the Next Generat	ion of Lean
Thinking, Mc Graw Hill, 2015.	
<ol> <li>Martin Eigner, System Lifecycle Management – Engineering Digitalization ( 4.0), Springer Vieweg 2021.</li> </ol>	Engineering
<ol> <li>Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McG 2015</li> </ol>	raw Hill,
4. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013.	

5-Signature of BOS chairman, MCE

### U18ECE0057

### **INTRODUCTION TO HMI**

L	Т	Р	J	С
3	0	0	0	3

### **Course Outcomes**

After successful completion of this course, the students should be able to						
<b>CO1:</b> Explain the applications of HMIs in various domains	K2					
<b>CO2:</b> Differentiate various communication protocols used in HMI Development	K2					
<b>CO3:</b> Describe car multimedia systems and the hardware, software evolution	K2					
CO4: Summarize various tools used for HMI development for automobile application	K2					
<b>CO5:</b> Explain the importance of user experience with a case study.	K2					
<b>CO6:</b> Use various graphic tools and advanced techniques to create UI's	K3					

### **Pre-requisite**

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
Programme Outcomes (POs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ	W												Μ
CO2	Μ	S												Μ
CO3		М	М											Μ
CO4		S		М										Μ
CO5		М	Μ		Μ									Μ
CO6		М	Μ		Μ									М
Cours	se Ass	essmei	nt met	hods:							•			
Direct							Indirec	t						
			sessme					Cour	se end	survey				
	•		est; Co			0	<b>▲</b> ·							
	0		Journa											
			roject											
			Produc	t Den	ionsua	tion et	c. (as							
applicable) 3. End Semester Examination														
					AND A	UTO	MOTI	VE EI	LECT	RONIC	S		61	Hours
										s, Medi		Aero -		
										CUs. (C				
Ether							1				,	,	,	
CAR MULTIMEDIA						91	Hours							
	Instrument Cluster, In Vehicle Infotainment, Professional Systems, Rear Seat Entertainment - Evolution of car								1 of car					
multimedia, Overview, H/W, S/W and mechanics														
		<b>FIVE</b>												Hours
HMI A	HMI Architecture & Concepts, H/W Platform(intel, Qualcomm,i.MX6), S/W Platform(OS, Graphics libraries								n,i.MX	6), S/W I	Platform	(OS, Gra	aphics li	



and Connectivity), Services(Navigation, map Engine, Alexa), Application Framework(Qt, Android sdk, CGISTUDIO, IAR SYSTEMS), HMI domain specific applications - HMI application components, Widgets, Framework, Framework model and state machine.

### UX AND UI

10 Hours

Introduction to UX design - stages, theory, Design thinking, UX Case Studies, Comparison of UX and UI, Interaction concepts, Graphic design with introduction to tools (Adobe Photoshop, Adobe XD, Blender) - Asset Design - Overview only, Guidelines and norms, 2D/3D rendering.

#### TRENDS AND ADVANCED TOPICS

**10 Hours** 

Voice, Gesture, Vision, sensor based UI controls, Haptics, New technologies (eye gaze, gesture, dual display), SPI - android auto, car play, Smart City and Public Transport, ride sharing, personal, Virtual Reality, Augmented Reality and Mixed Reality, UI Analytics (Usage patterns), Debugging, Performance Profiling

### **Theory: 45 Hours**

**Total Hours: 45** 

#### **REFERENCES:** 1. Shuo Gao, Shuo Yan, Hang Zhao, Arokia Nathan, "Touch-Based Human-Machine Interaction: Principles and Applications", Springer Nature Switzerland AG; 1st edition,2021.

2. Robert Wells, "Unity 2020 By Example: A project-based guide to building 2D, 3D, augmented reality, and virtual reality games from scratch", Packt Publishing Limited, 2020.

3. Ryan Cohen, Tao Wang, "GUI Design for Android Apps", A press, Berkeley, CA, 2014.



U18ECE0058	Advanced HMI	L	Т	Р	J	C
	Auvanceu Hivii	2	0	2	0	3

**Course Outcomes** 

After successful completion of this course, the students should be able to					
CO1: Summarize HMI architecture and its subcomponents	K2				
<b>CO2:</b> Develop real time automotive applications using tools such as Unity and Qt.	K3				
<b>CO3:</b> Develop simple HMI using Android and Web app development tools	K3				
CO4: Perform HMI testing and validation for the developed system	K3				

# **Pre-requisite**

Nil

### **CO/PO Mapping**

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes (POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ	W												Μ
CO2	Μ	S												Μ
CO3		М	Μ											М
CO4		S		Μ	М									Μ

#### **Course Assessment methods:**

	<b>T</b> 10	
Direct	Indirect	
4. Continuous Assessment Test I, II	Course end survey	
5. Open book test; Cooperative learning report,		
Assignment; Journal paper review, Group		
Presentation, Project report, Poster preparation,		
Prototype or Product Demonstration etc. (as		
applicable)		
6. End Semester Examination		
INTRODUCTION		2 Hours
HMI Architecture & Concepts, HMI Subcomponen	ts	
GAMING ADVANCED 3D DEVELOPMENT		9 Hours
Introduction to game development and advanced	3D development, Game Engine,	Unity 3D –
installation -code editor - camera - game objects and	transform-Renderer-lighting-U	I-Scripting,
Realtime 3D in Automotive world, HMI Developm	ent.	
QT		8 Hours
History of QT, Why Qt? Supported Platforms, Qt I	nstallation Ot Creator Ot Modules	Signals and

slots, Event Processing.

ANDROID AND WEB APP DEVELOPENT

8 Hours



Android, PWA, HTML CSS Ja	waScript (Front End Frameworks)	
HMI TESTING AND AUTO		3 Hours
Introduction, elements of HMI,	, Challenges of HMI Testing, Verificati	ion and Validation
Theory: 30 Hours	Practical: 15 Hours	<b>Total Hours: 45</b>
<b>REFERENCES:</b>		
1. Shuo Gao, Shuo Yan, Han	g Zhao, Arokia Nathan, "Touch-Based	Human-Machine Interaction:
	s", Springer Nature Switzerland AG;	
	By Example: A project-based guide to	
	ames from scratch", Packt Publishing L	•
	GUI Programming Cookbook: Practice	
platform GUI applications, Limited, 2019.	widgets, and animations with Qt 5, 2	2nd Edition, Packt Publishing
<b>e</b> .	ded Android: Porting, Extending, and	Customizing", First Edition,
Shroff/O'Reilly, 2013		
	ogramming Android for beginners Hand	dbook", IT Campus Academy,
March 2016		
7. Julie C. Meloni, "Sams T Education, 2011.	each Yourself HTML, CSS, and Java	aScript All in One", Pearson
8. Arnon Axelrod, "Complete	e Guide to Test Automation by Arnon	Axelrod", a Press, September
2018.		
8.Dean Alan Hume, "Progressiv	ve Web Apps", Manning Publisher, De	cember 2017.
LIST OF EXPERIMENT:		
1. Setting up of Raspberry Piv	with capacitive touch screen	
2. Setting up the Unity environ	nment.	
3. Working with UI controls of	of Unity.	
4. Qt Installation and configur		
5. Creating Dialogs and Main	windows using Qt programming.	
6. Working with building bloc	ks of practical web design using HTMI	L
7. Webpage design with CSS	and Form validation using JavaScript.	

	Sil
-	Signature of BOS chairman, MCE

# **ONE CREDIT COURSE**



# **ROBOT OPERATING SYSTEM**

L	Т	Р	J	С
1	0	0	0	1

#### **Course Outcomes**

After successful completion of this course, the students should be able to

CO1: Explain the importance and different frameworks of ROS

CO2: Use the Linux command in the Terminal window

CO3: Describe the various computation graph-level concepts in ROS

CO4: Use debugging and visualization tools in ROS

CO5: Implement communication protocols for wired and wireless communication

**CO6:** Design robots by interfacing with motors and cameras

**Pre-requisite** 

-

#### **CO/PO Mapping**

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

		Programme Outcomes (POs)												
COs	PO1	PO2	PO3	РО	PO5	Р	РО	РО	РО	PO1	PO1	PO12	PSO	PS
	101	102	105	4	105	06	7	8	9	0	1		1	O2
CO1	S		М	М	S									
CO2	S		М		S									
CO3	S		М	М	S									
CO4	S		М		S									
CO5	S		М	М	S									
CO6	S		Μ	М	S									

#### **Course Assessment methods:**

Direct	Indirect				
Internal test I	Course end survey				
Internal test II					
End semester Examination.					
Assignment					

**INTRODUCTION TO ROS** 

2 Hours

Signature of BOS chairman, MCE

Introduction - history - distributions - difference from other meta - operat	ing systems -services - ROS
framework - operating system – releases	
INTRODUCTION TO LINUX COMMANDS	2 Hours
LINUX commands - file system - redirection of input and output - File system	em security - Changing access
rights - process commands - compiling, building, and running commands -hand	
ARCHITECTURE OF THE OPERATING SYSTEM	2 Hours
File system - packages - Stacks - messages - services - catkin workspace - wo	rking with catkin workspace -
working with ROS navigation and listing commands.	
COMPUTATION GRAPH LEVEL	2 Hours
Navigation through file system - Understanding of Nodes - topics - services	- messages - bags - master -
parameter server - interfacing of Sensors and Actuators	
DEBUGGING AND VISUALIZATION	2 Hours
Debugging of Nodes - topics - services - messages - bags - master parameter	- visualization using Gazebo -
Rviz - URDF modeling - Xacro - launch files.	
APPLICATIONS	5 Hours
ROS Robotics - Single-board Computers, ROS on Raspberry Pi, Jetson Nano	ł
Theory: 15 Hours. Total Hours: 15 Hours	
*	
REFERENCES:	
1. Lentin Joseph, Jonathan Cacace "Mastering ROS for Robotics Progra	mming", 3rd edition, Packt
Publishing Limited, 2021.	
Publishing Limited, 2021.2. Ramkumar Gandhinathan, Lentin Joseph, "ROS Robotics Projects", 21	_

Signature of BOS chairman, MCE

# LANGUAGE ELECTIVE



1110ED12201	FRENCH LEVEL I (Common to all)	L	Т	Р	J	С
U 18F K12201	FRENCH LEVEL I (Common to au)	2	0	2	0	3

#### **Course Objectives:**

- 1. To train the students to learn basic French.
- 2. To teach them to learn basic grammar and vocabulary.
- 3. To train them to converse in French in day-to-day scenarios.

#### **Course Outcomes:**

#### After the course the students will be able to:

CO1: to help students acquire familiarity in the French alphabet & basic vocabularyCO2: listen

and identify individual sounds of French.

CO3: use basic sounds and words while speaking.

- read and understand simple advertisements, brochures and invitations.
- understand and use basic grammar and appropriate vocabulary in completinglanguage tasks.

#### **Assessment Methods:**

Direct	
1. Continuous Assessment of Skills	
2. Assignment	
3. Written Test	
4. End Semester Examination	
Indirect	
1. Course-end survey	



# **CO/PO Mapping:**

	<b>CO/PO Mapping</b> (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-W											⁷ eak		
COs	Programme Outcomes (POs)									PSO				
	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O 1	PS O 2
C01									S	S		S		
CO2									S	S		S		
CO3									S	S		S		

#### **UNIT** – 1

Introduction to France and its regions - French alphabets and numbers, countries andnationality	12 Hours
Grammaire – Verbs – s'appeler, être, avoir, definite and indefinite articlesCommunication – Greetings, Self-Introduction	

#### UNIT II

Basic vocabulary, colours, months and days			
Grammaire - Verbes - Conjugation: Present tense (ER, IR, RE ending verbs) – Adjective possessive Communication – Talk about family and friends, date, time etc.	/e		

## UNIT III

Hobbies, interests and daily routine	12 Hours
Grammaire – Irregular verbs – Reflexive verbs - Future procheCommunication – Talking about hobbies and interests.	

$\sim$	P
Signature of BOS	chairman, MCE

## UNIT IV

Vocabulary of places and transport	12 Hours
Grammaire – Pertinent verbs, adjective demonstrative, past tense, propositionsCommunication – Narrating an incident or story.	1

# UNIT V

Vocabulary of food, services, money	12 Hours
Grammaire – Negation, Verbs – acheter, manger, payer, articles partitifs Communication – Accept and refuse an invitation, situation in a	
restaurant.	

References:	60 Hours
1) Grammaire Progressive du Français, CLÉ International, 2010.	
2) Saison 1, Marie-Noëlle Cocton et al, Didier, 2014.	
3) Preparation à l'examen du DELF A1 – Hachette	

			A	_
	$\leq$	Dan	-1	_
Signa	ture of	BOS chai	irman, MC	E

	GERMAN LEVEL I (Comman to all)	L	Т	Р	J	С
U18GEI2201	GERMAN LEVEL I (Comman to all)	2	0	2	0	3

#### **Course Objectives:**

- To train the students to learn basic German.
- To teach them to learn basic grammar and vocabulary.
- To train them to converse in German in day-to-day scenarios.

#### **Course Outcomes:**

After the course, the students will be able to:

CO1: to help students acquire familiarity in the German alphabet & basic vocabulary

CO2: listen and identify individual sounds of German.

CO3: use basic sounds and words while speaking.

- read and understand simple advertisements, brochures and invitations.
- understand and use basic grammar and appropriate vocabulary in completing language tasks.

#### **Assessment Methods:**

#### Direct

- 1. Continuous Assessment of Skills
- 2. Assignment
- 3. Written Test
- 4. End Semester Examination

#### Indirect

1. Course-end survey



# **CO/PO Mapping:**

	(S/M/	W in	dicate	s stre		CO/I of cor			-	g, M-N	/lediu	ım, W	/-Weak	
COs				Pro	gram	me C	outco	mes (	(POs)				PS	50
	Р	Р	PO	Р	P	P	Р	P	PO	PO	P	P	PSO	PSO
	0	0	3	0	0	0	0	0	9	10	0	0	1	2
	1	2		4	5	6	7	8			11	12		
CO1									S	S		S		
CO2									S	S		S		
CO3									S	S		S		

# UNIT – 1

Introduction to Germany and its regions –German basic phrases, alphabets, numbers, countries and nationality	12 Hours
Grammaire – Verbs – sein, haben, definite and indefinite articlesCommunication Self-Introduction	– Greetings,

# UNIT II

Basic vocabulary, colours, months and days	12 Hours
Grammaire - Verbes - Conjugation: Present tense (regular verbs) – Adjective po Communication – Talk about family and friends, date, time etc.	ssesive

#### , UNIT III

Hobbies, interests and daily routine	12 Hours
Grammaire – Irregular verbs Communication – Talking about hobbies and interest	ests.



#### UNIT IV

Vocabulary of places and transport	12 Hours
Grammaire – Cases, adjective demonstrative, past tense, propositions Communicatio	n – Narrating
incident or story	

#### UNIT V

#### **12Hours**

Vocabulary of food, services, money	12 Hours
Grammaire – Negation, Verbs – kaufen, essen, bezahlen Communication – Accep invitation, situation in a restaurant	t and refuse an

# L: 60 T: 0 Total: 60 periods

## **References:**

- 1. Studio d Deutsch alsFremdsprache Grundstufe A1.
- 2. Fit Fur Goethe-Zertifikat A1 (Start Deutsch 1)
- 3. Mit ErfogZum Goethe-Zertifikat A1

#### Software:

All internet tools.



L	Т	Р	J	С
2	0	2	0	3

#### **Course Objectives**

- 1. To help the students learn Hindi Scripts Vowels and Consonants.
- 2. To help the students learn basic Hindi grammar.
- 3. To make the students understand the way the Language is to be spoken.
- 4. To ensure that the students are empowered with linguistic knowledge.
- 5. To make the students acquire basic conversational skills.

#### **Course Outcomes**

- 1. Recognize and write Hindi alphabets.
- 2. Students will get to know the usage of words.
- Students are confident enough to speak Hindi.
   Students sound grammatically correct and confident.

#### **Assessment Methods:**

Direct
--------

- 1. Continuous Assessment of Skills
- 2. Assignment
- 3. Written Test
- 4. End Semester Examination

#### Indirect

1. Course-end survey



	<b>CO/PO Mapping</b> (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-We											-Weal	k	
COs	Programme Outcomes (POs)											PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	0	0
													1	2
CO1									S	S		S		
CO2									S	S		S		
CO3									S	S		S		

#### UNIT – 1

Introduction to Hindi language - Recognize and write Alphabets – Identify basic sentence structure – Greet each other – Ask questions - Days of the week – Numbers – Expressing time.

Listening: Listening to Greetings, Numbers and Time.

Speaking: Self Introduction

#### UNIT - 2

Identify what is there and what is not there – Use postpositions(mein, par, ke paasetc.) – Use of singular/plural – Masculine/Fminine – Name and identify relatives –Express possession with kinship terms (ka/ke/kii) – parts of body

Listening: Listening for specific information, Family members, Parts of body

Speaking: Introducing one's family,

Signature of BOS chairman, MCE

#### **UNIT – 3**

Vowels, consonants and conjoint letters and related vocabulary – Fruits, Vegetables, Food and Groceries – Use possessive pronouns – use interrogativepronouns (kaun, kiskaa,kiskii,kiske,kahaan se) – Present habitual actions – pasthabitual actions – today, tomorrow ,yesterday , day before yesterday, day aftertomorrow ( aaj/kal/parson)

**Listening:** Simple conversation between Shop keeper and customer **Speaking:** Names of fruits and vegetables, Express one's daily routine

#### UNIT-4

Create and follow a simple recipe – Use indirect verbs with nouns (isko, usko,..etc.) – express needs Ask about and express wishes and preferences – Useinfinitive – use comparative and superlative degree of adjectives – Use more interrogative words – Explain about future plans – simple future actions

Listening: Listening to a simple recipe

Speaking: Express your needs and wishes, future plans

#### UNIT - 5

Learn about some festivals like Diwali, Pongal, Holli etc. - Learn some shortstories

**Listening:** Short stories

Speaking: Making small stories, Describe your favorite festival.

Reference

1. Hindi Prachar Vahini-1, Prathmic Exam. (For Basics and Grammar)

2. Hindi Prachar Vahini-2 Madhyama Book (For Spoken Hindi) D.B.HindiPrachar Sabha, T.Nagar, Chennai.

3. Sabari Hindi Speaking Course, For Spoken. Sabari Book House, Salem

Signature of BOS chairman, MCE

L	Τ	Р	J	С
2	0	2	0	3

#### **Course Objectives:**

- 1. To enable students, achieve a basic exposure on Japan, Japanese language andculture.
- 2. To make students familiar with the Japanese cultural facets and social etiquettes.
- 3. To make the students acquire basic conversational skills.
- 4. To help students learn the Japanese scripts viz. hiragana and a few basic kanji.
- 5. To help students learn the basic Japanese grammar.

#### **Course Outcomes:**

After the course, the students will be able to:

- **CO1:** Recognize and write Japanese alphabet.
- CO2: Speak using basic sounds of the Japanese language.
- **CO3:** Apply appropriate vocabulary and grammar needed for simple conversation in Japanese language. Comprehend the simple day to day conversation and give correct meaning.

#### **Assessment Methods:**

1. C	
	Continuous Assessment of Skills
2. A	ssignment
3. W	Vritten Test
4. E	nd Semester Examination
Indire	ect
1. Coi	urse-end survey



	(S/	M/W	indica	tes str	ength		PO M		-	, M-Me	edium	, W-W	/eak	
COs				Pro	gram	me O	utcon	nes (P	POs)				P	50
	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	0	0
													1	2
CO1									S	S		S		
CO2									S	S		S		
CO3									S	S		S		

UNIT - 1	12 Hours
Japan: Land and culture - Introduction to Japanese language – Greetings – Seasons - D	ays of the
week - Months of the year - Dates of the month - Self introduction - Numbers (Upto 9	99,999) –
Expressing time – Conversation audio and video.	
Listening: Listening to Greetings - Listening for Specific Information: Numbers, Time	2.

Speaking: Self-Introduction

UNIT - 2	12 Hours
Family relationships - Colours - Parts of body - Profession - Directions - Time expression	ons
(today, tomorrow, yesterday, day before, day after) - Japanese housing and living style	- Food
and transport (vocabulary) - Stationery, fruits and vegetables.	
Listening: Listening for Specific Information: Directions, Family Members, Parts of b	ody
Speaking: Introducing one's family.	



#### **UNIT - 3**

Hiragana Chart 1 - vowels and consonants and related vocabulary – Hiragana Charts 2&3, double consonants, vowel elongation and related vocabulary – Introduction to Kanji – BasicVocabulary – Basic Conversational Phrases.

Listening: Listening to Japanese Alphabet Pronunciation, Simple Conversation.

Speaking: Pair Activity (Day to day situational conversation)

UNIT - 4	12 Hours
Katakana script and related vocabulary – Basic kanjis: naka, ue, shita, kawa, yama, n	umbers (1-
10, 100, 1000, 10,000 and yen), person, man, woman, child, tree, book, hidari, migi,	kuchi, 4
directions - Usage of particles wa, no, mo and ka and exercises - Usage of kore, sore,	are, kono,
sono, ano, arimasu and imasu - Particles - ni (location) and ga , donata and dare - Par	ticles ni
(time), kara, made, ne, koko, soko, asoko and doko - Directions : kochira, sochira, ac	hira and
dochira, associated vocabulary (mae, ushiro, ue, shita, tonari, soba, etc.)	
<b>Listening:</b> Listening to conversation with related particles	

**Listening:** Listening to conversation with related particles

Speaking: Individual Activity (Constructing simple sentences using particles)



#### **UNIT - 5**

Introduction to Verbs - Verbs - Past tense, negative - i-ending and na-ending adjectives

introduction - ~masen ka, mashou - Usage of particles de, e, o, to, ga(but) and exercises -

Adjectives (present/past - affirmative and negative) - Counters - ~te form

Listening: Listening to different counters, simple conversations with verbs and adjectives.

Speaking: Pair Activity (Explaining one's daily routine by using appropriate particles and verbs)

#### L: 60 T: 0 Total: 60 periods

**12 Hours** 

#### **Reference:**

- 1. Japanese for dummies. Wiley publishing Co.Inc., USA.
- 2. Japanese for Everyone: Elementary Main Textbook1-1, Goyal Publishers and Distributors Pvt. Ltd., Delhi, 2007.
- 3. Japanese for Everyone: Elementary Main Textbook 1-2, Goyal Publishers and Distributors Pvt. Ltd., Delhi, 2007.
- 4.www.japaneselifestyle.com
- 5.www.learn-japanese.info/
- 6.www.kanjisite.com/
- 7.www.learn-hiragana-katakana.com/typing-hiragana-characters/

0
-
an, MCE

# **MINOR SPECIALISATION**



# MINOR SPECIALISATION IN 3D PRINTING

Sa	-1
Signature of BOS ch	airman MCF

# **FUNDAMENTALS OF 3D PRINTING**

L	Т	Р	J	С
3	0	2	0	4

### **Course Outcomes**

After	After successful completion of this course, the students should be able to					
<b>CO7:</b>	Discuss the basics concepts of 3D printing technology					
<b>CO8:</b>	Explain the basics of computer graphics					
<b>CO9:</b>	Develop CAD models for 3D printing					
CO10	Select a specific material for the given application					
<b>CO11</b>	Explain various method for designing and modeling for industrial applications					
<b>CO12</b>	Import and Export CAD data and generate .stl file					

#### **Pre-requisite** -

#### **CO/PO** Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes (POs) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Μ **CO1** S W **CO2** S Μ **CO3** Μ S Μ S **CO4** Μ S Μ Μ CO5 Μ S Μ Μ CO6 S

**Course Assessment methods:** 

DIRECT	INDIRECT					
Internal test I						
Internal test II Course end survey						
End semester Examination.						
Assignment						
INTRODUCTION		8 Hours				
Introduction, Design considerations, Principles of 3D p.	rinting, Additive v/s Conventional Man	nufacturing				
processes, components – nozzle, plate, feeder heater						
FUNDAMENTALS OF COMPUTER GRAPHICS 7 Hour						
Computer Graphics – Co-Ordinate Systems- 2D And 3	D Transformations Homogeneous Coo	rdinates – Line				
Drawing -Clipping- Viewing Transformation.	-					
CAD		11 Hours				
Definitions, evolution, Product design and rapid produc	ct development, conceptual design, det	tail design,				
prototyping, 3D solid modeling and slicing software and their role in 3D printing, CAD Data formats, Data						
translation, Data loss, STL format, creation of STL file.						
PRINTING MATERIALS 10 Hours						

< Signature of BOS chairman, MCE

Materials - Plastics, Metals, Ceramics, Carbon fiber, Nitinol, Biological Tissues, Hydrogels, Graphene; Material Selection, Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties, Support Materials.

### INDUSTRIAL APPLICATIONS

9 Hours

Product Models, manufacturing – Printed electronics, Biopolymers, Packaging, Healthcare, Food processing industry, Medical, Biotechnology, Displays; Future trends.

Theory: 45 HoursPractical: 15 Hours.Total Hours: 60						
REFE	ERENCE BOOKS					
1.	Hod Lipson, Melba Kurman,	"Fabricated the new world of 3D print	ting", John Wiley & sons, 2013.			
2.	CK Chua, Kah Fai Leong, "Scientific, 2017.	3D Printing and Rapid Prototyping- Pr	inciples and Applications", World			
3.		en and Brent Stucker, "Additive Ma Manufacturing", Springer, 2010.	anufacturing Technologies: Rapid			
4.	Andreas Gebhardt, "Understa Manufacturing", Hanser Publi	nding Additive Manufacturing: Rapid 1 sher, 2011	Prototyping, Rapid Tooling, Rapid			
5.	Khanna Editorial, "3D Printing	g and Design", Khanna Publishing Hous	e, Delhi.			
6.	Additive Manufacturing of Ma Aal	etals: Fundamentals and Testing of 3D	and 4D Printing by Hisham Abdel-			
	LIST OF EXPERIMENTS	5				
1.	3D Modelling of a single com	ponent.				
2.	Assembly of CAD modelled G	Components.				
3.	Exercise on CAD Data Exchan	nge.				
1	Concretion of all files					

4. Generation of .stl files.

	0
5-	·
Signature of BOS ch	airman MCE

L	Τ	P J		С
3	0	0	0	3

# **Course Outcomes**

After	After successful completion of this course, the students should be able to						
<b>CO1:</b>	Understand the fundamentals of additive manufacturing						
<b>CO2:</b>	Describe the operating principles of liquid based additive manufacturing process.						
CO3:	Describe the operating principles of solid based additive manufacturing process.						
<b>CO4:</b>	Explain the concepts of powder based additive manufacturing process.						
CO5:	Describe the principles of binder and LOM additive manufacturing process.						
CO6:	Understand the various types of post-processing in additive manufacturing process.						

# **Pre-requisite**

Г

# U18MCR0001 - Fundamentals of 3D Printing

	CO/PO Mapping											
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
COs					Progr	amme O	utcomes	(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	М	W										
CO2	S	W										
CO3	Μ	S	Μ									
CO4	М	S	Μ									
CO5	М	S	Μ									
CO6	Μ	M	W									

#### **Course Assessment methods:**

DIRECT	INDIRECT				
Internal test I					
Internal test II	Course end survey				
End semester Examination.					
Assignment					
INTRODUCTION		7 Hours			
Overview, Basic principle need and advantages of add	itive manufacturing, Procedure of prod	luct			
development in additive manufacturing, Classification of	of additive manufacturing processes.				
LIQUID BASED AND SOLID BASED AD	DITIVE MANUFACTURING	10 Hours			
SYSTEMS					
Photo polymerization: Stereolithography Apparatus (SL	A) - Materials -Process –Advantages	Limitations-			
Applications. Digital Light Processing (DLP) - Materia	ls – Process - Advantages - Applicatio	ns. Extrusion			
Based System: Fused Deposition Modeling (FDM) - Pr	ocess-Materials - Applications and Lir	nitations.			
POWDER BASED ADDITIVE MANUFACTUR	ING SYSTEMS	9 Hours			
Powder Bed Fusion: Selective Laser Sintering (SLS): P.	rocess - Powder Fusion Mechanism -	Process			
Parameters – Typical Materials and Application. Selective Laser Melting (SLM) and Electron Beam					
Melting (EBM): Materials – Process - Advantages and	Applications. Beam Deposition Proces	s: Laser			
Engineered Net Shaping (LENS) - Process -Material De	elivery - Process Parameters - Materials	s - Benefits -			

			1	)
	5		1	0
Signat	ture of BC	)S chain	man, M	CE

Applications.

#### BINDER AND LAMINATED OBJECT MANUFACTURING SYSTEMS

10 Hours

Binder Jetting: Three-Dimensional Printing - Materials -Process - Benefits and Limitations. Material Jetting: MultiJet Modeling- Materials- Process- Benefits. Sheet Lamination Process: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding – Thermal Bonding-Materials-Application and Limitation.

#### **POST-PROCESSING IN ADDITIVE MANUFACTURING**

9 Hours

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, Brief information on characterization techniques used in additive manufacturing, Applications of additive manufacturing in rapid prototyping, rapid manufacturing, rapid tooling, repairing and coating.

#### **Total Hours: 45**

#### **REFERENCE BOOKS**

- 1. CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2009.
- 2. Ali Kamrani, Emad Abouel Nasr, Rapid Prototyping Theory and Practice (Manufacturing Systems Engineering Series), Springer, 2006
- 3. Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011
- 5. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

	0
5	·
Signature of BOS ch	airman MCF

# **U18MCR0003**

# **MECHATRONICS IN 3D PRINTING**

L	Τ	Р	J	С
3	0	2	0	4

#### Course Outcomes

After	successful completion of this course, the students should be able to
CO1:	Understand the fundamentals of mechatronics and its importance in 3D Printing
<b>CO2:</b>	Describe the operating principles of 3D Printing actuators and Controllers
CO3:	Describe the mechanical components in 3D Printing
<b>CO4:</b>	Explain the different sensors used in 3D Printing
CO5:	Classify the communication protocols.

#### **Pre-requisite**

#### **U18MCR0002** - Additive Manufacturing Processes

					CO	/PO Maj	oping					
		(S/M/W	/ indicate	es strengt	h of com	relation)	S-Stro	ong, M-N	Aedium,	W-Weak	-	
COs					Progr	amme O	utcomes	(POs)				
0.05	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	M										
CO2	S	W										
CO3	М	S	М									
<b>CO4</b>	М	S	Μ		М							
CO5	М	S	М		М							

#### **Course Assessment methods:**

DIRECT	INDIRECT
Internal test I	
Internal test II	Course end survey
End semester Examination.	
Assignment	
INTRODUCTION	7 Hours

#### INTRODUCTION

Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics – 3 pillars of 3D printing, resolution, accuracy and repeatability

#### ACTUATORS AND CONTROLLERS

Types of Stepper and Servo motors – Construction – Working Principle – Advantages and Disadvantages, motor drivers, Controller board, Screens and user interfaces.

#### **MECHANICAL COMPONENTS IN 3D PRINTING**

Pulley, Timing belt, lead screw, Bearing, Guide ways, Coupling, Spring, Extruder, Cooling fan, Gears and types.

#### **SENSORS**

Principles of working - Construction-characteristics and limitations of Thermal Sensor or Temperature Sensor, Filament Sensor, Proximity sensor or bed levelling sensors, Thermistor, Thermocouple, RTD, Encoders.

# **INDUSTRIAL COMMUNICATION PROTOCOLS**

9 Hours

Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII & RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), IPP (Internet printing protocol) – Printing from mobile devices.

**Theory: 45 Hours** 

- Practical: 15 Hours.

**Total Hours: 60** 

**10 Hours** 

9 Hours

**10 Hours** 

#### **REFERENCE BOOKS**

- 1. CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2009.
- 2. Ali Kamrani, Emad Abouel Nasr, Rapid Prototyping Theory and Practice (Manufacturing Systems Engineering Series), Springer, 2006
- **3.** Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011

5. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

6. Richard Zurawski, "Industrial Communication Technology Handbook", CRC Press, 2nd Edition, 2017.

#### List of experiments:

- 1. Temperature measurement using Arduino.
- 2. Data visualization with Arduino
- 3. Position measurement.
- 4. Stepper motor control using Arduino.
- 5. Servo motor control using Arduino.
- 6. UART and I2C Communication protocol

	0
$\langle$	P
Signature of BOS ch	airman MCF

U18MCR0004

# **3D PRINTING LABORATORY**

L	Т	Р	J	С
0	0	2	0	1

#### **Course Outcomes**

# After successful completion of this course, the students should be able to

**CO1:** Investigate on file Import and model configuration.

**CO2:** Plan on setting orientation, slicing and tool path generation.

**CO3:** Create components using a 3D printer.

**CO4:** Perform tensile and compression testing on part.

#### **Pre-requisite**

# U18MCR0003 - Mechatronics in 3D Printing

					CO	/PO Ma	pping					
		(S/M/W	/ indicate	es strengt	th of cor	relation)	S-Stro	ong, M-N	Aedium,	W-Weak	-	
Cos					Prog	amme (	Dutcomes	(Pos)				
0.05	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	S								S	S		
CO2	S								S	S		
CO3	S								S	S		
<b>CO4</b>	S								S	S		
Cours	se Assess	sment m	ethods:									
		Т	NRECT	r					INDIR	ECT		

DIRECT	INDIRECT
Work book.	Course end survey
Model Exam	
LIST OF EXPERIMENTS	
1. Importing and Configuring Model	
2. Build option and orientation setting.	
3. Slicing setting and Correction	
4. Support and Tool path Generation.	
5. Build a component without support material	
6 Build a component with support material	

6. Build a component with support material.7 Machanical tasting (Tangila and Compression)

7.	Mechanical	testing (	Tensile	and	Compression	)

	0
5-	-1
Signature of BOS ch	nairman, MCE

U18MCR0005		L	Т	Р	J	С
	PROJECT	0	0	0	6	3
0						

**Course Outcomes** 

#### After successful completion of this course, the students should be able to

**CO1:** Design, analyze, realize / simulate a physical system by using the technology they learnt during the program. **CO2:** Integrate various systems into one Mechatronics product.

**CO3:** Work in a team with confined time duration.

**CO4:** Disseminate his work both in oral and written format.

#### **Pre-requisite**

#### U18MCR0001-Fundamental of 3D printing

	CO/PO Mapping											
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
COs					Progr	amme O	utcomes	(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	S		М	М				S
CO2	S	S	S	S	S	М	М	М				S
<b>CO3</b>									S			
<b>CO4</b>										S	S	

#### **Course Assessment methods:**

DIRECT	INDIRECT
6. Interdisciplinary work	
7. Innovation	
8. Working model/ simulation result	1.Course end survey
9. Report with good referencing.	
10. End Semester Viva Voice	

Students in the form of a group, not exceeding 4 members in a group to carry out their main project. It should be a 3D printing project. However, special considerations can be given for interdisciplinary measurement and computer-based simulation projects. This exception should be recorded and approved by the department committee. Management-related projects will not be allowed. The interdisciplinary projects will carry more weightage.

				0
	0	-		P
	-	20	-	1
Signa	ture of	f BOS c	hairmar	MCE

# MINOR SPECIALIZATION IN ROBOTICS



**U18MCR0008** 

#### **Course Outcomes**

After successful completion of this course, the students should be able to

CO6: Discuss the history, classification, Application, and limitations of robotics

**CO7:** Explain the basics elements of robots

CO8: Explain the different types of actuators used in robots

CO9: Select a specific sensor for the given robotic application

Explain the basic concepts of computer graphics **CO10:** 

Develop 3D CAD model components and assemble them using a 3D modeling software **CO11:** 

**Pre-requisite** 

						CO/I	PO M	apping	g					
(S/M/W	indicat	es stren	ngth of	correla	tion)	S-Stro	ng, M	-Mediu	ım, W-	-Weak				
		Programme Outcomes (POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSC 2
CO1	М													
CO2	S	W	W											
CO3	S	М			W							М		
CO4	S	М	М	W	М	W						М		
CO5	S				М				М					
CO6	S		М		S					М		М		
Course	Assessi	ment m	nethods	:										
		Direc								Indir	ect			
Internal Internal End serr	test II	vomino	tion			Course e	end su	rvey						
Assignm		xamna	uion.											
FOUNI		NS F	OR R	OBOT	ICS								4 4	Iou

History of Robotics - Various definitions of a robot - Laws of Robot - General classification of robots -Application and limitations.

**6 Hours** SIMPLE ELEMENTS OF ROBOTS Links - Types of links - Degrees of freedom - Joints - Gears - Belt - Lead screw - Pulleys 8 Hours

# **ROBOT ACTUATORS**

Actuators and the types of actuators in a robot – Mechanical actuators – Hydraulic and Pneumatic actuators – Linear actuators – Drivers – DC, Stepper motor, Servo motor.



SENSORS		8 Hours
Sensor's definition – Types o	f sensors – Proximity – Pressure – temperature -	-Vision – LIDAR – GPS – Encoder.
CAD FOR ROBOTICS	<u>s</u>	4 Hours
Introduction – Understandin Drawing and Viewing Transf	g Computer graphics – Coordinate systems – Formations.	2D and 3D transformations – Line
	Practical: 15 Hours.	Total Hours: 45

#### **REFERENCES:**

- 8. Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India, 2018.
- 9. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill Publication Co., 2020.
- 10. Janardanan, E.G, "Special Electrical Machines", PHI Learning, 2014.
- 11. Patra Nabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi,2010.
- 12. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 2009
- 13. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision and Intelligence", McGraw Hill International, 1987

#### LIST OF EXPERIMENTS

- 1. 3D Modelling of a single robotic component.
- 2. Assembly of robotic components into a complete Robot
- 3. Exercise on CAD Data Exchange.

Δ.	
$\leq 1$	
ure of BOS chairman MCE	
ure of BOS chairman, MCI	E

# U18MCR0009

### INTRODUCTION TO SINGLE-BOARD MICROCONTROLLER AND COMPUTER

L	T	P	J	С
2	0	2	0	3

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

**CO1:** Create sketches and use libraries inside the Integrated Development Environment

**CO2:** Measure physical parameters using sensors and use various communication protocols

**CO3:** Apply OS to the single-board computer platform

**CO4:** Use python programming to interface GPIO and sensors

CO5: Implement communication protocols for wired and wireless communication

CO6: Design robots by interfacing with motors and cameras

#### **Pre-requisite**

#### -

#### **CO/PO** Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

					Pı	rogran	nme Ou	itcome	es (PC	s)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PC	PO10	PO11	PO12	PSO 1	PS O2
CO1	M		М											
CO2	M		S	М	S									
CO3	W		М											
CO4	М		S		S									
CO5	W	М	S		S									
CO6	S	S	М	М	S									

# Course Assessment methods:

Direct	Indirect
Internal test I	Course end survey
Internal test II	
End semester Examination.	
Assignment	

#### INTRODUCTION TO SINGLE-BOARD MICROCONTROLLER

**6** Hours

8 Hours

Single board microcontroller Platform, Integrated development environment (IDE), Programs, libraries, programming language, Datatypes, Loops, functions, and structures

# SENSING AND COMMUNICATING

Sensors, Digital and Analog signals, Interfacing with Temperature sensors, Humidity sensors, Proximity sensors, Accelerometers, and Gyro, UART, SPI, and I2C Communication protocols

# **INTRODUCTION TO SINGLE-BOARD COMPUTER(SBC)**

4 Hours



SBC board components, versions, Install OS distribution, set up and configure OS.

# **PROGRAMMING THE SINGLE-BOARD COMPUTER(SBC)**

Introduction to python programming, python IDE, strings, functions, Loops, Lists, NumPy, GUI, GPIO pins, sensor interface, Communication Protocols

# **INTERFACE MOTORS AND CAMERA**

DC, Servo, stepper motor, Motor Drivers, Motor shields, Camera Interface, Basic image processing, Mobile robot control

#### **Theory: 30 Hours**

#### Practical: 15 Hours.

Total Hours: 45

6 Hours

**6** Hours

#### **REFERENCES:**

- 1. Simon Monk, "Programming Arduino: Getting Started with Sketches", 2nd edition, Prentice Hall of India, 2016.
- 2. John Nussey, "Arduino for Dummies", 1st Edition, John Wiley & sons, 2013.
- 3. Simon Monk, "Programming the Raspberry Pi, Getting Started with Python, 3rd Edition", Tata McGraw-Hill, 2003.
- 4. Tim Cox, "Raspberry Pi Cookbook for Python Programmers", PACKT, 2014.

#### LIST OF EXPERIMENTS

- 1. Study about basic interfacing of various actuators
- 2. General hardware interfacing (LED, switch, seven-segment display, Relay, LCD, buzzer)
- 3. Interfacing single board controller with different sensors (Touch sensor, Temperature sensor, LDR, Humidity sensor, Moisture sensor, Accelerometer, IR sensor, Proximity sensor)
- 4. Single Board Computer OS installation and setup
- 5. Motor and sensor Interface with Single Board Computer
- 6. Simple mobile robot control

	0
C	-
	Saul
Signature of I	BOS chairman, MCE

# U18MCR0010

# **AUTONOMOUS MOBILE ROBOT**

L	Т	Р	J	С
2	0	2	0	3

# **Course Outcomes**

After successful completion of this course, the students should be able to

CO1:	Explain different types of mobile robot locomotion	K2
CO2:	Apply mobile robot kinematics and constraints	K2
CO3:	Choose sensors for the perception of mobile robots.	K2
CO4:	Implement robot localization techniques	K3
CO5:	Explain planning and navigation in robotics	K2
CO6:	Simulate a robot in robot operating system	K3

# **Pre-requisite**

Nil

	CO/PO Mapping													
(S/M/	W ind	icates s	strengt	h of co	orrelati	on)	S-Str	ong, M	-Medi	um, W-Y	Weak			
COs		Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S	М	М		М									
CO3	S				М									
CO4	S				М									
CO5	S													
CO6	S				М									

Course Assessment methods:					
Direct	Indirect				
1. Continuous Assessment Test I, II	1. Course end survey				
2. Open book test; Cooperative					
learning report, Assignment;					
Journal paper review, Group					
Presentation, Project report, Poster					
preparation, Prototype or Product					
Demonstration etc (as applicable)					
3. End Semester Examination					



LOCOMOTION		6 Hours
Introduction to Robotics - key is	ssues in robot locomotion – Types of	of Locomotion -legged robots –
wheeled mobile robots - aerial n	nobile robots – stability - robot mar	neuverability – controllability
MOBILE ROBOT KINEMAT	TICS	8 Hours
Forward and inverse kinematics,	, holonomic and nonholonomic con	straints, kinematic models of
simple car and legged robots, sir	nulation of mobile robots	
<b>ROBOT PERCEPTION</b>		5 Hours
Sensors for mobile robots -globa uncertainty in sensing.	l positioning system (GPS), Ultraso	nic sensor, vision-based sensors,
MOBILE ROBOT LOCALIZ PLANNING	ATION AND PATH	6 Hours
Introduction to localization – representation – A* Algorithm a	challenges in localization – loca and Voronoi Diagram	lization and navigation – beli
avoidance behavior	EM bace, Introduction to Turtlesim, topi Practical: 15 Hours.	5 Hours cs and messages, obstacle Total Hours: 45
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b>	pace, Introduction to Turtlesim, topi	cs and messages, obstacle
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b>	pace, Introduction to Turtlesim, topi Practical: 15 Hours.	cs and messages, obstacle Total Hours: 45
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b>	pace, Introduction to Turtlesim, topi Practical: 15 Hours.	cs and messages, obstacle Total Hours: 45
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit	pace, Introduction to Turtlesim, topi Practical: 15 Hours.	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit 2. Howie Choset, Kevin M.	pace, Introduction to Turtlesim, topi <b>Practical: 15 Hours.</b> za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011.	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard ,
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005.	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re- mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram Sion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010.	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomo A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re- mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg otics, 2011.	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomod A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo 5. S. M. LaValle, "Planning	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg otics, 2011. Algorithms", Cambridge University	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re- mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo 5. S. M. LaValle, "Planning LIST OF EXPERIMENTS	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg otics, 2011. Algorithms", Cambridge University S:	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomod A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re- mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo 5. S. M. LaValle, "Planning LIST OF EXPERIMENTS 1. ROS operating system insta	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram ion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg otics, 2011. Algorithms", Cambridge University S: allation and configuration.	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomod A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo 5. S. M. LaValle, "Planning <b>LIST OF EXPERIMENTS</b> 1. ROS operating system insta 2. Simulation of mobile robot	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg otics, 2011. Algorithms", Cambridge University S: allation and configuration. t in ROS.	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer / Press, 2006.
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re- mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo 5. S. M. LaValle, "Planning LIST OF EXPERIMENTS 1. ROS operating system inst 2. Simulation of mobile robot 3. Writing and verifying a Pro-	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg otics, 2011. Algorithms", Cambridge University S: allation and configuration. t in ROS. ogram for point-to-point operations	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer / Press, 2006.
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo 5. S. M. LaValle, "Planning <b>LIST OF EXPERIMENTS</b> 1. ROS operating system insta 2. Simulation of mobile robot 3. Writing and verifying a Pro-	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram Fion, MIT Press, 2011. Lynch, Seth Hutchinson , George A Stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principle versity Press, 2010. Sion and Control: Fundamental Algoitics, 2011. Algorithms", Cambridge University S: allation and configuration. t in ROS. Ogram for point-to-point operations nobile robot with Ultrasonic Sensor	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomou A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer / Press, 2006.
Installing ROS, Creating worksp avoidance behavior <b>Theory: 30 Hours</b> <b>REFERENCES:</b> 1. Roland Siegwart, Illah Re- mobile robots", Second Edit 2. Howie Choset, Kevin M. Lydia E. Kavraki, Sebas Implementations", A Bra 3. Gregory Dudek and Micha Edition, Cambridge Univ 4. Peter Corke, Robotics, Vis Tracts in Advanced Robo 5. S. M. LaValle, "Planning LIST OF EXPERIMENTS 1. ROS operating system inst 2. Simulation of mobile robot 3. Writing and verifying a Pro-	Practical: 15 Hours. Practical: 15 Hours. Za Nourbakhsh, and Davide Scaram tion, MIT Press, 2011. Lynch, Seth Hutchinson , George A stian Thrun , "Principles of Robot adford Book, 2005. ael Jenkin, "Computational Principl versity Press, 2010. sion and Control: Fundamental Alg otics, 2011. Algorithms", Cambridge University S: allation and configuration. t in ROS. ogram for point-to-point operations nobile robot with Ultrasonic Sensor	cs and messages, obstacle <b>Total Hours: 45</b> uzza, "Introduction to autonomo A. Kantor , Wolfram Burgard , Motion: Theory, Algorithms, an es of Mobile Robotics", Second orithms in MATLAB, Springer / Press, 2006.

_	0
	Saul
	Signature of BOS chairman, MCE

**U18MCR0011** 

#### **INDUSTRIAL ROBOTICS**

L	Τ	Р	J	С
2	0	2	0	3

#### **Course Outcomes**

After successful completion of this course, the students should be able to

CO1:	Expl	ain the	roboti	c termi	nologi	es for	variou	s conf	iguratio	ons				K2
CO2:		ct an ap ication	propria	ate grip	per for	a givei	n appli	cation	and us	se a grip	per for	pick an	d place	K3
CO3:	Calc	ulate th	e forw	ard ki	nemati	cs, invo	erse ki	nemati	ics and	l Jacobi	an for a	serial r	obot	K3
CO4:	Expl	ain the	variou	is appli	ication	of ind	ustrial	robots	5					K3
CO5:	Desc	ribe co	mmun	ication	proto	cols us	ed in r	obot						K2
CO6:	Expl	ain and	l practi	ce vari	ious pr	ogrami	ming to	echniq	ues us	ed in in	dustrial	robots		K3
Pre-r	equisi	te												
N	il													
						CO/	PO M	lappin	g					
(S/M/	W ind	icates	streng	th of (	correla	ation)			<b>S</b> –	Strong	M - M	ledium	, W – V	Veak
				<u> </u>	]	Progra	mme (	Outcon	nes (P	$\overline{O's)}$			<u>.</u>	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSC 2
CO1	S													
CO2	S			W					М	М				
CO3	S	M	М		М				М	М				
CO4	S	M	М											
CO5 CO6	М				S				М	М				
Cours	se Ass	essmer	nt metl	nods:										
			Dire	ect							Indire	ct		
2. O A Pr Pr ar	pen bo ssignm esenta ototyp oplicab	ous Ass ook tes hent; J tion, Pr he or P he) hester F	sessme t; Coc ournal oject r roduct	nt Test perativ pape eport, 1 Demo	ve learn r revie Poster	ew, G prepara	ation,	Course	e end s	survey				
													4 1	[our:

#### **INTRODUCTION**

Brief History, Types of robots, Overview of robot subsystems, resolution, repeatability and accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace. **KINEMATICS OF ROBOTS 10 Hours** 

Introduction - Matrix Representation - Homogeneous transformation matrices - Forward and Inverse kinematics Equations: Position and Orientation -Denavit- Hardenberg Representation of forward kinematics equations of robots- Degeneracy and Dexterity.



APPLICATION OF ROBOTS	4 Hours
Robot Application in Manufacturing: Material Transfer - Material han	dling, loading and
unloading- Processing – spot and continuous arc welding & spray painti	ng – Assembly and
Inspection.	
SOFTWARE INTERFACES	4 Hours
Software interfaces: Low level interfaces, IO digital signals, Fieldbuse and connections	s – Data protocols
END EFFECTORS	4 Hours
End effectors and Different types of grippers, vacuum and other method Gripper's force analysis-Gripper Design-Simple problems	ls of gripping -
ROBOT PROGRAMMING	4 Hours
Robot programming: Introduction; On-line programming: Manual input programming, teach pendant programming; Off-line programming langu	
Theory: 30 Hrs.Practical: 15Hrs.	Total Hours: 45
REFERENCES:	
<ol> <li>Saeed B Niku, 'Introduction to Robotics: Analysis, Control, Applie 2019.</li> <li>Mikell P Groover, "Industrial Robots - Technology, Programm Edition, McGraw Hill, New York, 2012.</li> </ol>	
<ol> <li>Norberto Pires, 'Industrial Robots programming: Building Applicat Future', 1st edition, Springer, 2012</li> </ol>	tions for the Factories of the
4. Saha S K, 'Introduction to Robotics', 2 nd Edition, Tata McGraw Hi	Ill Education Pvt. Ltd, 2014
5. Spong and Vidhyasagar, 'Robot Dynamics and Control', John Wil	ey and sons, 2008.
<ol> <li>Roobert Schilling, 'Fundamentals of Robotics: Analysis and Contro 2015</li> </ol>	
LIST OF EXPERIMENTS:	
1. Study of different types of robots based on configuration and application	on.
2. Study of different type of robotics simulation software.	
3. Offline programming of an Industrial robot using a Robotics simulation	on Software
4. Setup and program a robot with object profile tracking using a Roboti	cs simulation Software
5. Develop a trajectory planning for a robot using a simulation software	
6. Setup and program an Industrial Robot with a pneumatic vacuum grip	

C	P
Signature of BOS chairman,	MCE

#### **CAPSTONE PROJECT**

L	Τ	Р	J	С
0	0	0	0	6

#### **Course Outcomes**

After s	successful completion of this course, the students should be able to
CO1	Design, analyze, realize / simulate a physical system by using the technology they learnt during the
COI	program.
CO2	Integrate various systems into one Mechatronics product.
CO3	Work in a team with confined time duration.
CO4	Disseminate his work both in oral and written format.
-	

#### **Pre-requisite**

					CO	/PO Maj	pping					
		(S/M/W	/ indicate	es streng	th of cor	relation)	S-Str	ong, M-N	Medium,	W-Weak	_	
COs					Prog	ramme C	)utcomes	s (POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	S	S	S		М	М				S
CO2	S	S	S	S	S	М	М	М				S
CO3									S			
CO4										S	S	
Course	Assess	ment m	ethods:									

# DIRECTINDIRECT11. Interdisciplinary work12. Innovation13. Working model/ simulation result14. Report with good referencing.15. End Semester Viva Voice

Students in the form of a group, not exceeding 4 members in a group to carry out their main project. However, special considerations can be given for interdisciplinary measurement and computer-based simulation projects. This exception should be recorded and approved by the department committee. Management-related projects will not be allowed. The interdisciplinary projects will carry more weightage.

P
airman, MCE

## NPTEL COURSE

	0
5-	-1
Signature of BOS cha	airman, MCE

U18MCE0021

#### SURFACE ENGINEERING OF NANOMATERIALS

L T P J C 2 0 0 0 2

#### **Course Outcomes**

<th colum

#### Pre-requisite -

#### **Course Assessment methods:**

INTRODUCTION TO TRIBOLOGY

Direct Final Examination Assignment Indirect
Weekly Feedback Survey

#### **3 Hours**

**5** Hours

**3** Hours

Tribology & its classification, Friction tribology, Wear & corrosion, Lubrication, Effect of tribology on surface of nanomaterials.

#### CONVENTIONAL SURFACE ENGINEERING AND SURFACE MODIFICATION METHODS

Conventional surface engineering, Types of surface modifications, Physical modifications, Chemical modifications, Applications of surface engineering towards nanomaterials. Deposition and surface modification methods, Physical vapor deposition, Chemical vapor deposition, Advanced surface modification practices, Advantages of deposition for surface modification.

SYNTHESIS, PROCESSING AND CHARACTERIZATION OF

 NANO-STRUCTURED COATINGS

 Synthesis, processing and characterization of nano-structured coatings, Functional coatings, Advanced coating practices, Characterization of nano-coatings, Applications of nano-coatings.

NEED FOR ADVANCED METHODS FOR SURFACE AND<br/>COATING TESTING3 HoursNeed of advanced methods for surface and coating testing, Size dependency in nanostructures of nano<br/>coatings, Size effect in electrochemical properties of nanostructured coatings, Size effect in mechanical<br/>properties of nanostructured coatings, Size effect in physical and other properties of nanostructured coatings.3 HoursMICROENCAPSULATION AND THIN FILM FOR SURFACE5 Hours

**ENGINEERING** Microencapsulation: Processes, Microencapsulation: Kinetics of release, Plating of nanocomposite coatings, Advantages of microencapsulation over other conventional methods. Thin films for surface engineering of nanomaterials, Sputtering techniques, Evaporation processes, thin film deposition through gas phase techniques, Liquid phase techniques.



CURRENT TRENDS IN SURFACE MODIFICATION OF	3 Hours
NANOMATERIALS	
Current trends in surface modification of nanomaterials, Modified Nanoma	terials: In-use for consumer
products, Main problems in synthesis of modified nanomaterials.	
Theory: 22 Hours	<b>Cotal Hours: 22</b>
REFERENCES:	
14. Introduction to Tribology by Bharat Bhusan, John Wiley & Sons, USA	
15. Handbook of thin film deposition processes and techniques Edited by K	rishna Seshan, William Andrew
Publishing Norwich, New York, U.S.A.	
16. Nanomaterials and Surface Engineering, Edited by Jamal Takadoum, John	n Wiley & Sons, Inc., USA.

17. Nanocoatings: Size Effect in Nanostructured Films by Mahmood Aliofkhazrae, Springer-Verlag, USA

				0
	<	Sau	-1	6
Sian	nature of	BOS cha	airman, M	CE

T11	<b>8M</b>	CEO	0.22
UI	OIVI		

#### FUNDAMENTALS OF AUTOMOTIVE SYSTEMS

L	T	Р	J
3	0	0	0

#### **Course Outcomes**

After successful completion of this course, the students should be able to

CO1: Acquire fundamental knowledge of the various systems of an Automobile,

CO2: Associate the functions of each system with its design and layout

CO3: Depict the various systems using simple schematics

**CO4:** Apply concepts learnt in core undergraduate courses to synthesize mathematical models of the various systems

CO5: Components of Suspension System, Dependent and Independent Suspension, Introduction to Electric and Hybrid Powertrain, Tyres

CO6: Power Steering System, Wheel Alignment, Introduction to Suspension System

**Pre-requisite** 

#### **Course Assessment methods:**

**Direct** Final Examination Assignments -12

Weekly

Weekly Feedback Survey

Indirect

#### IC ENGINES AND TWO STROKE ENGINE

Classification of Internal Combustion Engines, Piston, Crankshaft, Cylinder Head, Valve Assembly, Engine Parameter Definitions, Four Stroke Engines and their Operating Strokes, Two Stroke Engine, Engine Cycles, Air Standard Cycles, Otto Cycle, Diesel Cycle, Engine Performance

## ENGINEPERFORMANCEANDFUEL5 HoursINTRODUCTION SYSTEM5

Indicated Mean Effective Pressure, Supercharging, Turbocharger, Combustion in SIEngines, Knocking in SI Engine, Factors affecting Knocking, Octane Number, Stages of

Combustion in CI Engines, Knocking in CI Engines, Cetane Number, Mixture Preparation in SI Engines, Carburetor, Port Injection, Gasoline Direct Injection, Diesel Direct Injection, Carburetor Analysis, Choke Valve

#### ENGINE EMISSION AND AUTOMOTIVE CLUTCH, POWER TRAIN ANALYSIS

6 Hours

6 Hours

Clutch Construction, Clutch Operation, Clutch Actuation, Gearbox, Manual Transmission, Synchronizer, Tractive Effort from Powertrain, Analysis of Forces Acting on the Vehicle during Drive, Maximum Tractive Effort, Front Wheel Drive, Rear Wheel Drive, Gradeability, Transmission Matching, Gear Ratio Calculation, Components of a Brake System, Drum Brake, Hydraulic Brake System, Brake Fluid, Brake Lining

#### AIR AND ANTILOCK BRAKE SYSTEM, BRAKING ANALYSIS, MANUAL STEERING SYSTEMS

6 Hours



Air Brake, Treadle Valve, Compressed Air, Relay Valve, Quick Release Valve, S cam Brake, Slack Adjuster, Parking Brake, Antilock Brake System, Friction Ellipse, Consequences of Wheel Lock, ABS Components, Configurations and Operation Methodologies, Forces Acting on the Vehicle During Braking, Ideal Brake Force Distribution, Wheel Lock Analysis, Components of a Steering System, Pitman Arm Type Steering, Rack and Pinion Steering

## STEERINGANALYSIS,SUSPENSIONANDSHOCK7 HoursABSORBERS,ELECTRICANDHYBRIDPOWERTRAIN7

Power Steering, Hydraulic Power Steering, Electro Hydraulic Power Steering, Electric Power Steering, Kinematic Bicycle Model, Wheel Alignment, Camber, Caster, Toe, Wheel Balancing, Tyre Rotation, Interpretation of Tyre Wear, Functions of a Suspension System, Springs, Shock Absorber, Passive Suspension, Semi Active Suspension, Active Suspension, Independent Suspension, Dependent Suspension, Solid Axle and Beam Axle Suspension, Quarter Car Model, Ride Analysis, Classification of Electrified Powertrain, Performance Analysis

#### Theory: 30 Hours 30

**Total Hours:** 

#### **REFERENCES:**

1. D. Crolla, D. E. Foster, T. Kobayashi and N. Vaughan (Editors-in-Chief), Encyclopedia of Automotive Engineering, Parts 1-6, Wiley, 2015.

2. R. Stone and J. K. Ball, Automotive Engineering Fundamentals, SAE International, 2004

3. T. K. Garrett, K. Newton, and W. Steeds, The Motor Vehicle, 13th Edition, SAEInternational, 2001.

4. D. B. Astow, G. Howard and J. P. Whitehead, Car Suspension and Handling, 4th Edition, SAE International, 2004.

5. R. Limpert, Brake Design and Safety, SAE International, 1992.

6. V. Ganesan, Internal Combustion Engines, 3rd Edition, Tata McGraw Hill, 2007.

7. M. Ehsani, Y. Gao and A. Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, 2nd Edition, CRC Press, 2010.

				1
	<		1	P
Ciana	turn of C	OC aba		ICE
Signa	iture of E	505 cha	irman, N	NUE

			0
<	5-	-	P
ure of I	BOS ch	airman, I	MCE
	<pre>ure of</pre>	ure of BOS ch	Same of BOS chairman, I

U18MCE0023
------------

### SURFACE ENGINEERING OF NANOMATERIALS

L	Т	Р	J	
2	0	0	0	

С

2

**5** Hours

#### **Course Outcomes**

	se Outcomes				
After	successful completion of this course, the students should be able to				
CO1	8: Discuss the basics concepts of Tribology				
CO1	9: Explain the basics of conventional surface engineering and Surface modification Methods				
CO2	<b>0:</b> Discuss about Synthesis, Processing and Characterization of nanostructured coatings				
CO2	1: Explain Need for advanced methods for surface and coating testing				
CO2	Discuss about Microencapsulation and Thin film for Surface Engineering of Nanomaterials				
CO2	3: Current trends in surface modification of nanomaterials				
Pre-r	equisite -				
	CO/PO Mapping				
(S/M/	W indicates strength of correlation) S-Strong, M-Medium, W-Weak				
COs	Programme Outcomes (POs)				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М											
CO2	S	W										
CO3	М	S	М		S							
CO4	М	S	М									
CO5	М	S	М		S				М			
CO6	М				S				Μ			
Cours	se Ass	sessmen	t meth	ods:								
Direct Indi					direct							
Final	Final Examination				Weekly Feedback Survey							
Assig	Assignment					-		•				
INTE	RODU	JCTIO	N TO	TRIBO	DLOG	Y						3 Hours

Tribology & its classification, Friction tribology, Wear & corrosion, Lubrication, Effect of tribology on surface of nanomaterials.

#### CONVENTIONAL SURFACE ENGINEERING AND SURFACE MODIFICATION METHODS

Conventional surface engineering, Types of surface modifications, Physical modifications, Chemical modifications, Applications of surface engineering towards nanomaterials. Deposition and surface modification methods, Physical vapor deposition, Chemical vapor deposition, Advanced surface

	0
5.	- P
Signature of BOS c	hairman, MCE

modification practices, Advantages of deposition for surface modification.	
SYNTHESIS, PROCESSING AND CHARACTERIZATION OF	3 Hours
NANO-STRUCTURED COATINGS	5 11041
Synthesis, processing and characterization of nano-structured coatings,	Functional coatings. Advanced
coating practices, Characterization of nano-coatings, Applications of nano-	e ,
NEED FOR ADVANCED METHODS FOR SURFACE AND	3 Hours
COATING TESTING	
Need of advanced methods for surface and coating testing, Size dependence	lency in nanostructures of nano
coatings, Size effect in electrochemical properties of nanostructured coa	tings, Size effect in mechanica
properties of nanostructured coatings, Size effect in physical and other prop	erties of nanostructured coatings
MICROENCAPSULATION AND THIN FILM FOR SURFACE	5 Hours
ENGINEERING	
Microencapsulation: Processes, Microencapsulation: Kinetics of release, Pl	
Advantages of microencapsulation over other conventional methods. Thin	
nanomaterials, Sputtering techniques, Evaporation processes, thin film	deposition through gas phase
techniques, Liquid phase techniques.	
CURRENT TRENDS IN SURFACE MODIFICATION OF	3 Hours
CURRENT TRENDS IN SURFACE MODIFICATION OF NANOMATERIALS	3 Hours
NANOMATERIALS	<b>3 Hours</b> terials: In-use for consumer
NANOMATERIALS Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.	
NANOMATERIALS Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.	terials: In-use for consumer
NANOMATERIALS         Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.         Theory: 22 Hours       Theory: 22 Hours	terials: In-use for consumer
NANOMATERIALS Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.	terials: In-use for consumer
NANOMATERIALS         Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.         Theory: 22 Hours       T         REFERENCES:	terials: In-use for consumer
NANOMATERIALS         Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.         Theory: 22 Hours       T         REFERENCES:       T         18. Introduction to Tribology by Bharat Bhusan, John Wiley & Sons, USA         19. Handbook of thin film deposition processes and techniques Edited by K	terials: In-use for consumer
NANOMATERIALS         Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.         Theory: 22 Hours         REFERENCES:         18. Introduction to Tribology by Bharat Bhusan, John Wiley & Sons, USA	terials: In-use for consumer
NANOMATERIALS         Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.         Theory: 22 Hours         Theory: 22 Hours         REFERENCES:         18. Introduction to Tribology by Bharat Bhusan, John Wiley & Sons, USA         19. Handbook of thin film deposition processes and techniques Edited by K Publishing Norwich, New York, U.S.A.	terials: In-use for consumer
NANOMATERIALS         Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.         Theory: 22 Hours       T         REFERENCES:       T         18. Introduction to Tribology by Bharat Bhusan, John Wiley & Sons, USA         19. Handbook of thin film deposition processes and techniques Edited by K	terials: In-use for consumer
NANOMATERIALS         Current trends in surface modification of nanomaterials, Modified Nanoma products, Main problems in synthesis of modified nanomaterials.         Theory: 22 Hours         Theory: 22 Hours         REFERENCES:         18. Introduction to Tribology by Bharat Bhusan, John Wiley & Sons, USA         19. Handbook of thin film deposition processes and techniques Edited by K Publishing Norwich, New York, U.S.A.	terials: In-use for consumer Total Hours: 22 rishna Seshan, William Andrew n Wiley & Sons, Inc., USA.

0	P
Signature of BOS chairman,	MCE

			0
<	5-	-	P
ure of I	BOS ch	airman, I	MCE
	<pre>ure of</pre>	ure of BOS ch	Same of BOS chairman, I