KUMARAGURU COLLEGE OF TECHNOLOGY,

An autonomous Institution affiliated to Anna University, Chennai

COIMBATORE - 641 049.

M.E STRUCTURAL ENGINEERING

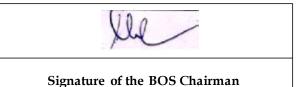
REGULATION 2024

I to IV Semesters

Department of Civil Engineering

VISION

Department of Civil Engineering is striving to become as a world class Academic Centre for quality education and research in diverse areas of Civil Engineering, with a strong social commitment

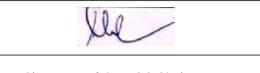

MISSION

- Producing highly competent and technologically capable professionals and motivated young academicians
- Providing quality education in undergraduate and post graduate levels, with strong emphasis on professional ethics and social commitment.
- Developing a scholastic environment for the state of art research, resulting in practical applications.
- Undertaking professional consultancy services in diverse areas of Civil Engineering.

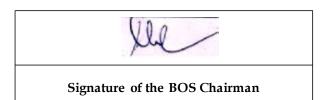
PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of Environmental Engineering Postgraduate Program are to prepare the graduates:

- **PEO1**: To produce students with excellent academic qualities and inculcate the required skills to contribute for the academic and research requirements.
- **PEO2**: To develop the students as experts in laboratory and experimental work as per recommended standards.
- **PEO3**: To prepare the students to meet the industrial needs by encouraging them to involve in real time projects.


PROGRAM OUTCOMES (POs)

Graduates of the Structural Engineering Postgraduate Program should have the ability to:

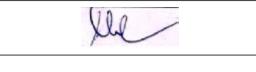

PO1: Independently carry out research / investigation and work to solve practical problems.

PO2: Write and present a substantial technical report/document.

- **PO3:** Demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- **PO4:** Analyze and solve complex structural engineering problems using the knowledge of mathematics and engineering
- PO5: Use modern/advanced techniques, tools and skills for structural engineering problems and practices.
- **PO6:** Communicate with larger community, the importance of appropriate standards to .design and document complex problems.

		KUMARAGURU CO	LLEGE OF TI	ECHNOLOG	ΞY					
		DEPARTMENT O								
	REGULATION 2024 M.E. Structural Engineering - Curriculum									
Semester I										
S.No.	Mode Lype									
1	24MAI502	Applied Numerical Methods and Statistics for Structural Engineering	Embedded	BS	3	0	2	0	4	
2	24INT501	Research Methodology and IPR	Theory	ES	3	0	0	0	3	
3	24STP501	Structural Design Studio	Laboratory	ES	0	0	4	0	2	
4	24STT502	Theory of Elasticity and Plasticity	Theory	РС	3	0	0	0	3	
5	24STT503	Design of Advanced Concrete Structures	Theory	PC	3	1	0	0	4	
6	24STI504	Advanced Concrete Technology	Embedded	ES	3	0	2	0	4	
Total Credits										
				I	Total Co	ontac	t Hour	s/week	24	
		Se	mester II							
S.No.	Course code	Course Title	Course Mode	Course Type	L	Т	Р	J	C	
1	24STI505	Structural Dynamics & Earthquake Engineering	Embedded	РС	3	0	2	0	4	
2	24STI506	Advanced Design of Steel Structures	Embedded	РС	3	0	2	0	4	
3	24STI507	Finite Element Analysis	Embedded	PC	3	0	2	0	4	
4	24STE0YY	Professional Elective I	Theory	PE	3	0	0	0	3	
5	24STE0YY	Professional Elective II	Theory	PE	3	0	0	0	3	
6	24STC0YY	Professional Elective III – Industry Driven	Embedded	PE	2	0	0	2	3	
		5								
			I I			1	Total	Credits	21	

	Semester III									
S.No.	Course code	Course Title	Course Mode	Course Type	L	Т	Р	J	С	
1	24STE0YY	Professional Elective IV	Theory	PE	2	0	0	2	3	
2	24STE0YY	Professional Elective V	Theory	PE	3	0	0	0	3	
3	24STE0YY	Professional Elective VI	Theory	PE	3	0	0	0	3	
4	24STJ601	Industrial Training*	Project	PW	0	0	0	0	2	
5	24STJ602	Project Phase – I#	Project	PW	0	0	0	20	10	
#Student	*Student can opt Project Phase – I as Internship in Industrial or Research Labs or inhouse Total Credits Total Contact Hours/week Semester IV									
S.No.	Course code	Course Title	Course Mode	Course Type	L	Т	Р	J	C	
1	24STJ603	Project Phase - II#	Project	PW	0	0	0	40	20	
#Student	#Student can opt Project Phase – II as Internship in Industrial or Research Labs or inhouse									
	Total Credits									
	Total Contact Hours/week									


	LIST OF ELECTIVES									
S.No.	Course code	Course Title	Course Mode	Course Type	L	Т	Р	J	С	
		PROFESSIO	ONAL ELECTI	IVES						
1	24STE001	Design of Bridges	Theory	PE	3	0	0	0	3	
2	24STE002	Smart Materials for Construction	Theory	PE	3	0	0	0	3	
3	24STE003	Industrial Structures	Theory	PE	3	0	0	0	3	
4	24STC004	Design of Tall buildings	Theory	PE	2	0	0	2	3	
5	24STC005	Experimental Methods and Model Analysis	Theory	PE	2	0	0	2	3	
6	24STE006	Stability of Structures	Theory	PE	3	0	0	0	3	
7	24STE007	Design of Plates, Shells and Spatial Structures	Theory	PE	3	0	0	0	3	
8	24STE008	Maintenance and Rehabilitation of Structures	Theory	PE	3	0	0	0	3	

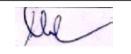
9	24STC009	Fluid Structure Interaction	Theory	PE	2	0	2	0	3
10	24STE010	Design of Pre-Stressed Concrete Elements	Theory	PE	3	0	0	0	3
11	24STE011	Steel Concrete Composite Structures	Theory	PE	3	0	0	0	3
12	24STE012	Design of Structures for Dynamic Loads	Theory	PE	3	0	0	0	3
13	24STE013	Structural Optimization	Theory	PE	3	0	0	0	3
14	24STE014	Design of Offshore Structures	Theory	PE	3	0	0	0	3
		INDUSTRY I	DRIVEN ELEC	TIVES					
15	24STC015	Energy Efficient Buildings	Embedded	PE	2	0	0	2	3
16	24CNC016	Construction Site Administration and Control	Theory	PE	2	0	0	2	3
17	24STC017	Structural Health Monitoring	Embedded	PE	2	0	0	2	3
18	24STC018	Prefabricated Structures	Embedded	PE	2	0	0	2	3
19	24STC019	Design of Formwork	Embedded	PE	2	0	0	2	3
20	24STC020	Pre-Engineered Buildings	Embedded	PE	2	0	0	2	3

Semester-wise Credits						
Semester – I	20					
Semester – II	21					
Semester – III	21					
Semester – IV	20					
Total Credits	82					

Course types	Credits
Basic Science	4
Engineering Science	9
Professional Core	19
Professional Electives	18
Project/Internship	32
Seminar	Nil
Total Credits	82

SEMESTER I

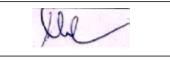
24MAI502 BS


APPLIED NUMERICAL METHODS AND STATISTICS FOR STRUCTURAL ENGINEERING

L	Т		Р	J	С
3	0		2	0	4
SDG			4	, 8, 9	

Pre-regilisite collinses Nil	Book / Codes / dards (If any) Statistical Table	le
------------------------------	---	----

Course O	jectives :
The purp	se of taking this course is to:
1	Understand the efficiency and accuracy of different numerical methods for solving single
	nonlinear equations and non-linear systems.
2	Equip students with the knowledge and skills required to use the method of least squares for
	fitting various types of curves to data
3	Develop a deep understanding of spline curves, including their mathematical foundations
	learn to construct and use different types of splines, such as linear and quadratic splines, to
	model and interpolate data, ensuring smooth transitions between data points.
4	Provide the effectiveness of finite difference methods, shooting methods, and various
	numerical schemes for solving boundary value problems involving parabolic and
	hyperbolic equations.
5	Provide a comprehensive understanding of multiple and partial correlation techniques, plane
	of regression, properties of residuals, and the relationships between various correlation
	coefficients and regression models
6	Afford students with a comprehensive understanding and practical skills in ANOVA and
	experimental design, enabling them to use these techniques effectively in various research
	and practical scenarios.

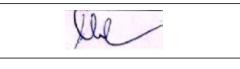

Course	e Outcomes :	
After s	successful completion of this course, the students shall be able to:	Revised Bloom's Taxonomy Levels (RBT)
CO 1	Apply techniques for solving both single and multi-dimensional nonlinear equations to real-world numerical analysis and computational problems, developing practical problem-solving skills.	Ар
CO 2	Apply least squares fitting techniques to different types of data and models, demonstrating a broad understanding of how to use these methods effectively.	Ар
CO 3	Apply spline curves and their techniques to model and interpolate data, demonstrating an understanding of their practical applications.	Ар
CO 4	Apply the finite difference method for solving shooting methods, and in solving boundary value problems for parabolic and hyperbolic equations.	Ар
CO 5	Apply multiple and partial correlation, regression analysis, and residual diagnostics to perform and interpret complex statistical analyses, demonstrating a deep understanding of these methods	Ар
CO 6	Apply theoretical and practical knowledge of ANOVA and experimental design techniques to analyze and interpret data effectively.	Ар

Signature of the BOS Chairman

	Program Outcomes (PO) (Strong-3, Medium - 2, Weak-1)								
$\widehat{\bigcirc}$	1	2	3	4	5	6			
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems			
1	2	1	1	1	1	2			
2	2	1	2	2	1	2			
3	2				1				
4	2		1		1				
5	2	1	1	2	2	2			
6	2	2	1	2	2	2			

Course Content	
NUMERICAL SOLUTION OF ALGEBRAIC EQUATIONS Solution of nonlinear equations – Newton's method, Bisection method, Secant method, Golden section search and Muller method for a single equation. Numerical evaluation of multiple roots: Brent's algorithm. Solution of non -linear system of equations by Newton's method	10 Hours
 Practical Component Introduction to MATLAB and R Solving a non-linear equation using Newton's method, Secant method 	6 Hours
CURVE FITTING AND INTERPOLATION Method of least squares – Fitting a linear curve, second-degree parabolic curve and non- linear curves of the form $y = ae^{bx}$, $y = ab^x$, $y = ax^b$ - Spline curves – B-Spline curves- Bezier curves – Cubic spline interpolation	8 Hours
 Practical Component Fitting of curves by Method of least squares Fitting of Bezier curves and Spline curves 	8 Hours
NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS Boundary value problems (ODE)-Finite difference methods – Shooting Methods – Parabolic equations: explicit and implicit finite difference methods, First order hyperbolic equations– method of characteristics, different explicit and implicit methods.	8 Hours
Practical ComponentSolution of ODE using Shooting Methods	

Solution of PDE using Explicit and Implicit Methods	
	6 Hours
CORRELATION AND REGRESSION	10 Hours
Multiple and partial correlation - Plane of regression - Properties of residuals - Coefficient of multiple correlation - Coefficient of partial correlation - Multiple correlation with total and partial correlations - Regression and partial correlations in terms of lower order co-efficient.	
Practical Component	2 Hours
Applications of Correlation and Regression	
DESIGN OF EXPERIMENTS	9 Hours
Analysis of variance - One-way and two-way classifications - Completely randomized	
design – Randomized block design – Latin square design.	
 Practical Component ANOVA - one-way classification ANOVA - two-way classification ANOVA - Latin square design 	8 Hours


Theory	Tutorial	Practical	Project	Total
Hours: 45	Hours: 0	Hours: 30	Hours: 0	Hours: 75

Learni	ng Resources
Textbo	ooks
	Steven C. Chapra and Raymond P. Canale., Numerical Methods for Engineers with Programming and Software Applications., McGraw-Hill ,7 th Edition (2010). Johnson R.A., Miller I and Freund J., Miller and Freund's Probability and Statistics for
	Engineers., PearsonEducation, Asia 8 th Edition (2015).
Refere	nces
	Kendall E. Atkinson., An Introduction to numerical analysis., John Wiley & Sons, 2 nd Edition (2008).
2.	Conte S.D and Carl de Boor., Elementary Numerical Analysis - An Algorithmic Approach, McGraw-Hill (2018)
3.	John H. Mathews and Kurtis D. Fink., Numerical Methods using Matlab, Prentice Hall of India,4 th Edition (2021).
4.	Gerald C. F. and Wheatley P.O., Applied Numerical Analysis., Pearson Education Asia, New Delhi (2007).
5.	Gupta S.C and Kapoor V.K., Fundamentals of Mathematical Statistics, Sultan Chand and Sons, 11thEdition (2020).
6.	Johnson R.A. and Wichern D. W., Applied Multivariate Statistical Analysis., Pearson Education, Asia, 6thEdition(2015).
Online	Educational Resources:
	NIL
	fle

Assessment (Embedded course)

CAT, Activity and Learning Strategy - Think-pair-share, MCQ, End Semester Examination (ESE) Lab Workbook, Experimental Cycle tests, Viva-voce

Co	ourse Curated by				
	Expert(s) from Industry	Expert(s) from Education Ins	-		Internal Expert(s)
1.	Mr. Ramesh V.S., STEPS			1.	Dr.S.Meenapriyadarshini,
	Knowledge Services		College of		Mathematics.
	Private Limited,	Engineering,	Srirangam,	2.	Dr.D.Arivuoli,
	Coimbatore.	Trichy.			Mathematics.
2.	Mr.Jayakumar	2. Dr.C.Porkodi, 1	PSG College		
	Venkatesan, Valles	of Technology,	Coimbatore.		
	Marineris International	3. Dr.P.Paramana	than, Amrita		
	Private Limited- Chennai.	Vishwa Vio	dyapeetham,		
3.	Mr. Imran Khan, GE	Coimbatore.			
	Transportation Company,				
	Bangalore.				
		1 (100 1000 1			
	Recommended by BoS on	16/08/2024			
1	Academic Council Approval	No. 27		Date	24/08/2024

ES

RESEARCH METHODOLOGY AND IPR
(Common to CN, EN, MB, ST)

L	Т	Р	J	C		
3	0	0	0	3		
SDC	5	9,12,13				

Pre-requisite courses Nil	Data Book / Code book (If any)	Nil
---------------------------	-----------------------------------	-----

Course O	bjectives:				
The purp	The purpose of taking this course is to:				
1	Equip students with the knowledge and skills necessary to design, conduct and critically				
	evaluate research				
2	Draft research reports and present effective research findings				
3	foster an understanding of intellectual property rights and ethical considerations essential for				
	successful research and innovation				

Course Outcomes					
After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)				
CO 1 Apply the scientific method and research planning steps to formulate research problems and objectives	Ар				
CO 2 Analyze different research designs and ethical considerations to classify research types and ensure ethical integrity	An				
CO 3 Evaluate the structure and components of research reports to organize and present research findings effectively	Е				
CO 4 Interpret data collection tools and statistical methods to visualize and analyze biological research data	An				
CO 5 Create a research proposal incorporating IPR principles to develop innovative and ethically sound research plans	C				

	Pro	gram Outco	omes (PO) (S	strong-3, Me	dium – 2, Wea	k-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	3	3		3	3	
2	3	3		3		
3	3			3		3

4	3	3	3	3
5	3	3	3	

Course Content	
INTRODUCTION TO RESEARCH METHODS Definition and Objectives of Research, Scientific Method, Various Steps in Scientific Research, Research Planning, Selection of a Problem for Research, Formulation of Selected Problems, Purpose of the Research, Formulation of Research Objectives, Formulation of ResearchQuestions, Hypotheses Generation and Evaluation, Literature Search and Review Process.	9 Hours
RESEARCH DESIGN AND ETHICS	9 Hours
Types and Methods of Research, Classification of Research, Research Ethics: Informed Consent, Confidentiality, Data Protection, Sampling Techniques, Methods of Collecting Primary Data, Use of Secondary Data, Experimentation, Design of Experiments, Survey Research, Construction of Questionnaires, Pilot Studies, and Pre-tests, Data Collection Methods, Processing, Editing, Classification, and Coding Validity, Reliability, Ethical Dilemmas and Solutions.	
RESEARCH REPORTS	9 Hours
Components of Research Articles, Manuscripts, Thesis, and Review Papers, Preparation of Thesis Documents: Referencing, In-text Citations, Tools like Endnote, Mendeley, Writing Techniques: CARS Model, Organizing Literature Review, Materials, and Methods Critical Thinking for Writing the Discussion Section. Case Study: Comparison of Research Articles with and without Referencing Tools	
DATA COLLECTION AND ANALYSIS FOR RESEARCH	9 Hours
Tools for Data Collection: Clinical Trials, Surveys, Questionnaires, Observational Methods, Data Management and Preparation, Overview of Statistical Concepts, Descriptive Statistics: Mean, Median, Mode, Variance, Standard Deviation, Data Visualization Techniques.	
Case Study: Journal Club on Research Papers Published in Tier 1 Journals	
INTELLECTUAL PROPERTY RIGHTS (IPR) AND RESEARCH GRANTS Introduction to Intellectual Property Rights: Patents, Trademarks, Copyrights, Trade Secrets, Importance of IPR in Research and Innovation, developing a Research Proposal:	9 Hours
Components, Do's and Don'ts, Writing Winning Research Proposals, Peer Review, and Feedback, Finalizing Research Plans.	
Case Study: Evaluating Successful Research Proposals and Understanding the Role of IPR	

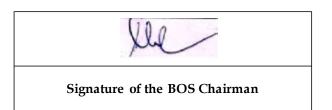
	Xle
Signatu	re of the BOS Chairman

Theory		Tutorial	Practical		Project		Total		
Hours:	45	Hours:	0	Hours:	0	Hours:	0	Hours:	45

Learning Resources:
Textbooks:
1. Cooper, D. R., Schindler, P. S., & Sharma, J. K Business research methods (11th ed.). Tata McGraw Hill Education. (2012)
 Hazari, A. Research Methodology for Allied Health Professionals. Springer Nature Singapore. (2023)
3. Goh, K. M. Research Methodology in Bioscience and Biotechnology. Springer. (2023)
4. Ganguli, P. Intellectual property rights: Unleashing the knowledge economy. McGraw Hill Education. (2017)

References:

- 1. AJIET. (n.d.). Lecture Notes on Research Methodology & Intellectual Property Rights. Retrieved from https://www.ajiet.edu.in/img/basic-science/21RMI56%20notes.pdf
- 2. Oxford University Press. (n.d.). Handbook of Intellectual Property Research: Lenses, Methods, and Perspectives. Retrieved from https://academic.oup.com/book/41122
- 3. Goddard, W., & Melville, S.. Research Methodology: An Introduction for Science & Engineering Students. Juta and Company Ltd. (2004)
- 4. Kumar, R. Research Methodology: A Step by Step Guide for Beginners (4th ed.). SAGE Publications. (2014)


Online Educational Resources:

- 1. https://hrdc.ugc.ac.in/Web/Home/ViewCourseDetails/842/
- 2. https://onlinecourses.swayam2.ac.in/ntr24_ed08/preview

Assessment (Theory course)

CAT, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE)

Course Curated by				
Expert(s) from Industry	Expert(s) from Education Ins	0]	Internal Expert(s)
				Dr.K.Ram, Biotechnology
Recommended by BoS on	13/08/2024			
Academic Council Approval	27	D	Date	24/08/2024

24STP501

L	Т		Р	J	С
0	C	0	4	0	2
SDG	Ĵ		9	,11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	IS 456: 2000
-----------------------	-----	-----------------------------------	--------------

Course O	bjectives:
The purp	ose of taking this course is to:
1	Analyze and design various structural components such as beams, reinforced concrete
	framed buildings, industrial sheds, T-beam bridges, and foot-over bridges using STAAD.
	Pro.
2	Design simple reinforced concrete (RC) structural elements, including beams, columns, slabs,
	and isolated footings, using Excel spreadsheets for effective manual calculation and
	verification.
3	Gain knowledge to Autodesk Revit Structure and use it for structural modeling, detailing,
	and report generation, applying BIM principles to enhance project visualization and
	collaboration.

Course	e Outcomes	
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)
CO 1	Analyze and design various structures, including framed buildings,	An
	industrial sheds, and bridges.	
CO 2	Design Reinforced Concrete (RC) structural elements using Excel	An
	spreadsheets.	
CO 3	Model and detail the structures using Revit by applying Building	Ар
	Information Modeling (BIM) concepts.	

		Program	Outcomes (PO)	(Strong-3, Me	dium – 2, Weak	-1)
-	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	2	2		2	3	2
2		2		2	3	2
3		2			3	2

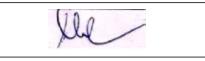
Xle

Signature of the BOS Chairman

Course Content	
STAAD.Pro	30 Hours
 Practical Component: Analysis and Design of Beams. Analysis and Design of a reinforced concrete framed building. Analysis and Design of an industrial shed. Analysis and Design of T-beam bridge. Analysis and Design of Foot-over bridge. 	
EXCEL	15 Hours
Practical Component:	
 Design of simple structural elements of RC structures using Excel spread sheets - (Beam, Column, Slab, Isolated Footing). 	
BIM	15 Hours
 Practical Component: Introduction to Revit structure. Structural modelling, detailing, and report generation using Autodesk Revit Structure. 	

Theory 0	Tutorial 0	Practical 60	Project 0	Total	60
Hours:	Hours:	Hours:	Hours:	Hours:	

Learni	ng Resources
Textbo	oks:
1.	Krishna Raju N, "Structural Design and Drawing", Universities Press, (2009).
2.	Sham Tickoo, "Exploring Bentley STAAD. Pro CONNECT Edition", CADCIM Technologies,
	(2022).
3.	Autodesk, Revit 2021 Structure Fundamentals, © 2020, ASCENT - Center for Technical
	Knowledge®.(2021)
Refere	nces:
1.	Sarma T S, "Staad Pro v8i for beginners" Notion Press, (2014).
2.	Gurmeet Kaur and Simon Gibson, Spreadsheet Solutions for Structural Engineering (2022)
3.	"Autodesk Revit for Architecture Certified User Exam Preparation" by Daniel John Stine (2021)
Online	Educational Resources:
1.	https://www.udemy.com/topic/staad-pro/
2.	https://caddcentre.com/courses/staad-pro-certification-and-training-course/
3.	https://www.autodesk.com/certification/all-certifications/revit-structural-design-
	professional?msockid=0fb52fb46fab697f0ab73cc36e4d685d

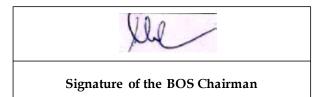

4. https://www.udemy.com/course/bim-revit-family-creation-expert-level-level-2/

Xle	
Signature of the BOS Chairman	

Assessment (Practical course)

Lab Workbook, Experimental Cycle tests, viva-voce.

Course Curated by								
Expert(s) from Industry	Expert(s) from Education Ins	0		Internal Expert(s)				
Dr. V. Govindaraj	Dr. R.Thenr	nozhi	Dr.R.Manju					
Head R&D,	Professo	or,		Civil Engineering				
L&T Construction, Chennai.	Government C	ollege of						
	Technology, Co	imbatore.						
Recommended by BoS on	13/08/2024							
Academic Council Approval	No. 27		Date	24/08/2024				



24STT502		L	Т	Р	J	C
24511502	THEORY OF ELASTICITY AND PLASTICITY	3	0	0	0	3
РС		SDG	3	9	,11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	Nil
-----------------------	-----	-----------------------------------	-----

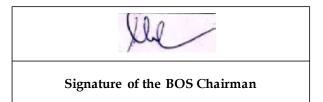
Course O	Course Objectives:				
The purp	ose of taking this course is to:				
1	To introduce the mathematical formulation of elasticity problems, including equilibrium and				
	compatibility equations for 3D systems.				
2	To equip students with the skills to formulate and solve boundary value problems in				
	linearized elasticity using Airy's stress functions for 2D cases.				
3	To provide knowledge on solving boundary value problems related to the torsional behavior				
	of prismatic beams.				
4	To familiarize students with plasticity theories and their application in analysing material				
	behavior beyond elastic limits.				
5	To introduce the principles of fracture mechanics for analysing failure mechanisms in				
	materials and structures.				

Course	Course Outcomes					
After s	After successful completion of this course, the students shall be able to					
		(RBT)				
CO 1	Mathematical formulation of elasticity problems in equilibrium and	An				
	compatibility equations for 3D problems					
CO 2	Formulating Boundary Value Problems in Linearized Elasticity and Solving	Е				
	2D Problems with Airy's Stress Functions					
CO 3	Solution to boundary value problems corresponding to end torsion of	An				
	prismatic beams					
CO 4	Analyse with Plasticity Theories	An				
CO 5	Analyse with fracture mechanics	U				

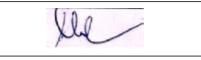
		Program O	utcomes (PO) (Strong-3, Me	dium – 2, Wea	k-1)
(CO)	1	2	3	4	5	6
Course Outcomes (C	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1			2		
2	2			3		
3	1			3		
4	1		2	3		
5	2		2	3	2	

Course Content	
INTRODUCTION TO ELASTICITY	12 Hours
Elasticity Theory - Understanding stress and strain - Notation, and components -	
Generalized Hooke's law - Transformation and invariance of stress and strain -	
Principal stresses and strains in 3D Elements - Equilibrium and compatibility equations	
in cartesian and cylindrical Coordinates.	
Practical Component: Nil	
BOUNDARY VALUE PROBLEMS: FORMULATION	12 Hours
Airy's stress functions for plane stress and strain analysis - Bending of cantilever and	
simply supported beams with narrow rectangular cross-sections under various loads -	
Asymmetric challenges: Thick and thin cylinders under internal pressure - Stress	
concentrations around circular holes in plates - non-axisymmetric problems using the	
Flamant's approach.	
Practical Component: Nil	
END TORSION OF PRISMATIC BEAMS	8 Hours
Formulation of boundary value problems for torsion of solid cross-section beams -	
Warping function and Prandtl stress function methods - Torsion of circular, elliptic,	
rectangular, and triangular cross-sections - Membrane analogy - Torsion analysis of	
thin-walled tubes, Thin rectangular sections, rolled sections.	
Practical Component: Nil	

fle	
Signature of the BOS Chairman	


PLASTIC DEFORMATION Introduction to plastic deformation: Concepts and definitions- Strain hardening and idealized stress-strain Curves - Yield criteria - Plasticity theories, von mises, Tresca, and Mohr-coulomb - Plastic deformation in engineering applications - Isotropic hardening. Practical Component: Nil	9 Hours
 INTRODUCTION TO FRACTURE MECHANICS Fracture mechanics - History and importance - Types of fracture- Linear elastic fracture mechanics (LEFM)- Failure criteria - Stress concentration- Stress intensity factor for complex geometries- Crack propagation, and Energy release rate - Case studies in fracture of engineering structures. Practical Component: Nil 	4 Hours

Theory 45	Tutorial	0	Practical	0	Project	0	Total	45
Hours:	Hours:		Hours:		Hours:		Hours:	


Learni	ng Resources
Textbo	oks:
1.	Timoshenko's and Goodier, , Theory of Elasticity, McGraw Hill, Singapore. (2010)
2.	Chakrabarty, Theory of Plasticity, Tata McGraw Hill Book Co., New Delhi, (2012)
3.	Sadhu Singh, Theory of Elasticity, Khanna Publishers, New Delhi, Fourth Edition, (2012).
4.	Advanced Mechanics of Solids, Srinath, L.S, Second Edition, Tata McGraw Hill, India, (2003).
Refere	nces:
1.	Richard. G. Budynas, Advanced Strength and Applied Stress Analysis, McGraw-Hill, New
	Delhi, Second Edition, (2011)
2.	L.S. Srinath, Advanced Mechanics of Solids, Tata McGraw Hill, (2007).
3.	M.H. Sadd, Elasticity: Theory, Applications and Numeric, Academic Press, (2006).
4.	A.R. Ragab and S.E. Bayoumi, Engineering Solid Mechanics: Fundamentals and Applications,
	CRC Press, (1999).
Online	Educational Resources:
1.	https://onlinecourses.nptel.ac.in/noc21_ce45/preview
2.	https://onlinecourses.nptel.ac.in/noc22_mm15/preview
3.	https://www.udemy.com/course/theory-of-elasticityadvanced-solid-
	mechanics/?couponCode=IND21PM
4.	https://www.amrita.edu/course/theory-elasticity-and-plasticity/

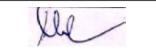
Assessment (Theory course)

CAT, Activity and Learning Task(s)*, MCQ, End Semester Examination (ESE)

Course Curated by	Course Curated by						
Expert(s) from Industry	Expert(s) from Education Ins	-	-	Internal Expert(s)			
Dr. V. Govindaraj	Dr.R.Thenn	nozhi		Mr.A.Vishnu			
Head R&D,	Professor & Head			Civil Engineering			
L&T Construction, Chennai.	Government College of						
	Technology, Co	oimbatore					
Recommended by BoS on	13/08/2024						
Academic Council Approval	No.27		Date	24/08/2024			

24877502	DESIGN OF ADVANCED CONCRETE	L	Т	Р	J	C
24STT503	STRUCTURES	3	1	0	0	4
РС		SDC	J	9	,11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	IS 456, IS 13920
-----------------------	-----	-----------------------------------	------------------


Course Objectives:									
The purpose of taking this course is to:									
1	make the students familiar with the serviceability behaviour of RCC beams and slabs								
2	familiarise the students about the moment-rotation characteristics and moment redistribution of concrete beams								
3	introduce the ductility concept and to design and detailing for ductility as per relevant IS								
5	codes								
4	design special structural members with proper detailing								

Course	e Outcomes	
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)
CO 1	Calculate short term and long-term deflections and crack width for	An
	structural elements	
CO 2	Understand inelastic behaviour of concrete beams	U
CO 3	Design beam column joints for ductility as per relevant IS code	Ар
CO 4	Design and detail the ribbed slab, deep beams, grid floor and flat slabs in	Ар
	accordance with relevant IS code and standards	
CO 5	Design corbels, slender columns, shear walls, edge (spandrel beams), pile	Ар
	cap, bunkers and silos	

		Program O	utcomes (PO) (Strong-3, Me	dium – 2, Wea	k-1)
$\widehat{\mathbf{O}}$	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1			2	3	2	
2		2	3	3		
3		2	3	3	2	
4		2	3	3	2	
5		2	3	3	2	

Xle

Course Content	
SERVICEABILITY CRITERIA FOR RC BEAMS AND SLABS Deflection: Calculation of deflection of RC beams and slabs - as per IS code, comparative study with Eurocode and ACI code. Crack width: Introduction - Factors affecting Crack width in Beams-Mechanism of Flexural Cracking-Estimation of Crack width in Beams by IS456 and BS8110 - Shrinkage, Creep and Thermal Cracking.	8 Hours
Practical Component: Nil	
INELASTIC BEHAVIOUR OF CONCRETE BEAMS Momen-rotation characteristics, moment redistribution, Baker's method of limit state analysis of continuous beam Practical Component: Nil	6 Hours
DUCTILE DETAILING Concept of ductility, design of beam column joints for ductility, design of cast in-situ joints in frames, detailing for ductility. Practical Component: Nil	3 Hours
DESIGN OF RIBBED (Voided) SLABS Introduction – Specification regarding the slabs – Analysis of the Slabs for Moment and Shears – Ultimate Moment of Resistance – Design of Shear – Deflection– Arrangement of Reinforcements	6 Hours
Tutorial: • Design of Ribbed slab using software Practical Component: Nil	3 Hours
DESIGN OF FLAT SLABS AND GRID FLOORS Design of flat slabs according to IS and ACI method- design of grid floors – yield line theory of slabs.	7 Hours
 Tutorial: Design of Flat slab using software Design of Grid floor using software 	6 Hours
DESIGN OF SPECIAL STRUCTURES Design of deep beams, corbels, slender columns, shear walls, edge (spandrel) beams and design of pile cap.	9 Hours
 Tutorial: Design of Deep beam using software Design of Shear wall using software Design of Pile cap using software 	12 Hours

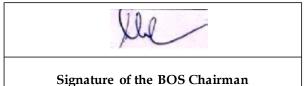
DESIGN OF RC CHIMNEYS, BUNKERS AND SILOS Design of chimneys for combined effect of self load, wind load and temperature - design of bunkers and silos-Janssen's theory , Airy's theory.	6 Hours
 Tutorial: Design of Bunker using software Design of Silo using software 	9 Hours

Theory 45	Tutorial	15	Practical	0	Project	0	Total	60
Hours:	Hours:		Hours:		Hours:		Hours:	

Learning Resources Textbooks: 1. Krishnaraju, N. Advanced Reinforced Concrete Design, CBS Publishers and Distributors, Delhi, (2013) 2. S. Unnikrishna Pillai and Devdas Menon, 'Reinforced Concrete Design', TATA McGraw-Hill Education Pvt. Ltd., New Delhi, (2017).

References:

- 1. P.C. Vargheese, Advanced Concrete Design, Prentice Hall of India Pvt. Ltd., (2010).
- 2. Jain, A.K. Reinforced Concrete-Limit State Design, Nem Chand and Bros., Roorkee, (2012).
- 3. Park. R. and Paulay T., Reinforced Concrete Structures, John Wiley and Sons, New Delhi, (2009).
- 4. Sinha, N.C. and Roy S.K., Fundamentals of Reinforced Concrete, S. Chand and Company, New Delhi, (2007).
- 5. B.C. Punmia, A.K.Jain , Limit State Design of Reinforced Concrete, Firewall media, (2007).


Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc23_ce109/preview
- 2. <u>https://www.researchgate.net/publication/311440191</u>

Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

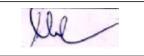
Course Curated by										
Expert(s) from Industry	Expert(s) from Education Ins	0	Internal Expert(s)							
Dr. V. Govindaraj	Dr.R.Thenmozhi		Dr.R.Thenmozhi		Dr.R.Thenmozhi		Dr.R.Thenmozhi			Dr.J.Premalatha
Head R&D,	Professor &	Head		Civil Engineering						
L&T Construction, Chennai.	Government College of									
	Technology, Co	oimbatore								
Recommended by BoS on	13/08/2024									
Academic Council Approval	No.27		Date	24/08/2024						

24STI504		L	Т	Р	J	C
	ADVANCED CONCRETE TECHNOLOGY	3	0	2	0	4
ES		SDO	3		9,11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	IS 456, IS 10262	5
-----------------------	-----	-----------------------------------	---------------------	---

Course O	Course Objectives:						
The purp	ose of taking this course is to:						
1	Acquire knowledge on the properties of admixtures, fresh concrete properties, mix design,						
	for special concretes and durability properties.						
2	Understand microstructural behaviour of concrete and various modern trends in making of						
	concrete.						
3	Perform advanced laboratory experiments that emphasizes the use of admixtures, SCC and						
	NDT tests						
4	Study the structural behaviour of reinforced concrete beam and column elements.						

Course	Course Outcomes					
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)				
CO 1	Explain the role of constituent materials and admixtures in concrete composition and Performance.	Ар				
CO 2	Analyze the flow properties, setting, and hardening characteristics of fresh concrete and SCC.	An				
CO 3	Design mix proportions for special concrete and suggest advanced methods of concrete manufacture and placement.	An				
CO 4	Evaluate the durability and resistance properties of concrete and demonstrate NDT tests.	U				
CO 5	Recommend appropriate concreting methods and equipment for specialized applications and future trends in concrete technology.	Е				
CO 6	Demonstrate the use of laboratory tests to assess the mechanical properties, durability and strength of concrete specimen.	Е				


fle	
Signature of the BOS Chairman	

		Program O	utcomes (PO) (Strong-3, Me	dium – 2, Weal	k-1)
\widehat{O}	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	3		3		3	
2	3		3		3	
3	3		3		3	2
4	3		3		3	
5	3		3		3	
6	3		3		3	2

-

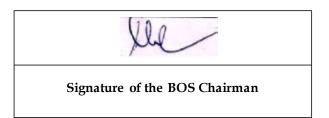
-

Course Content	
CONSTITUENT MATERIALS OF CONCRETE	6 Hours
Constituent materials of structural concrete, Types of cement, chemical composition,	
Hydration of Cement, Structure of hydrated Cement, mineral and chemical admixtures,	
Effects of Admixtures on properties of concrete.	
Practical Component:	2 Hours
Effect of admixtures in workability of concrete	
CONCRETE PROPERTIES	9 Hours
Fresh concrete properties and Flow properties of SCC - Concrete properties - setting and	
hardening - transition zone in concrete - Elastic behaviour in concrete - creep, shrinkage	
and thermal properties of concrete. Strength-porosity relationship - Permeability of	
concrete, Non-destructive testing of concrete.	
Practical Component:	0.11
Ultrasonic Pulse Velocity Test	8 Hours
Rebound hammer Test	
Rebar locator test	
Study of stress - strain characteristics and determination of Youngs modulus	
CONCRETE PRODUCTION, PROCESSES, AND APPLICATIONS	9 Hours
Mix design for special concrete - High Strength Concrete, High performance concrete	
and SCC - Advanced methods of concrete manufacture and placement - Ready mix	
concrete, Pumpable Concrete, Sprayed concrete; mass concrete.	
Practical Component:	8 Hours
Testing Flow Characteristics of Self Compacting concrete	

Signature of the BOS Chairman

TESTING AND QUALITY ASSURANCE OF CONCRETE Durability tests - Rapid Chloride permeability test- water absorption test- Resistance against sulphate attack, Carbonation, Classification and causes of concrete deterioration - Alkali aggregate reactivity, Effect of elevated temperature, Failure modes in concrete - plastic and thermal cracking. Microstructural analysis – SEM, EDX and XRD analysis.	12 Hours
 Practical Component: Rapid Chloride Penetration Test Accelerated corrosion test on concrete Testing of RC beam to study the moment rotation behaviour under flexure Testing of RC column under axial compression 	12 Hours
MODERN TRENDS IN CONCRETE MANUFACTURE AND PLACEMENT Concreting machinery and equipment, Special concreting methods - Under water concreting, Vacuum dewatering of concrete, extreme weather concreting. Methods of Transportation, Placing and curing. Future trends in concrete technology - Concrete for prefabricated elements, 3D printing concrete. Practical Component: Nil	9 Hours

Theory 4	15	Tutorial	Ω	Practical	30	Project	0 Total	75
Theory -	45	I utoriar	U	Tactical	30	Tiojeci	0 IOtal	15
Hourse		Hourse		Horres		Hourse	Hourse	
Hours:		Hours:		Hours:		Hours:	Hours:	

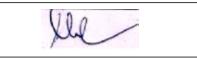

Learni	ng Resources
Textbo	oks:
1.	A.R.Santhakumar, Concrete Technology, Oxford University Press, (2018).
2.	Shetty.M.S and A.K.Jain, Concrete Technology Theory and Practice, S Chand and Company
	Ltd, New Delhi, (2019).
Refere	nces:
1.	P. Kumar Metha and Paulo J.M.Monteiro, Concrete : Microstructure, Properties and
	Materials, Mc Graw Hill, Fourth Edition, (2014).
2.	John Newman and B.S.Choo, Advanced Concrete Technology Part 1 to 4, Butterworth -
	Heinemann, First Edition, (2003).
3.	Adam M., Neville, Properties of Concrete, Wiley Publications, Fourth and Final edition, (2010).
4.	Piere Cloud Aitcin and Robert I Flatt, Science and Technology of Concrete Admixtures, (2016).

of Concrete Admixtures, (2016). id Aitcin and Robert J Flatt, Science and Technology

Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc18_ce21/preview
- 2. https://swayam.gov.in/courses/4709-july-2018-concrete-technology
- 3. https://cs-iitd.vlabs.ac.in/List%20of%20experiments.html

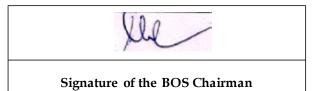
https://www.teksure.in/self-compacting_concrete_virtual_lab.php 4.


Assessment (Embedded course)

CAT, Activity and Learning Strategy - Think-pair-share, MCQ, End Semester Examination (ESE) Lab Workbook, Experimental Cycle tests, Viva-voce

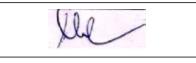
Course Curated by							
Expert(s) from Industry	Expert(s) from Education Ins			Internal Expert(s)			
Dr. V. Govindaraj	Dr.R.Thenn	nozhi		Dr.K.Ramadevi			
Head R&D,	Professor &	Professor & Head C		Civil Engineering			
L&T Construction, Chennai.	Government C	College of					
	Technology, Co	oimbatore					
Recommended by BoS on	13/08/2024						
Academic Council Approval	No.27		Date	24/08/2024			

SEMESTER II



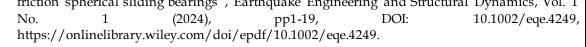
24STI505	STRUCTURAL DVNIAMICS & EARTHOUAKE	L	Т	Р	J	C
24511505	TI505 STRUCTURAL DYNAMICS & EARTHQUAKE - ENGINEERING		0	2	0	4
РС		SDG	5	9	,11	

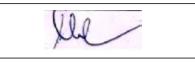
Pre-requisite courses	Nil	Data Book / Code book (If any)	IS 4326, IS 1893, IS 13920, IS 13827 & IS 13828
-----------------------	-----	-----------------------------------	---


Course Objectives:					
The purp	The purpose of taking this course is to:				
1	To develop the ability to design earthquake resistant structural elements				
2	To understand dynamic response of SDOF and MDOF systems				
3	To understand and introduce ductility into RC structural elements as per IS code provisions				
4	To demonstrate the dynamic response of structural elements through experiments				

Course	Course Outcomes			
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)		
CO 1	Apply the basics of engineering seismology and theory of vibration or earthquake analysis	Ар		
CO 2	Analyze the response of SDOF systems to various types of dynamic loading	An		
CO 3	Analyze the behaviour of MDOF systems and decoupling of equations of motion	An		
CO 4	Examine IS code provisions for seismic design and analyze structures using various methods of seismic analysis	U		
CO 5	Design structural elements like RC beams, columns, and shear walls according to IS codes	Е		
CO 6	Demonstrate the dynamic response of structural elements through laboratory tests.	Е		

	Pı	rogram Out	comes (PO)	(Strong-3, Me	dium – 2, Wea	k-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1		1		1	
2	1			3		
3	1			3		
4	1		2	2		
5	1		2	3	3	1
6	2	2	2	2		1

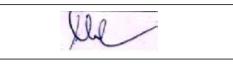

Course Content	
INTRODUCTION	6 Hours
Engineering Seismology, Objectives and Importance of Vibration Analysis, Nature of	
Exciting Forces, Degrees of freedom, Mathematical Modelling of Dynamic Systems,	
Equation of motion, Transmissibility, Vibration control, Tuned mass damper.	
Practical Component:	2 Hours
Demonstration on Horizontal Shake table	
Demonstration on Vertical Shake table	
SINGLE DEGREE OF FREEDOM SYSTEM	9 Hours
Single Degree of Freedom System: Free and Forced Vibration with and without	
Damping, Logarithmic decrement, Response to Harmonic Loading, Response to	
Dynamic Loading using Duhamel's Integral.	
Practical Component:	8 Hours
Vibration of SDOF system	
Impact test on slab specimen	
MULTIPLE DEGREE OF FREEDOM SYSTEM	9 Hours
Two Degree of Freedom System, Multiple Degree of Freedom System - Response to free	
and forced vibration of damped and undamped systems, Orthogonality principle,	
Evaluation of natural frequencies and mode shapes, Approximate methods - Mode superposition method.	
	8 Hours
Practical Component:	



Vibration of MDOF system	
 Lateral Load testing of G+1 storied steel frame 	
IS CODE PROVISIONS & SPECIAL TOPICS	12 Hours
Design Criteria - Strength, Deflection, Ductility and Energy Absorption - Cyclic	
Behaviour of PCC, RCC, Steel and PSC Elements- Code provisions of Design of	
Buildings As Per IS 1893 And IS 4326. Ductile Detailing of Structures as Per IS 13920.	
Behaviour and Design of Masonry Structures as Per IS 13827 and IS13828. Methods of	
Seismic Analysis: Equivalent static analysis – Response Spectrum method – Time history	
method – Pushover Analysis. Active and passive control devices, Soil liquefaction.	
incurou – i usitovci miturysis. Active unu pussive control devices, son inquelación.	
Practical Component:	
Cyclic load test on RC beam	12 Hours
• Evaluation of dynamic modulus of concrete	
• Study of Vibration Characteristics using FFT analyzer	
• Study of vibration characteristics using 111 analyzer	
DESIGN OF RC STRUCTURAL ELEMENTS	9 Hours
Design of RC beams, columns and shear walls as per IS code provisions.	
Practical Component: Nil	

Theory	45	Tutorial	0	Practical	30	Project	0	Total	75
Hours:		Hours:		Hours:		Hours:		Hours:	

Learni	ng Resources
Textbo	ooks:
1	
1.	S.K.Duggal, Earthquake Resistant Design of Structures, Prentice Hall of India, New Delhi (2022).
2.	Paz Mario., Structural Dynamics – Theory and Computation, CBS Publication., 5th edition
	(2018).
3.	
	Hall of India, New Delhi (2016).
Refere	nces:
1.	Clough R. W. and Penzien J., Dynamics of Structures, McGraw Hill Inc., US (2015).
2.	A.K. Chopra, Dynamics of Structures - Theory and Applications of Earthquake Engineering,
	Pearson Education (2020).
3.	Damodarasamy and Kavitha, Basics of Dynamics and Aseismic Design, PHI Learning Pvt Ltd
	(2009).
4.	Hector Estrada & Luke S. Lee , Introduction to Earthquake Engineering, CRC Press, Florida
	(2017).
5.	Motoki Akazawa et al, "Test and sensitivity analysis of base-isolated steel frame with low-
	friction spherical sliding bearings", Earthquake Engineering and Structural Dynamics, Vol. 1
	No. 1 (2024) $m = 1.10$ DOI: 10.1002/ $m = 4.240$


Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/105/101/105101006/
- 2. https://www.youtube.com/watch?v=MCRX1KXQZBU
- 3. https://ssdl.iitd.ac.in/vssdl/about.html
- 4. https://sd-iiith.vlabs.ac.in/List%20of%20experiments.html

Assessment (Embedded course)

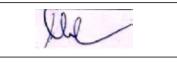
CAT, Activity and Learning Strategy - Think-pair-share, MCQ, End Semester Examination (ESE) Lab Workbook, Experimental Cycle tests, Viva-voce

Course Curated by					
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)			
		Dr.K.Ramadevi			
		Civil Engineering			
Recommended by BoS on					
Academic Council Approval		Date			


24STI506		L	Т	Р	J	C
24511500	ADVANCED DESIGN OF STEEL	3	0	2	0	4
РС	STRUCTURES	SDO	3	9), 11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	IS 800, IS 801, Design Data book
-----------------------	-----	-----------------------------------	--

Course O	Course Objectives:				
The purp	The purpose of taking this course is to:				
1	To learn advanced design concepts for steel buildings				
2	To understand design concepts of steel connections used for steel structures				
3	To understand various components of industrial buildings and their design using standard				
	IS codes.				
4	To learn plastic analysis of steel beams and frames, Light gauge steel structures				


Course	Course Outcomes			
After s	After successful completion of this course, the students shall be able to			
CO 1	Apply the various design philosophies used for steel structures and design	Ар		
	the steel members such as purlins, gable wind girders subjected to combined forces			
CO 2	Explain and design different types of steel connections such as welded and	Ар		
	bolted flexible as well as moment resisting connections			
CO 3	Analyze and design industrial structures such as trusses and portal frames	Ар		
	subjected to wind and seismic forces			
CO 4	Explain the effect of axial force and shear force on steel structures and	Ар		
	analyse continuous beams and frames using plastic theory			
CO 5	Use cold formed sections in steel buildings	Ар		
CO 6	Design the steel structural elements using software.	E		

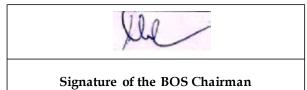
	Program Outcomes (PO) (Strong-3, Medium - 2, Weak-1)					k-1)
\widehat{O}	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems

1	1	1	3	2	3	
2	1	1	3	2	3	
3	1	1	3	2	3	
4	1	1	3	2	3	
5	1	1	3	2	3	
6	1	2	3	2	3	3

Course Content	
GENERAL	9 Hours
Design Philosophies and Design Codes (IS, EC, AISC) - Stability Criteria -Beam-	
Columns and Frames (Sway and Non-Sway) - Design of members subjected to	
combined forces - Design of Purlins, Louver rails, Gable column and Gable wind girder.	
Practical Component:Design of Gable column and Purlin using software	3 Hours
DESIGN OF CONNECTIONS	9 Hours
Types of connections – Welded and Bolted – Design of simple base, Gusseted base and	
Moment Resisting Base – Flexible Connections - Seated Connections – Unstiffened and	
Stiffened Seated Connections – Moment Resistant Connections– Clip angle Connections	
– Split beam Connections	
-	3 Hours
 Practical Component: Design of Moment Resistant connections using software 	
Design of Moment Resistant connections using software	
ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS	9 Hours
Design of Industrial buildings: Design of members subjected to lateral loads and axial	
loads- Sway and non-sway frames, bracings and bents, rigid frame joints, knees for	
rectangular frames and pitched roofs- Rigid joints in multistorey buildings - Design of	
steel chimneys- analysis and design of steel towers	
Practical Component:	
 Design of steel chimney using software 	3 Hours
belight of steel enhance using software	
PLASTIC ANALYSIS OF STRUCTURES	9 Hours
Introduction, Plastic methods of analysis and design- plastic behaviour under static and	
cyclic loading- Shape factor - Moment redistribution - Beam, Sway, Joint and Gable	
mechanisms - Combined mechanisms - Analysis of portal frames, Effect of axial force	
and shear force on plastic moment capacity - Design of Straight Corner Connections -	
Design of continuous beams.	3 Hours
	3 Hours
Practical Component:	
Plastic Analysis of Portal frames using software	

DESIGN OF LIGHT GAUGE STEEL STRUCTURES	9 Hours
Introduction to Direct Strength Method - behaviour of Compression Elements - Effective width for load and deflection determination – behaviour of Unstiffened and Stiffened Elements – Design of webs of beams – Flexural members – Lateral buckling of beams – Shear Lag – Flange Curling – Design of Compression Members – Wall Studs.	
Practical Component:Design of cold formed steel beams using software	3 Hours

Theory 45	Tutorial	0	Practical	30	Project	0 Total	75
Hours:	Hours:		Hours:		Hours:	Hours:	

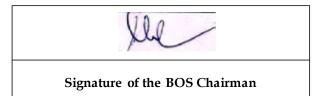

Learning Resources				
Textbooks:				
1. Subramanian. N, Design of Steel Structures, Oxford University Press, 2016Chakrabarty, Theo	ory			
of Plasticity, Tata McGraw Hill Book Co., New Delhi (2019)	-			
2. S.K. Duggal, Limit State Design of Steel Structures, McGraw Hill Book Company(2017)				
References:				
1. Chandrasekaran.S, Advanced Steel Design of Structures, CRC Press, Taylor and Francis grou	p,			
(2020)	_			
2. Narayanan.R.et.al., Teaching Resource on Structural steel Design, INSDAG, Ministry	of			
Steel Publishing, (2002)				
3. Wie Wen Yu, Design of Cold-Formed Steel Structures, McGraw Hill Book Company, (2019)				
4. Gaylord., Design of steel structures, McGraw Hill, New York(2010)				
5. IS 800-2007 Indian Standard code of practice for use of structural steel in general buildi	n a			
	ng			
construction, BIS New Delhi (2007)				
Online Educational Resources:				

1. https://onlinecourses.nptel.ac.in/noc22_oe02/preview

Assessment (Theory course)

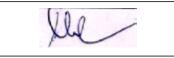
CAT, Activity and Learning Task(s)*, MCQ, End Semester Examination (ESE)

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)				
		Dr.J.Premalatha Civil Engineering				
		Civil Englicering				
Recommended by BoS on						
Academic Council Approval		Date				



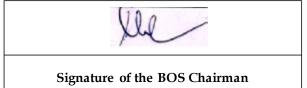
24STI507		L	T P J 3 0 2 0	С	
	FINITE ELEMENT ANALYSIS	3	0	2	0
РС		SDC	j	9	,11

Pre-requisite courses Nil	Data Book / Code book (If any)	Nil
---------------------------	-----------------------------------	-----


Course O	Course Objectives:				
The purp	The purpose of taking this course is to:				
1	Understand the fundamental principles of finite element analysis, including formulation				
	techniques such as Virtual Work, Variational Principle, and Galerkin's Method.				
2	Gain proficiency in analysing continuous beams, plane frames, grids, and space frames.				
3	Learn concepts like constant strain triangle, linear strain triangle, and rectangular elements,				
	and compute stresses considering geometric nonlinearity and static condensation.				
4	Apply finite element methods to practical engineering problems demonstrating a				
	comprehensive understanding and practical application of FEA techniques.				

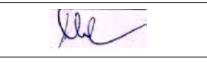
Course	Course Outcomes				
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)			
CO 1	Apply the basic concepts of Finite Element Analysis to solve simple	Ар			
	structural problems using the displacement approach.				
CO 2	Analyse the properties of various elements like triangular, rectangular,	An			
	and Isoparametric elements to determine their applications in structural				
	analysis.				
CO 3	Evaluate the stiffness of members to perform finite element analysis of	Е			
	continuous beams and frames.				
CO 4	Create finite element models using constant and linear strain triangles to	С			
	compute stresses and handle geometric nonlinearity.				
CO 5	Develop finite element solutions for plate bending problems and dynamic	С			
	analysis to assess the stability and behaviour of structures.				
CO 6	Demonstrate the use of FEM software to model, simulate, and analyse	Ар			
	real-world structural engineering problems, including trusses, frames,				
	and plates.				

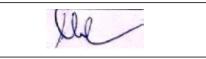
	Program Outcomes (PO) (Strong-3, Medium - 2, Weak-1)					
$\widehat{\frown}$	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1		3			
2	1		3	3		
3	1		3	3		
4	1		3	3		
5	1		2	2		
6	3	3	3	3	3	2


Course Content	
INTRODUCTION	9 Hours
Basic Concepts of Finite Element Analysis - Introduction to Elasticity- Steps in Finite	
Element Analysis	
Finite Element Formulation Techniques: Virtual Work and Variational Principle -	
Galerkin's Method	
Finite Element Method: Displacement Approach - Stiffness Matrix and Boundary	
Conditions	
Practical Component:	6 Hours
Introduction to MATLAB/Python	
 Analysis of a 2D truss using matrix stiffness method 	
ELEMENT PROPERTIES	9 Hours
Natural Coordinates - Triangular Elements-Rectangular Elements - Lagrange and	
Serendipity Elements - Solid Elements - Isoparametric Formulation - Stiffness Matrix of	
Isoparametric Elements	
Numerical Integration: One, Two and Three Dimensional - Problems	
Practical Component:	6 Hours
Introduction to ANSYS/ADINA	
• Study on types of elements, mesh patterns and refinement	
study on types of elements, mean puterits and remement	
ANALYSIS OF FRAMED STRUCTURES	9 Hours
Stiffness of Truss Members-Analysis of Truss-Stiffness of Beam Members-Finite Element	
Analysis of Continuous Beam-Plane Frame Analysis-Analysis of Grid and Space Frame	
Practical Component:	6 Hours
• Analysis of a simply supported beam subjected to two-point load	

Analysis of a space frame	
TWO- AND THREE-DIMENSIONAL SOLIDS Constant Strain Triangle - Linear Strain Triangle - Rectangular Elements- Numerical	9 Hours
Evaluation of Element Stiffness - Computation of Stresses, Geometric Nonlinearity and Static Condensation - Axisymmetric Element - Finite Element Formulation of	
Axisymmetric Element - Finite Element Formulation for 3 Dimensional Elements- Problems	6 Hours
Practical Component:	0 110413
Analysis of a thin cylinder with internal pressure	
Analysis of a thick cylinder with internal pressure	
APPLICATIONS OF FEM	9 Hours
Introduction to Plate Bending Problems - Finite Element Analysis of Thin Plate - Finite	
Element Analysis of Thick Plate - Finite Element Analysis of Skew Plate -Introduction to	
Finite Strip Method - Finite Element Analysis of Shell -Finite Elements for Elastic Stability - Dynamic Analysis	
Practical Component:	6 Hours
Analysis of a plate with a hole	
Dynamic Analysis of a space frame	

Theory 45	Tutorial 0	Practical 30	Project 0	Total	75
Hours:	Hours:	Hours:	Hours:	Hours:	

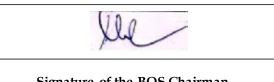

Learni	ng Resources
Textbo	oks:
1.	Chandrupatla, R.T. and Belegundu, A.D., Introduction to Finite Elements in Engineering,
	Fourth Edition, Prentice Hall of India (2015)
2.	David Hutton, Fundamentals of Finite Element Analysis, Tata McGraw Hill Publishing
	Company Limited, New Delhi.(2017)
Refere	nces:
1.	Mohamed Gadala, Finite Elements for Engineers with Ansys Applications, Cambridge
	University Press, ISBN: 978-1-107-19408-3.(2020)
2.	Erdogan Madenci, Ibrahim Guven, The Finite Element Method and Applications in
	Engineering using ANSYS, Springer, ISBN 978-1-4899-7549-2.(2015)
3.	Moaveni, Saeed, Finite Element Analysis: Theory and Application with ANSYS, Pearson
	Prentice Hall, ISBN 978-0-13-189080-0.(2011)
4.	Logan D. L, A First Course in the Finite Element Method, Thomson-Engineering(2007)
5.	Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, McGraw - Hill.(2013)
Online	Educational Resources:
1.	https://ocw.mit.edu/courses/2-092-finite-element-analysis-of-solids-and-fluids-i-fall-2009/
2.	https://ocw.mit.edu/courses/2-094-finite-element-analysis-of-solids-and-fluids-ii-spring-
	2011/
3.	https://ocw.mit.edu/courses/4-500-introduction-to-design-computing-fall-2008/


Assessment (Embedded course)

CAT, Quizzes, Think-pair-share, Open-ended questions, End Semester Examination (ESE) Lab Workbook, Experimental Cycle tests, viva-voce.

Course Curated by					
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)			
		Mr. Satheesh Kumar KRP Civil Engineering			
Recommended by BoS on					
Academic Council Approval		Date			

SEMESTER III


24STJ601	INDUSTRIAL TRAINING	L	Т	Р	J	C
		0	0	0	0	2
PC		SDG		4,	9, 11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	NA
-----------------------	-----	-----------------------------------	----

Course Objectives:				
The purp	ose of taking this course is to:			
1	To train students with hands-on fieldwork experience, enabling them to understand and			
	address practical challenges while performing engineering tasks			

Course	e Outcomes	
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)
CO 1	Identify and describe the organizational framework of a Structural Engineering entity, as well as comprehend the various roles and functions within construction operations	An
CO 2	Participate in real-world construction projects to acquire hands-on, practical experience	Ар
CO 3	Prepare detailed technical reports and deliver clear, impactful presentationss	Ар

		Program	Outcomes (PO)) (Strong-3, Me	<mark>dium - 2, Weak</mark>	-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	2	2	1	2	3	3
2	2	2	1	2	3	3
3	2	2	1	2	3	3

Course Content	
INDUSTRY TRAINING The students individually undertake training in reputed engineering companies or in	1 month duration
Research Labs doing Structural Engineering during the summer vacation for a specified	
duration of one month. At the end of the training, a detailed report on the work done	
should be submitted within ten days from the commencement of the semester. The	
students will be evaluated through a viva-voce examination by a team of internal staff.	

Theory 0	Tutorial 0	Practical 0	Project 0	Total	0
Hours:	Hours:	Hours:	Hours:	Hours:	

Assessment (Practical course)
Lab Workbook, Experimental Cycle tests, viva-voce.

Course Curated by						
Expert(s) from Industry Expert(s) from Higher Internal				Internal Expert(s)		
			Satheesh Kumar KRP Civil Engineering			
Recommended by BoS on	13/08/2024					
Academic Council Approval	No. 27		Date	24/08/2024		

Xle
Signature of the BOS Chairman

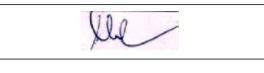
24STJ602 Professional Core	PROJECT PHASE – I	L	Т	Р	J	С
		0	0	0	20	10
		SDC	3	4,	9, 11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	All relevant codes
-----------------------	-----	-----------------------------------	--------------------

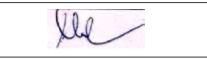
Course O	Course Objectives:					
The purpose of taking this course is to:						
1	To identify a specific problem for the current need of the society and collect information					
	related to the same through a detailed review of literature.					
2	To develop the methodology to solve the identified problem					
3	To train the students in preparing project reports and to face reviews and viva-voce					
	examinations					

Course	Course Outcomes				
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)			
CO 1	Apply the knowledge gained from theoretical and practical courses in	An			
	solving problems and recognize the importance of literature review.				
CO 2	To develop the methodology to solve the identified problem and perform	Ар			
	investigation				
CO 3	Prepare project reports and present findings of the work	Ар			

	Program Outcomes (PO) (Strong-3, Medium - 2, Weak-1)							
	1	2	3	4	5	6		
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems		
1	3	3	3	2	3	2		
2	2	3	2	2	3	2		
3	3	3	3	2	3	2		


Course Content	
	300 Hours
The student individually works on a specific topic approved by the head of the division	
under the guidance of a faculty member who is familiar in this area of interest. The	
student can select any topic which is relevant to the area of structural engineering. The	
topic may be experimental / analytical / industry problem. At the end of the semester,	
a detailed report on the work done should be submitted which contains clear definition	
of the identified problem, detailed literature review related to the area of work and	
methodology for carrying out the work. The students will be evaluated through a viva-	
voce examination by a panel of examiners including one external examiner.	

Theory 0	Tutorial 0	Practical 0	Project 300	Total	300
Hours:	Hours:	Hours:	Hours:	Hours:	

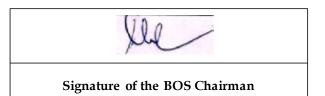

Assessment (Practical course)

Lab Workbook, Experimental Cycle tests, viva-voce.

Course Curated by								
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)						
		Dr.R.Manju						
		Civil Engineering						
Recommended by BoS on								
Academic Council Approval		Date						

SEMESTER IV

Signature of the BOS Chairman

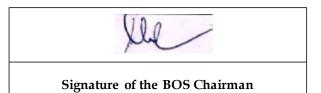

24STJ603		L	Т	Р	J	C
2451,005	PROJECT PHASE – II	0	0	0	40	20
РС		SDC	Ĵ	4,	9, 11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	All relevant codes
-----------------------	-----	-----------------------------------	--------------------

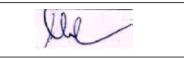
Course	Course Objectives:						
The pu	The purpose of taking this course is to:						
1	To solve the identified problem based on the formulated methodology.						
2	To develop skills to analyze and discuss the test results, and make conclusions						

Course	Course Outcomes					
After s	After successful completion of this course, the students shall be able to					
CO 1	To solve the identified problem based on the formulated methodology.	An				
CO 2	To develop skills to analyse and discuss the test results, and make conclusions	An				
CO 3	Demonstrate the research findings and present the solutions of the thesis work.	Ар				

		Program	Outcomes (PO)	(Strong-3, Me	dium - 2, Weak	-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	2	2	2	2	3	2
2	1	2	2	2	3	2
3	1	2	2	3	3	2



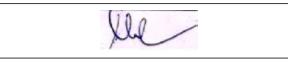
Course Content	
	600 Hours
The student should continue the Phase I work on the selected topic as per the	
formulated methodology under the same supervisor / undergo internship. At the end	
of the semester, after completing the work to the satisfaction of the supervisor and	
review committee, a detailed report should be prepared and submitted to the head of	
the department. The students will be evaluated based on the report and the viva-voce	
examination by a panel of examiners including one external examiner.	


Theory 0 Tutori	al 0 Practica	l 0 Project	600 Total	600
Hours: Hour	s: Hours	: Hours:	Hours:	

Assessment (Practical course)Lab Workbook, Experimental Cycle tests, viva-voce.

Course Curated by							
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)					
		Dr.K.Ramadevi					
		Civil Engineering					
Recommended by BoS on							
Academic Council Approval		Date					

PROFESSIONAL ELECTIVES


Signature of the BOS Chairman

24 CTE001	24STE001 DESIGN OF BRIDGES	L	Т	Р	J	С
2451 E001		3	0	0	0	3
PE		SDG	ł	9	,11	

			IS 456:2000, IRC
Dra ra guicita, courses	Nil	Data Book / Code book	21:2022, IRC
Pre-requisite courses	INII	(If any)	6:2017, IRC
			18:2022

Course O	bjectives:
The purp	ose of taking this course is to:
1	Understand the components and classification of bridges, and learn the principles of bridge planning, including the history and design specifications as per IRC, with a focus on loading and load distribution theories.
2	Analyze and design short-span bridges, such as slab bridges, box culverts, and tee beam bridges, using appropriate design methodologies for structural efficiency and safety.
3	Design long-span girder bridges, including balanced cantilever, continuous, and box girder bridges, while considering the challenges associated with longer spans.
4	Explore the advantages of prestressed concrete bridges and design post-tensioned prestressed concrete bridge decks, including slab, tee beam, and continuous two-span bridges.
5	Design bearings, substructures, and footings for bridges, including the analysis of loads on substructures and the design of piers, pier caps, abutments, and various foundation types such as pile, well, and caisson foundations.

Course	Course Outcomes				
After s	Revised Bloom's Taxonomy Levels (RBT)				
CO 1	Apply the basic concepts of bridge components and planning principles to choose the appropriate type of bridge based on IRC specifications.	Ар			
CO 2	Analyse and Design short span bridges such as slab bridges, box culverts, and tee beam bridges.	An			
CO 3	Analyse and Design long span bridges including balanced cantilever bridges, continuous bridges, and box girder bridges.	An			
CO 4	Design post-tensioned prestressed concrete slab bridge decks.	An			
CO 5	Design the bearings, substructures, and footings for bridges to meet specific safety and stability requirements.	An			

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
Ô	1	2	3	4	5	6		
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems		
1	1			2		1		
2	1			3	1	1		
3	1			3	1	1		
4	1			3	1	1		
5	1			3	1	1		

Course Content	
INTRODUCTION	9 Hours
Components of bridges, Classification of bridges, History of bridges, Planning of	
bridges, Loading and Design Specifications: Indian Roads Congress (IRC) on live loads	
for road bridges, Various forces acting on bridges, Load distribution theories: Courbon's	
Method, Hendry Jaeger Method, Grillage analogy, Pigeaud's curves.	
Practical Component: Nil	
DESIGN OF SHORT SPAN BRIDGES	9 Hours
Analysis and design of slab bridge, box culverts and tee beam bridges.	
Practical Component: Nil	
ractical Component. Mi	
DESIGN OF LONG SPAN GIRDER BRIDGES	9 Hours
Design of balanced cantilever bridges, continuous bridges, box girder bridges.	
Practical Component: Nil	
DESIGN OF PRESTRESSED CONCRETE BRIDGES	9 Hours
Advantages of prestressed concrete bridges, Design of post tensioned prestressed	
concrete slab bridge deck, Design of post tensioned prestressed concrete tee beam and	
slab bridge deck, Design of post tensioned prestressed concrete continuous two span	
beam and slab bridge deck.	
Practical Component: Nil	
BEARINGS, SUB-STRUCTURES AND FOOTINGS FOR BRIDGESTypes of	9 Hours
bearings, Design of bearings, Various parts of substructures, Loads acting on	> 110u10
oc,oc,	

substructures, Design of pier and pier cap, Design of abutments, Design of different types of foundation – Pile, well & caisson.

Practical Component: Nil

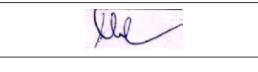
Theory 45	Tutorial 0	Practical 30	Project 0	Total	45
Hours:	Hours:	Hours:	Hours:	Hours:	

Learning Resources Textbooks:

- 1. Krishnaraju, N., 'Design of Bridges', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, (2019)
- 2. Ponnuswamy, S., 'Bridge Engineering', Tata McGraw-Hill Education, (2017).
- 3. N. Rajagopalan, 'Bridge Superstructure', Alpha Science International Ltd, (2016).
- 4. Jagadeesh T,R., Jayaram M.A., 'Design Of Bridge Structures' PHI Learning, (2021).

References:

- 1. Raina V.K. 'Concrete Bridge Practice Analysis, Design and Economics, Shroff Publishers & Distributors Pvt. Limited, (2014).
- 2. D. Johnson Victor, 'Essentials of Bridge Engineering', Oxford and IBH Publishing, (2010)
- 3. Victor, D.J., Essentials of Bridge Engineering, 6th Ed., Oxford & IBH Publishing Co. Pvt. Ltd., (2019)


Online Educational Resources:

- 1. https://www.wileyindia.com/design-of-concrete-bridges-as-per-latest-irc-codes.html
- 2. https://archive.nptel.ac.in/courses/105/105/105105216/
- 3. https://www.udemy.com/course/fundamentals-of-bridge-designyour-way-to-be-bridge-designer/

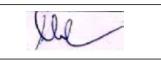
Assessment (Theory course)

CAT, Activity and learning strategy, Think-pair-share, MCQ, End Semester Examination (ESE).

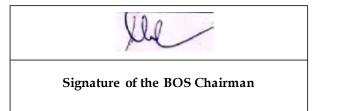
Course Curated by			
Expert(s) from Industry	Expert(s) from Hig Education Institut		Internal Expert(s)
			Dr.R.Manju
			Civil Engineering
Recommended by BoS on			
Academic Council Approval		Date	

24STE002		L	Τ	Р	J	С
	SMART MATERIALS FOR CONSTRUCTION	3	0	0	0	3
Professional Elective	SMAKI MATERIALS FOR CONSTRUCTION		3	9	9,11	

Pre-requisite courses Nil	Data Book / Code book (If any)	Nil
---------------------------	-----------------------------------	-----

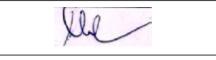

Course O	Course Objectives:					
The purp	ose of taking this course is to:					
1	Understand the composition, properties, and advancements special concretes.					
2	Analyze the materials, properties, and applications of geo-polymer bricks and concrete in					
	construction.					
3	Learn the principles, design, and applications of steel-concrete composite structures.					
4	Explore the types, characteristics, and uses of smart materials in construction.					
5	Investigate recent developments, sustainability, and future trends in smart materials for					
	construction.					

Course	Course Outcomes				
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)			
CO 1	Apply concrete technology principles to explore the composition and properties of high-performance and ultra-high-performance concrete, and assess their applications in modern construction	Ар			
CO 2	Examine the composition, characteristics, and engineering properties of geo-polymer materials, and evaluate their performance and potential through case study analysis	An			
CO 3	Assess the design principles and performance attributes of steel-concrete composite structures, and propose design enhancements based on case study findings	Е			
CO 4	Analyze the mechanisms and applications of smart materials such as shape memory alloys and piezoelectric materials; evaluate their integration into structural systems.	An			
CO 5	Evaluate recent advancements and future trends in smart materials; assess their impact on sustainability and career opportunities in the construction industry.	Е			


Xle	
Signature of the BOS Chairman	

	Pı	rogram Outc	omes (PO) (S	Strong-3, Med	ium – 2, Weak	-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	3	3	3	3	2	3
2	3	3	3	3	2	3
3	2	3	2	2	2	2
4	2	2	3	2	3	2
5	2	2	3	2	3	2

Course Content	
ADVANCEMENTS IN CONCRETE MAKING MATERIALS Introduction to Concrete Technology- Basics of concrete composition and properties, Historical perspective and evolution - High-Performance Concrete - Characteristics and benefits, Applications in modern construction - Ultra-High-Performance Concrete (UHPC) - Composition, properties, and applications, Case studies and recent developments - Self-Healing Concrete - Mechanisms and types of self-healing, Practical applications and case studies.	9 Hours
Practical Component: Nil	
GEO-POLYMER BRICKS AND CONCRETE Materials - Characterization - activating solution - structure of geopolymers - accelerated curing - durability - design - Engineering properties - applications - case study. Practical Component: Nil	9 Hours
STEEL-CONCRETE COMPOSITE STRUCTURES Introduction to Composite Materials - Definitions and principles, Benefits and limitations - Steel-Concrete Composite Beams - Design principles and methodologies, Load distribution and performance characteristics - Composite Slabs and Columns - Design considerations and construction practices, Case studies and applications in high- rise buildings - Innovative Composite Systems - Recent advancements and research trends, Real-world applications and case studies.	9 Hours
Practical Component: Nil	
SMART MATERIALS AND THEIR CHARACTERISTICS	9 Hours


various applica into str charact Practica RECEN Emergi possibi projects Environ Strateg Opport	s industries ations in cons ructural sys- teristics and al Compone NT DEVELO ang Trends in lities and Imp s utilizing sn nmental Imp ies for susta- cunities - Im-	- Shape Memory struction - Piezoelectems - Electrochron potential application ent: Nil DPMENTS AND FU n Smart Materials - Convations - Case Stu nart materials, Lesso pact - Evaluation of inable material select	Alloys (SMAs) - ctric Materials - F nic and Thermoon ns in buildings. TURE TRENDS Current research dies of Modern A ons learned and be the environment ction and use – In try professionals	And devel and devel application est practic dustry Pe	erials, Applications in es, mechanisms, and uses, and integration faterials - Functiona opment areas, Future ns - Analysis of recent es - Sustainability and rspectives and Careet ng career paths and	d h ll 9 Hours e t d s, r
	al Compone					
	_					
Theo Hour	ry 45 rs:	Tutorial 0 Hours:	Practical Hours:	30	Project 0 Hours:	Total 45 Hours:
Loarni	ng Resource	C.				
Textbo						
2.	N. Gopalak Springer In B. Bhattach	ndia, (2021).	in Construction N	laterials a	rson India, (2020). and Sustainable Envir tructural Engineering	
Refere	nces:					
1. 2. 3. 4.	Materials, I K. S. Jagadi and Techno S. K. Dugga	McGraw-Hill Educa ish, B. V. Venkataraı ologies, New Age In al, Design of Steel St	tion, New York, (ma Reddy, K. S. N ternational Publis tructures, Tata Mo	3rd Editic Nanjunda shers, (202 cGraw-Hi	Rao, Alternative Buil	ding Materials
Online	Educationa	1 Resources:				
1. 2. 3. 4.	Geo-Polym ScienceDire	Concrete Technolog er Concrete Basics ect – Smart Material Recent Advances in S	s in Construction			

Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by									
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)							
		G.Karthikeyan							
		Civil Engineering							
Recommended by BoS on									
Academic Council Approval		Date							

24STE003		L	Т	Р	J	C
	INDUSTRIAL STRUCTURES	3	0	0	0	3
PE		SDG			9, 11	

Pre-requisite courses Nil	Data Book / Code book (If any)	IS: 456, IS: 800, IS: 2974
---------------------------	-----------------------------------	-------------------------------

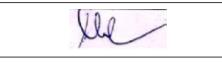
Course O	Course Objectives:						
The purpose of taking this course is to:							
1	Prepare the layout for industrial buildings along with lighting requirements						
2	Assess effective functional requirements for industrial structures						
3	Design machine foundations and expansion joints as per IS guidelines.						

Course	e Outcomes	
After s	uccessful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)
CO 1	Analyze and classify industrial site layouts and equipment requirements across various industries.	Ар
CO 2	Assess effective lighting, electrical, and ventilation systems with a focus on safety and efficiency.	U
CO 3	Develop planning and structural design skills for single and multi-story industrial buildings using RCC and steel. Design and silos as per IS code	E
CO 4	Design RC structures like steel girder, bunker chimneys, silos and RC ducts	Е
CO 5	Design machine foundations and other foundations as per IS codes and understand waterproofing as per industry standards.	E

		Program O	utcomes (PO) (Strong-3, Me	dium – 2, Wea	k-1)
$\widehat{}$	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	3		2	3	2	
2	2	2	3	3	2	
3	2		2	3	3	
4	2		2	3	3	
5	2		3	3	3	

Xle

Course Content	
INTRODUCTION	9 Hours
Specific equipment for industries like Engineering. Textile, Chemical etc., - Site layout	
and external facilities classification of industries minimum standards internal	
calculation – Materials – Works.	
Practical Component: Nil	
FUNCTIONAL REQUIREMENTS	9 Hours
Lighting – Natural and artificial – protection from the sun – skylight. Services, Layout,) IIOuis
wiring fixtures, cable and pipe bridges – Electrical installations – lighting - Substations -	
effluent. Ventilation and fire protection, ventilation & air – conditioning, fire escapes	
and, chutes, fire alarms, extinguishers and hydrants.	
Practical Component: Nil	
	0.11
PLANNING & DESIGN	9 Hours
Layout stages. Loading Design of single bay and design of multi bay multi storied frames in RCC and steel – Analysis of industrial structures.	
frames in RCC and steer - Analysis of industrial structures.	
Practical Component: Nil	
DESIGN OF ADVANCED STRUCTURES	9 Hours
Cranes - Different types - principles - design of girder – open web and solid web bunkers	^y nouis
- silos - R.C. ducts.	
Practical Component: Nil	
CONCEDUCTION TECHNIQUES	0.11
CONSTRUCTION TECHNIQUES	9 Hours
Expansion joints- design of machine foundations and other foundations as per I.S Code - Water proofing – roof drainage – joints – sound, shockproof mountings.	
- water proofing - root dramage - joints - sound, shockproor mountings.	
Practical Component: Nil	
*	


Theory 45	Tutorial	0	Practical	0	Project	Total	45
Hours:	Hours:		Hours:		Hours:	Hours:	

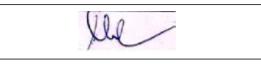
Learning Resources
Textbooks:

- 1. Ezra Bawden, Reinforced Concrete Structures: Analysis, Drawing and Design, Willford Press, (2023)
- 2. Pasala Dayaratnam," Design of Steel Structure", Wheeler publishers Allahabad, (2018)

References:

- 1. Planning industrial structures Dunham, Industrial Structures McGraw-Hill Book Co; 1st edition (2021)
- 2. Henn W. Buildings for Industry, vols.I and II, London Hill Books, (2007).

- 3. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of Indian Standards, New Delhi (2013)
- 4. Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, (2017).

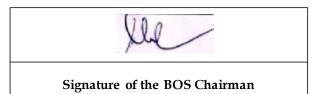

Online Educational Resources:

- 1. Design of steel structures Course (nptel.ac.in)
- 2. Design of an Industrial Building | Structural Design-1 | Prof. Sajjan Wagh (youtube.com)
- 3. https://www.iith.ac.in/~prestressed/index.htm

Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by			
Expert(s) from Industry	Expert(s) from High Education Institutio		
		Mr. P. Nandhakumar Civil Engineering	
Recommended by BoS on			
Academic Council Approval		Date	



2467.004		L	Т	Р	J	С
24STC004	DESIGN OF TALL BUILDINGS	2	0	0	2	3
PE		SDG	ì	9	,11	

Pre-requisite courses	24STT503 Advanced Design of Concrete Structures	Code book	IS: 456, 875, 1893, 13920	
-----------------------	--	-----------	------------------------------	--

Course O	Course Objectives:			
The purp	ose of taking this course is to:			
1	1 Acquire knowledge of modern design materials, various loading types, and the behaviour			
	of different structural systems.			
2	Gain skills in modelling, analysing, and designing structures using both approximate and			
	computerized 3D methods.			
3	3 Develop competency in conducting comprehensive stability analysis and designing resilier			
	structures that consider differential movement, temperature, and fire resistance.			

Course	Course Outcomes				
After s	After successful completion of this course, the students shall be able to				
CO 1	Analyse modern concrete materials and design philosophies to evaluate their suitability for tall structures	An			
CO 2	Apply diverse loading conditions and methods to solve design challenges in tall buildings.	Ар			
CO 3	Compare different structural systems to justify their use in high-rise buildings.	U			
CO 4	Evaluate analysis techniques and design methods to recommend effective solutions for structural integrity.	Е			
CO 5	Design stability analysis models to develop safe and resilient tall structures.	С			
CO 6	Develop structural design for Tall buildings incorporating design principles like Response Spectrum Method, Combination of loads, Wall – Frames, Tubular, Outrigger braced, Hybrid systems	Ар			

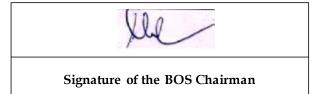
	Pro	ogram Outcom	es (PO) (Stro	ong-3, Mediu	ım – 2, Weak	:-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1	1	3	3	1	
2	1	1	3	3	1	
3	1	1	3	3	1	
4		1	3	3	1	
5	3	1	3	3	1	1
6	3	3	3	2	2	3

Course Content	
DESIGN CRITERIA	6 Hours
Design Philosophy, Materials - Modern concepts - High Performance Concrete, Fibre	
Reinforced Concrete, Light weight concrete, Self Compacting Concrete.	
Practical Component: Nil	
LOADING	6 Hours
Gravity Loading - Dead load, Live load, Impact load, Construction load, Sequential	
loading. Wind Loading – Static and Dynamic Approach, Analytical method, Wind Tunnel	
Experimental methods. Earthquake Loading - Equivalent lateral load analysis.	
Practical Component: Nil	
	<
BEHAVIOUR OF STRUCTURAL SYSTEMS	6 Hours
Factors affecting the growth, height and structural form, Behaviour of braced frames,	
Rigid frames, Infilled frames, Shear walls, Coupled shear walls.	
Practical Component: Nil	
ANALYSIS AND DESIGN	6 Hours
Modelling for approximate analysis, Accurate analysis and reduction techniques,	5 110415
Analysis of structures as an integral unit, Analysis for member forces, drift and twist.	
Computerized 3D analysis. Design for differential movement, Creep and Shrinkage	
effects, Temperature Effects and Fire Resistance.	
cheek) remperature bliefeb und me hebbunee.	
Practical Component: Nil	
There is a second	

Xle	
Signature of the BOS Chairman	

 STABILITY ANALYSIS Overall buckling analysis of frames, wall – frames, Approximate methods, Second order effect of gravity loading, P – Delta Effects, Simultaneous first order and P-Delta analysis, Translational instability, Torsional Instability, Out-of-plumb effects. Practical Component: Nil 	6 Hours
PROJECT COMPONENT Design of Tall buildings - Response Spectrum Method, Combination of loads, Wall – Frames, Tubular, Outrigger braced, Hybrid systems. Stability of structures. Students shall undergo field visits and demonstrate various real-world case studies on various pre-engineered structures.	30 Hours

Theory 30	Tutorial 0	Practical 0	Project 30) Total	60
Hours:	Hours:	Hours:	Hours:	Hours:	


Learni	Learning Resources				
Textbo	oks:				
1.	Taranath B.S, 'Structural Analysis and Design of Tall Buildings', McGraw-Hill, (2011).				
2.	Lynn S.Beedle, 'Advances in Tall Buildings', CBS Publishers and Distributors, Delhi, (202).				
Refere	nces:				
1.	Bryan Stafford Smith and Alex Coull, 'Tall Building Structures', Analysis and Design, John				
	Wiley and Sons, Inc., (2011).				
2.	Coull, A. and Smith, Stafford, B. 'Tall Buildings', Pergamon Press, London, (2011).				
3.	LinT.Y. and Burry D.Stotes, 'Structural Concepts and Systems for Architects and Engineers',				
	John Wiley, 1994.				
Online	Online Educational Resources:				
1.	https://ocw.mit.edu/courses/4-440-basic-structural-design-spring-2009/				

- 1. https://ocw.mit.edu/courses/4-440-basic-structural-design-spring-2009/
- 2. https://ocw.mit.edu/courses/1-051-structural-engineering-design-fall-2003/

Assessment (Embedded course)

SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

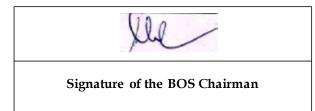
Course Curated by		
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)
		Mr. Satheesh Kumar KRP Civil Engineering
Recommended by BoS on		
Academic Council Approval		Date

246TC00E		L	Т	Р	J	C
24STC005	EXPERIMENTAL METHODS AND MODEL 2 ANALYSIS 5	2	0	2	0	3
РС		SDG	Ĵ	9	,11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	Nil
-----------------------	-----	-----------------------------------	-----

Course O	Course Objectives:						
The purp	The purpose of taking this course is to:						
1	To demonstrate various force and strain measuring equipment and data indicating and						
	recording instruments						
2	To understand strain rosettes and NDT techniques of structures.						
3	To perform model testing and understand photo-elastic techniques and holographic						
	techniques						

Course	e Outcomes	
After s	uccessful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)
CO 1	Use measuring equipment to determine forces and strain in structures	Ар
CO 2	Demonstrate various data indicating and recording instruments	An
CO 3	Illustrate the use of strain rosettes and various techniques for vibration measurement	An
CO 4	Recognize and perform various non-destructive testing techniques of structures	An
CO 5	Understand the significance of model analysis, materials used and demonstrate testing of models	U
CO 6	Present research findings from experimental methods conducted in the lab and propose solutions based on the research outcomes	Ар

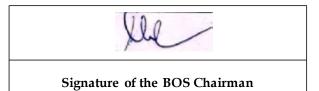

	Prog	gram Outco	mes (PO) (Strong-3, Med	ium – 2, Wea	ak-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	2	1	2		3	
2	2	1	2		3	
3	2	1	2	1	3	

Xle

4	2	1	2		3	
5	2	1	2		3	
6	3	3	3	2	2	2

Course Content	
FORCE AND STRAIN MEASUREMENTS	6 Hours
Basic Concept in Measurements – Types of strain gauges – Hydraulic jacks – pressure	
gauges – proving rings – electronic load cells – Calibration of Testing Machines	
Project component:	6 Hours
 Load measurement using Hydraulic jacks & Load cells, Strain measurement 	
DATA RECORDING	6 Hours
Strain gauge circuits – Potentiometer and Wheatstone bridge, Use of electrical resistance	0110415
strain gauges in transducer applications. LVDT - Indicating and recording devices -	
Static and dynamic data recording –Data (Digital and Analogue) acquisition and	
processing systems	
Project component:	6 Hours
Data acquisition during testing of RC specimen.	
VIBRATION MEASUREMENT	6 Hours
Strain analysis methods – Rosette analysis. Static and dynamic testing techniques	0 110 115
Equipment for loading - Moire's techniques - Transducers for velocity and acceleration	
measurements - vibration meter - Seismographs - vibration analyzer - Cathode Ray	
Oscilloscope, FFT Analyzer.	
Oschloscope, II I Andryzei.	
Project component:	6 Hours
Testing of concrete specimen for vibration measurement	
• resuring of concrete specimien for vioration measurement	
NON-DESTRUCTIVE TESTING TECHNIQUES (NDT)	6 Hours
Non-destructive testing techniques - Load testing of structures, Buildings, bridges and	
towers -Acoustic emission - holography - use of laser for structural testing.	
Project common only	6 Hours
Project component: Project component:	0 110415
Rebound hammer test and Ultrasonic test on concrete elements	(Herry
MODEL ANALYSIS	6 Hours
Laws of similitude - model materials – model testing – testing large scale structures –	
holographic techniques – Photoelasticity – optics of photoelasticity – Polariscope –	
Isoclinics and Isochromatics - methods of stress separation – wind tunnel and its use in	
structural analysis.	
Project component:	6 Hours
Testing of RC beams, Columns and Slabs	
0	

Theory	30	Tutorial	0	Practical	30	Project	0	Total	60
Hours:		Hours:		Hours:		Hours:		Hours:	



Learni	ng Resources
Textbo	oks:
1.	Dr.Sadhu Singh, 'Experimental Stress Analysis', Khanna Publishers, New Delhi, 2017.
2.	Rangan C S et al., 'Instrumentation – Devices and Systems', Tata McGraw-Hill Publishing Co.,
	Ltd., New Delhi, 2017.
Refere	nces:
1.	Srinath L S et al, 'Experimental Stress Analysis', Tata McGraw-Hill Publishing Co., Ltd., New Delhi,1984.
2.	D.E.Bray and R.K.Stanley, "Non-Destructive Evaluation", McGraw Hill Publishing Co., New York, 1997.
3.	C.B.Kukreja and V.V.Sasty, Experimental Methods in Structural Mechanics, Standard Publishers Distributors, New Delhi, Dally J W and Riley W.F, 'Experimental stress Analysis', McGraw-Hill Inc. New York, 2014.
Online	Educational Resources:
1.	https://onlinecourses.nptel.ac.in/noc21_me02/preview
2.	https://www.hbkworld.com/en/knowledge/resource-center/articles/strain-measurement- basics/strain-gauge-fundamentals/experimental-stress-analysis-using-strain-gauges

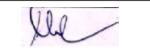
Assessment (Embedded course)

SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by			
Expert(s) from Industry	Expert(s) from Education Ins]	Internal Expert(s)
			Dr.K.Ramadevi
			Civil Engineering
Recommended by BoS on			
Academic Council Approval		Date	

246 TE006		L	Т	Р	J	С
24STE006 STABILITY OF STRUCTURES	3	0	0	0	3	
PE		SDG	ì	9), 11	

Pre-requisite courses Nil Data Book / Code book (If any)	Nil
---	-----


Course O	bjectives:			
The purp	The purpose of taking this course is to:			
1	Understand the fundamental concepts of structural stability			
2	Analyze the stability of beam-columns and rigid jointed frames under various loading			
	conditions.			
3	Evaluate torsional and lateral buckling in structural elements, focusing on open sections and			
	beams, using numerical methods			
4	Analyze buckling behaviour of thin plates with various edge conditions using energy and			
	equilibrium approaches.			
5	Analyze inelastic buckling problems in columns and plates considering post-buckling			
	behaviour.			

Course	Course Outcomes				
After s	After successful completion of this course, the students shall be able to				
CO 1	Apply equilibrium and energy methods to analyze buckling problems of columns under different boundary conditions.	Ар			
CO 2	Analyze stability of beam-columns and frames under various loading and boundary conditions using stability functions and applying these concepts to real-world engineering problems.	An			
CO 3	Evaluate torsional and lateral buckling of open sections and beams under different conditions using numerical methods.	An			
CO 4	Apply equilibrium and energy methods to analyze buckling in thin plates, considering various edge conditions, and develop skills in numerical techniques such as the finite difference method.	An			
CO 5	Examine inelastic buckling and post-buckling behavior in columns and plates, using double modulus theory and tangent modulus theory, and explore the effects of material imperfections and eccentric loading.	An			

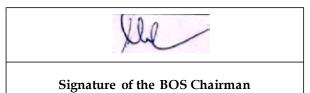
Xle	
Signature of the BOS Chairman	

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)					
(1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	3			3	2	
2	3			3	2	
3	3			3	2	
4	3			3	2	
5	3			3	2	

<u>Course Content</u>	
BUCKLING OF COLUMNS	9 Hours
States of equilibrium - Classification of buckling problems - concept of equilibrium,	
energy, imperfection and vibration approaches to stability analysis - Eigen value	
problem. Governing equation for columns - Analysis for various boundary conditions -	
using Equilibrium, Energy methods. Approximate methods - Rayleigh Ritz, Galerkins	
approach - Numerical Techniques - Finite difference method - Effect of shear on	
buckling.	
Practical Component: Nil	
BUCKLING OF BEAM-COLUMNS AND FRAMES	9 Hours
Theory of beam column - Stability analysis of beam column with single and several	9 110015
concentrated loads, distributed load and end couples Analysis of rigid jointed frames	
with and without sway – Use of stability function to determine the critical load.	
, , , , , , , , , , , , , , , , , , ,	
Practical Component: Nil	
TORSIONAL AND LATERAL BUCKLING	9 Hours
Torsional buckling - Combined Torsional and flexural buckling - Local buckling.	
Buckling of Open Sections. Numerical solutions. Lateral buckling of beams, pure	
bending of simply supported and cantilever beams.	
Practical Component: Nil	
	0.11
BUCKLING OF PLATES	9 Hours
Advantages of prestressed concrete bridges, Design of post tensioned prestressed	
concrete slab bridge deck, Design of post tensioned prestressed concrete tee beam and	

slab bridge deck, Design of post tensioned prestressed concrete continuous two span beam and slab bridge deck.	
Practical Component: Nil	
 INELASTIC BUCKLING Double modulus theory - Tangent modulus theory - Shanley's model - Eccentrically loaded inelastic column. Inelastic buckling of plates - Post buckling behaviour of plates. Practical Component: Nil 	9 Hours

Theory 45	Tutorial 0	Practical 0	Project 0	Total	45
Hours:	Hours:	Hours:	Hours:	Hours:	


Learnin	Learning Resources			
Textbo	oks:			
1.	Gambhir, "Stability Analysis and Design of Structures", springer, New York, (2013).			
2.	Simitser.G.J and Hodges D.H, "Fundamentals of Structural Stability", Elsevier Ltd., (2006).			
3.	Timoshenko.S.P, and Gere.J.M, "Theory of Elastic Stability", McGraw Hill Book Company,			
	(2012).			
Refere	nces:			
1.	Chajes, A. "Principles of Structures Stability Theory", Prentice Hall, (1974).			
2.	Ashwini Kumar, "Stability Theory of Structures", Allied publishers Ltd., New Delhi, (2003).			
0.1				
Online	Educational Resources:			
1.	https://archive.nptel.ac.in/courses/105/105/105105217/			
2.	https://ocw.mit.edu/courses/2-080j-structural-mechanics-fall-			
	2013/resources/mit2_080jf13_lecture9/			
0				

 https://mycourses.aalto.fi/pluginfile.php/1260824/course/section/158918/art_ BAZANT_Structural %20stability.pdf

Assessment (Theory course)

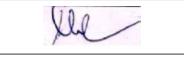
CAT, Activity and learning strategy, Think-pair-share, MCQ, End Semester Examination (ESE).

Course Curated by					
Expert(s) from Industry	Expert(s) from Education Inst	_	Internal Expert(s)		
			Dr.R.Manju		
			Civil Engineering		
Recommended by BoS on					
Academic Council Approval		Date			

24675007		L	Т	Р	J	С
24STE007	DESIGN OF PLATES, SHELLS AND SPATIAL	3	0	0	0	3
PE	STRUCTURES	SDG		9	,11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	Nil
-----------------------	-----	-----------------------------------	-----

Course O	Course Objectives:			
The purpose of taking this course is to:				
1	Design rectangular and circular plates.			
2	Analyse folded plates using numerical methods			
3	Analyse, Design and detailing of reinforcement in shells			
4	Study the behaviour of space frames.			
5	Analyse the space frames by algebraic methods			

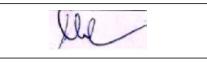

Course	Course Outcomes				
After s	Revised Bloom's Taxonomy Levels (RBT)				
CO 1	To design rectangular and circular plates based on structural principles.	Ар			
CO 2	To analyse folded plates using numerical methods for structural performance.	Ар			
CO 3	To analyse, design, and detail the reinforcement in shell structures.	Ар			
CO 4	To study the structural behavior and characteristics of space frames.	U			
CO 5	To analyse space frames using algebraic methods for structural analysis.	Ар			

	F	rogram Ou	tcomes (PO)	(Strong-3, Me	edium – 2, Wea	ak-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1			2	3	
2	1			3		
3				2	2	
4	1		2	2	2	
5	1		2	3	3	

Course Content	
SYMMETRICAL BENDING OF PLATES	8 Hours
Equation of equilibrium and deformation of plates - Bending of rectangular plates and	
circular plates – Post buckling behaviour.	
Practical Component: Nil	
NUMERICAL METHODS	10 Hours
Energy method, finite difference and finite element methods for solution of plate	
bending problems. Principles of design of folded plates.	
Practical Component: Nil	
SHELLS	9 Hours
Geometry of shells - Classification of Shells - membrane theory of circular and	
cylindrical shells - Detailed Analysis and design of cylindrical shells - Detailing of	
Reinforcement in shells, edge beams and transfer beams.	
Remoleement in stiens, euge beams and transfer beams.	
Practical Component: Nil	
INTRODUCTION TO SPACE FRAMES	10 Hours
Space frames – configuration – types of nodes – general principles of design Philosophy	
– Behaviour.	
Practical Component: Nil	
ANALYSIS OF SPACE FRAMES	
Analysis Of Space Frames – Formex Algebra, Formian – Detailed Design of Space	8 Hours
Frames.	
Practical Component: Nil	

Theory 45	Tutorial	0	Practical	0	Project	0	Total	45
Hours:	Hours:		Hours:		Hours:		Hours:	

Learni	Learning Resources				
Textbo	oks:				
1.	Ramasamy, G.S. 'Design and Construction of Concrete shells roofs', CBS Publishers, (2005).				
2.	Timoshenko, S. 'Theory of plates and Shells', McGraw-Hill, (2017).				
3.	Principles of space structures by Dr.N. Subramanian, Wheeler Publishing Co., (1999)				
Refere	nces:				
1. 2.	Proceedings of International Conference on Space structures, Anna University, November (2009). Szllard, R. Theory of Analysis of Plates, Prentice Hall Inc, (2004).				
Online	Educational Resources:				
1.	https://onlinecourses.nptel.ac.in/noc22_ce80/preview				
2.	https://onderwijsaanbod.kuleuven.be/syllabi/e/H05L8AE.htm#activetab=doelstellingen_idp29184				
3.	https://mycourses.aalto.fi/course/view.php?id=35442				
	05				



4. https://www.novatr.com/blog/shell-structures

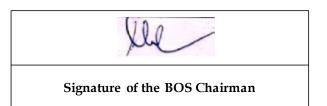
Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by					
Expert(s) from Industry	Expert(s) from Education Ins		Internal Expert(s)		
			Mr.A.Vishnu		
			Civil Engineering		
Recommended by BoS on					
Academic Council Approval		Date			

24STE008		L	Т	Р	J	C
	MAINTENANCE AND REHABILITATION OF STRUCTURES	3	0	0	0	3
PE		SDC	Ĵ	9	,11	

Pre-requisite courses	Nil	Data Book / Code book (If any)	Nil
-----------------------	-----	-----------------------------------	-----

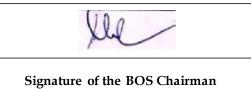

Course O	bjectives:					
The purp	The purpose of taking this course is to:					
1	To explain the principles of quality assurance in concrete construction and assess the					
	impacts of distress on concrete structures.					
2	To highlight the importance of maintenance and develop effective repair strategies for					
	concrete structures.					
3	To identify and analyse various materials used in structural repairs, focusing on their					
	properties and applications.					
4	To recommend and evaluate recent advancements in the repair techniques for concrete					
	structures.					
5	To explain the processes involved in the repair, rehabilitation, retrofitting, and demolition					
	of concrete structures.					

Course	Course Outcomes				
After s	After successful completion of this course, the students shall be able to				
CO 1	Describe quality assurance practices in concrete construction and analyze	U			
	the causes and effects of distress in concrete structures				
CO 2	Demonstrate the importance of maintenance and repair strategies.	U			
CO 3	Identify materials used for structural repairs and evaluate their properties	An			
CO 4	Recommend recent developments in repair of concrete structures	An			
CO 5	Explain the processes of repair, rehabilitation, retrofitting, and demolition	U			
	methods for structures				

Xle	
Signature of the BOS Cha	irman

	Pro	gram Outco	omes (PO) (S	strong-3, Me	dium – 2, Wea	k-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1					
2	1		1	3	2	
3	1			2		
4	2		2	2		
5	1		2	2	3	

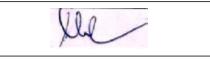
Course Content	
GENERAL Quality assurance for concrete construction as built concrete properties strength, permeability, thermal properties and cracking. Effects due to climate, temperature, chemicals, wear and erosion, Design and construction errors, corrosion mechanism, Effects of cover thickness and cracking, methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings, cathodic protection. Practical Component: Nil	9 Hours
MAINTENANCE AND REPAIR STRATEGIESDefinitions: Maintenance, repair and rehabilitation, Facts of Maintenance - importanceof Maintenance - Preventive measures on various aspects - Inspection, Assessmentprocedure for evaluating a damaged structure - causes of deterioration - testingtechniques.Practical Component: Nil	9 Hours
MATERIALS FOR REPAIRRepair materials-Various repair materials, Criteria for material selection, Methodology of selection, Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, Protective Coatings- Protective coatings for Concrete and Steel, FRP sheets.Practical Component: Nil	9 Hours



TECHNIQUES FOR REPAIR Rust eliminators and polymers coating for rebars during repair foamed concrete, Corrosion inhibitors, Coatings to reinforcement, mortar and dry pack, vacuum concrete, Gunite and Shotcrete Epoxy injection, Mortar repair for cracks, shoring and underpinning. Practical Component: Nil	9 Hours
 REPAIR, RETROFITTING AND DEMOLITION OF STRUCTURES Various methods of crack repair, Grouting, Routing and sealing, Stitching, Dry packing, Autogenous healing, Repair to active cracks, Repair to dormant cracks. Repair of various corrosion damaged of structural elements (slab, beam and columns) Jacketing Techniques, Strengthening Methods for Structural Elements. Engineered Demolition - Case studies. Practical Component: Nil 	9 Hours

Theory 4	5	Tutorial	0	Practical	0	Project	0	Total	45
Hours:		Hours:		Hours:		Hours:		Hours:	

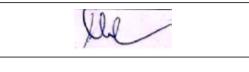
Learni	ng Resources
Textbo	
1.	Varghese, P. C., Maintenance, Repair & Rehabilitation and Minor Works of Buildings, PHI
	Learning Pvt Ltd, New Delhi, (2014).
2.	Bhattacharjee. J, Concrete Structures Repair, Rehabilitation and Retrofitting, CBS Publishers,
_	New Delhi (2019).
3.	Dr.S. Arunachalam, Maintenance, Repair and Rehabilitation of Structures, Lakshmi
	Publications, Chennai, (2017).
Refere	nces:
1.	M.S. Shetty, 'Concrete Technology - Theory and Practice', S.Chand and Company, New Delhi,
1.	(2021).
2.	Santhakumar, A.R., 'Training Course notes on Damage Assessment and repair in Low-Cost
	Housing', "RHDC-NBO", Anna University, July (1992).
3.	
	Centre (SDCPL), RaikarBhavan, Bombay, (2002).
4	Lakshmipathy, Metal Lecture notes of Workshop on 'Repairs and Rehabilitation of Structures',
1.	29 - 30th October (1999).
5.	Denison Campbell, Allen and Harold Roper, 'Concrete Structures, Materials, Maintenance and
0.	Repair', Longman Scientific and Technical UK, (2019).
Onling	Educational Resources:
1.	https://onlinecourses.nptel.ac.in/noc23_ce06/preview
1. 2.	https://online.vtu.ac.in/course-details/maintenance-and-repair-of-concrete-structures
3.	https://www.udemy.com/course/reinforced-concrete-structure-assessment-and-repair/
4.	https://onlinecourses.swayam2.ac.in/nou21_ce04/preview
5.	https://www.lpcentre.com/online/construction-civil-engineering/damage-assessment-and-
1	


rehabilitation-of-concrete-structures

Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by	Course Curated by							
Expert(s) from Industry	Expert(s) from Education Ins	_	Internal Expert(s)					
			Mr.A.Vishnu Civil Engineering					
Recommended by BoS on								
Academic Council Approval		Date						


24 CTC000		L	Т	Р	J	C
24STC009	FLUID STRUCTURE INTERACTION	2	0	2	0	3
PE	FLUID STRUCTURE INTERACTION		3	9	,11	

Pre-requisite courses	24STI507, 24STI505	Data Book / Code book (If any)	Nil
-----------------------	--------------------	-----------------------------------	-----

Course O	Course Objectives:						
The purp	The purpose of taking this course is to:						
1	Understand Basic Concepts: Learn the fundamental principles and equations of fluid-						
	structure interaction and apply them to solve related engineering problems.						
2	Analyze and Simulate: Develop the ability to use software tools like MATLAB and ANSYS						
	to model and simulate the effects of wind and earthquake forces on structures.						
3	Evaluate Structural Stability: Assess the stability and behaviour of different types of						
	foundations and structures under various loading conditions using modern analysis						
	techniques.						

Course	Course Outcomes					
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)				
CO 1	Apply governing equations and boundary conditions to solve fluid- structure interaction problems using various methods.	Ар				
CO 2	Analyze wind loads and induced vibrations on structures by performing wind tunnel testing and simulations.	An				
CO 3	Compare the effects of liquid sloshing and liquid dampers in earthquake engineering to enhance structural resilience.	An				
CO 4	Evaluate different foundation models and the Finite Difference Method for analysing soil-structure interaction problems.	Е				
CO 5	Design efficient mesh adaptations for complex fluid-structure interaction scenarios in structural engineering.	С				
CO 6	Demonstrate the ability to use MATLAB and ANSYS/ADINA for solving and simulating FSI problems practically.	Ар				

	J	Program Outco	mes (PO) (Str	ong-3, Mediu	um – 2, Weak-	-1)
$\widehat{\mathbf{O}}$	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	2	1	2	3	2	2

2	2	1	3	3	3	2
3	2	2	3	3	3	2
4	3	2	3	3	3	3
5	3	2	3	3	3	2
6	3	2	2	3	3	2

Course Content	
INTRODUCTION TO FSI Governing Equations – Boundary Conditions - Types of PDE – Various methods of solving PDEs – Coupled Equations – Decoupling – Mesh adaptation for FSI problems	6 Hours
 Practical Component: Solving PDEs in MATLAB Introduction to Multiphysics model simulation using ANSYS / ADINA 	6 Hours
FSI IN BUILT ENVIRONMENT Wind Engineering: Wind loads on structures – Wind tunnel testing (types of wind tunnels, types of models, similitudes) – Wind induced Vibrations Earthquake Engineering: Liquid Sloshing – Liquid Dampers – Tuned Liquid Dampers	8 Hours
 Practical Component: Simulation of Flow around a Building using ANSYS-CFX or OpenFOAM Simulation of liquid sloshing using ANSYS / ADINA Demo on performance of TLD using a lab scale mode 	16 Hours
SOIL STRUCTURE INTERACTION Shallow Foundations – Different Foundation Models – Beams on Elastic Foundation – Finite Difference Method for Soil Structure Interaction	16 Hours
 Practical Component: FDM for SSI using MATLAB Simulating SSI in ANSYS / ADINA 	8 Hours

Theory	30	Tutorial	0	Practical	30	Project	0	Total	60
Hours:		Hours:		Hours:		Hours:		Hours:	

	the
Signature (of the BOS Chairman

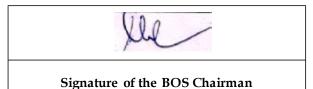
Learning Resources

Textbooks:

- 1. Panneer Selvam, R., Computational Fluid Dynamics for Wind Engineering., Wiley (2022).
- 2. Desai, C. S., Zaman, M., Advanced Geotechnical Engineering: Soil-Structure Interaction Using Computer and Material Models., CRC Press, United States (2013).

References:

- 1. Bull, J.W., Soil-Structure Interaction: Numerical Analysis and Modelling., CRC Press (2022).
- Bret Lizundia, S.E., "A Practical Guide to Soil-Structure Interaction.", Structure, December, pp.8, ISSN 1536 4283, <u>https://www.structuremag.org/article/a-practical-guide-to-soil-</u> <u>structure-interaction/</u>, (2020),:
- 3. Holmes, J.D., Wind Loading of Structures., Taylor & Francis (2007).
- 4. ASCE/SEI 49-2021, Wind Tunnel Testing for Buildings and Other Structures., American Society of Civil Engineers (2021).


Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/105/105/105105200/
- 2. https://www.coursera.org/learn/fluid-solid-interaction

Assessment (Embedded course)

CAT, Activity and Learning Tasks: Think-pair-share, MCQ, End Semester Examination (ESE) Lab Workbook

Course Curated by		
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)
		Mr. Satheesh Kumar KRP Civil Engineering
Recommended by BoS on		
Academic Council Approval		Date

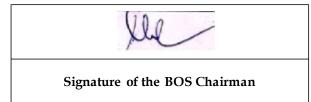
DESIGN OF PRE-STRESSED CONCRETE ELEMENTS

L	Т	Р	J	С
3	0	0	0	3
SDO	3		9	

Pre-requisite	24STT503 Design of Advanced	Data Book / Codes /	IS1343-2012,
courses	Concrete Structures	Standards (If any)	IS3370-Part 3

Course Ob	jectives:
The purpos	se of taking this course is to:
1	Learn about the types of prestress technology, their advantages and disadvantages, their uses
2	Understand the Prestressed concrete behavior under different limit states
3	Study the essential principles of designing prestressed concrete with advanced construction
	material
4	Acquire knowledge on different prestressing methods and the principles of partial prestressing
5	Design structures such as beams, pipes, water tanks, posts, and similar elements.

Course	Outcomes:		
After su	After successful completion of this course, the students shall be able to		
CO1	Analyze the principles of pre-stressing systems to evaluate the	An	
	behavior of various pre-stressed concrete elements.		
CO2	Evaluate limit state design concepts to justify design choices based on	Е	
	serviceability and collapse resistance.		
CO3	Design solutions for shear, torsion, and anchorage zones by applying	Ар	
	appropriate analytical techniques.		
CO4	Analyze statically indeterminate structures to select optimal cable profiles and predict deflection behavior.	An	
CO5	Evaluate special structures' design approaches to assess their suitability for partial pre-stressing and composite construction.	Е	


	I	Program Outco	mes (PO) (Str	ong-3, Mediu	1m – 2, Weak-	1)
$\widehat{\bigcirc}$	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1	2			2	1
2	1	3	2	3	2	2
3	1			3		

Xle

4	1		2	2		2
5	1	2	2	3	1	

Course Content	
PRINCIPLES AND ANALYSIS FOR FLEXURE	9 Hours
Principles of Pre-stressing – Types of pre-stressing systems – Materials – Systems and devices– Analysis and design for flexure – Components of tendons – Behaviour of pre- stressed concrete elements – General concept of pre-stress – Force transmitted by pre- tensioned and post-tensioned systems – deflection – crack width - losses in prestress – analysis for Ultimate strength – Comparison of codal provisions.	9 110015
Practical Component: Nil	
DESIGN FOR FLEXURE Concept of Limit State design – Limit state of Collapse and serviceability – Design using allowable stresses – Stress range approach-Lin's approach – Magnel's approach – Analysis of Ultimate Strength	8 Hours
Practical Component: Nil	
DESIGN FOR SHEAR, TORSION AND ANCHORAGE ZONE Principal stresses – Shear resistance in beams – Design for shear in rectangular and flanged beams – Behaviour under torsion – Modes of failure - Design for torsion, shear and bending Anchorage Zone – analysis and design of pre-tensioned and post tensioned end blocks.	8 Hours
Practical Component: Nil	
STATICALLY INDETERMINATE STRUCTURES Analysis of indeterminate structures – Continuous beams – linear transformations – Concept of concordance – Choice of cable profiles – deflection of pre-stressed members. Practical Component: Nil	8 Hours
SPECIAL STRUCTURES Partial pre-stressing – Principles, analysis and design concepts - Concept of circular prestressing – Design of pre-stressed concrete pipes and cylindrical water tanks - Composite construction- types, behaviour, flexural stresses, longitudinal shear transfer, transverse shear-Compression members-Design of poles, piles.	7 Hours
Practical Component: Nil	
DESIGN FOR TENSION Design of Tension Members	5 Hours
Practical Component: Nil	

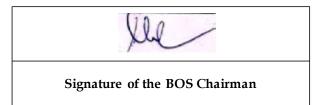
Theory	45	Tutorial	0	Practical	0	Project	0	Total	45
Hours:		Hours:		Hours:		Hours:		Hours:	

Learning Resources*
Textbooks:
1. N. Krishnaraju, 'Prestressed Concrete', Tata McGraw-Hill Publishing Company,4th Ed (2012)
2 N. Rajagobalan, 'Prestressed Concrete', Norosa Publishing House, (2014)

 N. Kajagobalah, Frestressed Concrete', Norosa Fublishing House, (2014)
 N.C. Sinha & S.K. Roy, 'Fundamentals of Prestressed Concrete' S. Chand & Co, New Delhi, (2011)

References:

- 1. Praveen Nagarajan, "Advanced Concrete Design", Person Publishers (2022)
- 2. P. Dayaratnam, "Pre stressed Concrete Structures", Scientific International Pvt. Ltd .(2022)
- 3. Lin T Y and Burns N H, 'Design of Pre stressed Concrete Structures' , John Wiley and Sons, New York
- 4. Pundit G S and Gupta S P, "Pre stressed Concrete", C B S Publishers, New Delhi (2012)
- 5. IS: 1343: Indian Standard code of practice for Pre stressed concrete, BIS, New Delhi.
- 6. IS: 3370-Indian Standard code of practice for concrete structures for storage of liquids, BIS, New Delhi.


Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/105/106/105106118/
- 2. https://archive.nptel.ac.in/courses/105/106/105106118/
- 3. https://archive.nptel.ac.in/courses/105/106/105106118/
- 4. https://archive.nptel.ac.in/courses/105/106/105106118/

Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

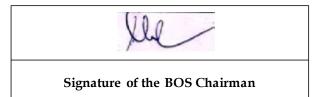
Course Curated by		
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)
		Dr.A.Vennila
		Civil Engineering
Recommended by BoS on		
Academic Council Approval		Date

L	Т		Р	J	C
3	0		0	0	3
SDO	3		ç	9,11	

Pre-requisite	24STT506 Advanced Design of	Data Book / Codes /	IS 800, IS 456,
courses	Steel Structures	Standards (If any)	IS 11384

Course O	Course Objectives:				
The purp	The purpose of taking this course is to:				
1	Gain a comprehensive understanding of the principles of steel-concrete composite structures.				
2	Explore the Properties, Behaviour, and Advantages Composite Structure				
3	Examine the interactions between Steel And Concrete, including Bond Mechanisms,				
4	Understand the shear transfer, and overall system performance With Case Studies				

Course	e Outcomes:					
After s	After successful completion of this course, the students shall be able to					
CO 1	Explain the knowledge in design concrete composite elements and structures	R				
CO 2	Design of composite elements and structures like beams, columns, slabs and trusses as per IS code	U				
CO 3	Design the connections in Composite Structures for shear and columns	Ар				
CO 4	Design of composite beams, columns, trusses and box girder bridges as per IS codes	An				
CO 5	Review various case studies on steel-concrete composite structures and seismic behaviour of composite structures	An				


	Pro	gram Outco	omes (PO) (S	Strong-3, Me	dium – 2, Wea	k-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1				2	1
2	1	3	2	3	2	
3	1			3		
4	1		2	2		2
5	1		2	3	3	

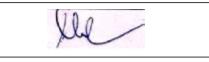
fle

Course Content	
INTRODUCTION	9 Hours
Introduction to steel - concrete composite construction - Codes - Composite	
action – Serviceability and Construction issues in design, theory of composite structures.	
Practical Component: Nil	
DESIGN OF COMPOSITE MEMBERS	9 Hours
Design of composite beams, slabs, columns, beam – columns - Design of composite	
trusses.	
Described Company to Mil	
Practical Component: Nil	
DESIGN OF CONNECTIONS	9 Hours
Shear connectors – Types – Design of connections in composite structures – Design of) 110u13
shear connectors – Partial shear interaction. Deck slab – encased columns – in filled	
columns subjected to Uni-axial & Bi-axial.	
,	
Practical Component: Nil	
COMPOSITE BOX GIRDER BRIDGES	9 Hours
Introduction - behaviour of box girder bridges and its types - design procedure &	
concepts.	
Practical Component: Nil	
•	
CASE STUDIES	9 Hours
Case studies on steel - concrete composite construction in buildings - seismic	
behaviour of composite structures.	
Practical Component: Nil	

Theory	45	Tutorial	0	Practical	0	Project	0	Total	45
Hours:		Hours:		Hours:		Hours:		Hours:	

Lea	arning Resources							
Te	xtbooks:							
	 Johnson R.P., "Composite Structures of Steel and Concrete Beams, Slabs, Columns and Frames for Buildings", Vol.I, Blackwell Scientific Publications, (2019). 							
	2. Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural Members,							
	Fundamental behaviour", Pergamon press, Oxford, (2013).							
Re	ferences:							
1.	Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete							
	Institute(UK), Oxford Blackwell Scientific Publications, (2003).							
2.	HarshadBhandari," Analysis and Design of Steel and Composite Structures" Scitus Academics LLC							
	(Publisher), (2016).							

3. Teaching resource for, "Structural Steel Design," Volume 2 of 3, Institute for Steel Development and Growth (INSDAG), (2011).


Online Educational Resources:

- 1. https://www.youtube.com/watch?v=fRqxXkxApSY
- 2. https://www.classcentral.com/course/engineering-purdue-university-design-of-steel-con-22576

Assessment (Theory course)

CAT, Activity and Learning Task(s)^{*}, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by			
Expert(s) from Industry	Expert(s) from Highe Education Institution		
		Dr.A.Vennila	
		Civil Engineering	
Recommended by BoS on			
Academic Council Approval		Date	

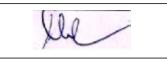
24STE012		L T P			J	C
	DESIGN OF STRUCTURES FOR DYNAMIC	3	3 0 0 0			
PE	LOADS	SDG	ĥ	Ģ	9, 11	

Dra ragricita courses	Nil	Data Book / Code book	IS 1893, IS 4326,
Pre-requisite courses	NII	(If any)	IS 4991, IS 13920

Course Objectives:					
The purp	ose of taking this course is to:				
1	Explain behaviour of concrete structures subjected to various dynamic loads				
2	Design the structures for dynamic loads like blast loads, Impact loads, earthquake and wind				
	loads.				

Course	e Outcomes	
		Revised Bloom's
After s	successful completion of this course, the students shall be able to	Taxonomy Levels
		(RBT)
CO 1	Understand the behavior of structures under dynamic loads, importance	U
	of ductility	
CO 2	Design framed structures and shear walls for earthquake with ductility	Ар
	concept	
CO 3	Design structures subjected to blast and impact loads	Ар
CO 4	Design structures for wind loads including tall structures and chimneys.	Ар
CO 5	Perform ductile detailing and understand energy absorption capacity	An

	Pro	gram Outco	omes (PO) (S	Strong-3, Mee	dium – 2, Wea	k-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1					
2	1		1	3	2	
3	1			2		
4	2		2	2		
5	1		2	2	3	


Xle

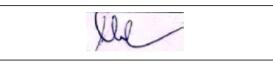
Course Content	
GENERAL Factors affecting design against dynamic loads - Behaviour of concrete, steel, masonry and soil under impact and cyclic loads - Recap of Structural dynamics with reference to SDOF, MDOF and continuum systems - Ductility and its importance.	9 Hours
Practical Component: Nil	
DESIGN AGAINST EARTHQUAKES Earthquake characterisation - Response spectra - seismic coefficient and response spectra methods of estimating loads - Response of framed, braced frames and shear wall buildings - Design as per BIS codes of practice - Ductility based design.	9 Hours
Practical Component: Nil	
DESIGN AGAINST BLAST AND IMPACT Characteristics of internal and external blast - Impact and impulse loads - Pressure distribution on buildings above ground due to external blast - underground explosion - Design of buildings for blast and impact as per BIS codes of practice. Practical Component: Nil	9 Hours
DESIGN AGAINST WIND Characteristics of wind - Basic and Design wind speeds - Effect of permeability of the structure – pressure coefficient - Aeroelastic and Aerodynamic effects - Design as per BIS code of practice including Gust Factor approach - tall buildings, stacks and chimneys. Practical Component: Nil	9 Hours
SPECIAL CONSIDERATIONS Energy absorption capacity – Ductility of the material and the structure – Detailing for ductility – Passive and active control of vibrations – New and favourable materials – Case studies.	9 Hours

Theory 45	Tutorial	0	Practical	0	Project	0	Total	45
Hours:	Hours:		Hours:		Hours:		Hours:	

	Learning Resources					
Textbo	oks:					
1.	S.K.Duggal, Earthquake Resistant Design of Structures, Prentice Hall of India, New Delhi (2015).					
2.	Pankaj Agarwal and Manish Shrikhande, Earthquake Resistant Design of Structures, Prentice Hall of India, New Delhi (2016).					

References:

- 1. Clough R. W. and Penzien J., Dynamics of Structures, McGraw Hill Inc., US (2015).
- 2. A.K. Chopra, Dynamics of Structures Theory and Applications of Earthquake Engineering, Pearson Education (2020).
- 3. Damodarasamy and Kavitha, Basics of Dynamics and Aseismic Design, PHI Learning Pvt Ltd (2009).
- 4. Andreas Kappos, Dynamic Loading and Design of Structures, CRC Press, Taylor & Francis Group, (2020)


Online Educational Resources:

- 1. https://www.researchgate.net/publication/382062770_Design_of_Structures_ Subjected_to_Blast_Loads_Analysis_and_Design_Review
- chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nicee.org/iaee/E_Chapter3.p df

Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by		
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)
		Dr.K.Ramadevi
		Civil Engineering
Recommended by BoS on		
Academic Council Approval		Date

24STE013

L]	Γ	Р	J	C
3	0		0	0	3
SDG 9,11					

Pre-requisite courses Nil Data Book / Code book (If any) Nil

Course O	Course Objectives:					
The purpose of taking this course is to:						
1	1 Study the optimization methodologies applied to structural engineering					
2	Apply optimization principles to achieve optimum design					

Course	e Outcomes	
		Revised Bloom's
After s	successful completion of this course, the students shall be able to	Taxonomy Levels
		(RBT)
CO 1	Apply knowledge on the recent advances in optimization and differential	U
	calculation	
CO 2	Create cost effective designs by linear programming and simplex method	Ар
CO 3	Create cost effective designs by non-linear programming using	Ар
	Interpolation methods. Unconstrained optimization techniques	
CO 4	Explain algorithm for geometric and dynamic programming using	An
	computer Algorithm for geometric and dynamic Programming	
CO 5	Design various structural elements with minimum weight and software	Ар
	packages for optimization	

	Pro	gram Outco	omes (PO) (S	Strong-3, Mee	dium – 2, Wea	k-1)
	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1					
2	1		1	2	2	
3	1			2		
4	1			2		
5	2		2	3		

Xle

 BASIC PRINCIPLES Definition - Objective Function; Constraints - Equality and inequality - Linear and nonlinear, Side, Non-negativity, Behaviour and other constraints - Design space - Feasible and infeasible - Convex and Concave - Active constraint - Local and global optima. Differential calculus - Optimality criteria - Single variable optimization - Multivariable optimization with no constraints - (Lagrange Multiplier method) - with inequality constraints (Khun - Tucker Criteria). Practical Component: Nil LINEAR PROGRAMMING Formulation of problems - Graphical solution - Analytical methods - Standard form - Slack, surplus and artificial variables - Canonical form - Basic feasible solution - SIMPLEX METHOD - Two phase method - Penalty method - Duality theory - Primal - Dual algorithm. Computer Algorithm for Linear Programming. 	9 Hours 9 Hours
LINEAR PROGRAMMING Formulation of problems - Graphical solution - Analytical methods - Standard form - Slack, surplus and artificial variables - Canonical form - Basic feasible solution - SIMPLEX METHOD - Two phase method - Penalty method - Duality theory - Primal	9 Hours
Formulation of problems - Graphical solution - Analytical methods - Standard form - Slack, surplus and artificial variables - Canonical form - Basic feasible solution - SIMPLEX METHOD - Two phase method - Penalty method - Duality theory - Primal	9 Hours
Practical Component: Nil	
NON-LINEAR PROGRAMMING One Dimensional minimization methods, Unidimensional - Unimodal function - Exhaustive and unrestricted search - Dichotomous search - Fibonacci Method - Golden section method - Interpolation methods. Unconstrained optimization Techniques (Multivariables):	9 Hours
Unconstrained multivariable functions - Univariate method - Cauchy's steepest descent method - Conjugate gradient method (Fletcher Reeves) - Variable metric methods - (Davidon - Fletcher Powell). Constrained optimization techniques: Direct and indirect methods - Cutting plane method - Methods of feasible direction - Interior penalty function - Exterior penalty function method.	
Practical Component: Nil	
GEOMETRIC AND DYNAMIC PROGRAMMING Hours Posynomial - degree of difficulty - reducing G.P.P to a set of simultaneous equations - Unconstrained and constrained problems with zero difficulty - Concept of solving problems with one degree of difficulty. Computer Algorithm for Geometric Programming	9 Hours
Hours Bellman's principle of optimality - Representation of a multistage decision problem - concept of sub-optimization problems using classical and tabular methods. Computer Algorithm for Dynamic Programming	
Practical Component: Nil	
STRUCTURAL APPLICATIONS Methods for optimal design of structural elements, continuous beams and single	9 Hours
storied frames using plastic theory - Minimum weight design for truss members -	

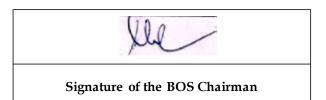
Fully stressed design - Optimization principles to design of R.C. structures such as multistorey buildings, water tanks, bridges, shell roofs. Use of Software packages for optimization

Practical Component: Nil

Theory 45	Tutorial	0	Practical	0	Project	0	Total	45
Hours:	Hours:		Hours:		Hours:		Hours:	

Learning Resources
Textbooks:
 Rao, S.S. "Engineering Optimization: Theory and Practice", Fourth Edition, Wiley Eastern (P) Ltd., (2013)
2. Iyengar. N.G.R and Gupta. S.K, "Structural Design Optimization", Affiliated East West Press Ltd, New Delhi, (1997).
References:
1. Spunt, "Optimization in Structural Design", Civil Engineering and Engineering Mechanics Services, Prentice-Hall, New Jersey (2016).

- 2. Uri Kirsch, "Optimum Structural Design", McGraw Hill Book Co. (2020).
- 3. Haftka, R. T. and Gurdal, Z., Elements of Structural Optimization, Springer, 3rd Edition, (2018)


Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/105/103/105103210/
- 2. https://archive.nptel.ac.in/courses/105/108/105108127/

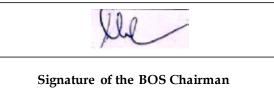
Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by							
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)					
		Dr.K.Ramadevi Civil Engineering					
Recommended by BoS on							
Academic Council Approval		Date					

24STE014		L	Т	Р	J	С
	DESIGN OF OFFSHORE STRUCTURES	3	0	0	0	3
PE	Design of Offshoke Structures		Ĵ	9,12	2,13,14	

Pre-requisite courses	N1:1	Data Book / Code book	IS 456, IS 4651,
	Nil	(If any)	API, DNV

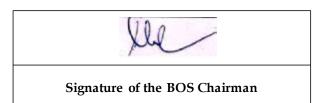

Course O	Course Objectives:					
The purp	ose of taking this course is to:					
1	To learn the types and functions of offshore structure					
2	To study the behaviour of structures subjected to waves					
3	To study the effect of the different load considerations in the analysis procedures for offshore					
	structures.					

Cours	Course Outcomes						
After s	After successful completion of this course, the students shall be able to						
	Interpret the fundamentals of wave mechanics and offshore structures	U					
	Understand and apply principles of wave and structural analysis for offshore platforms	An					
	Analyze the design specifications and standards for offshore structures	Ар					
	Design offshore structural elements as per standards	С					
CO 5	Recognize the principles of material selection and corrosion protection methods for offshore structures	An					

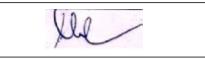
	Pro	gram Outco	omes (PO) (S	trong-3, Me	dium – 2, Wea	k-1)
(1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	3	2	1	1	1	1
2	3	3	3	2	2	1
3	2	2	2	1	3	1
4	3	2	1	1	1	1
5	3	2	3	2	3	2

Kle	
/ -	

Course Content	
INTRODUCTION TO WAVE MECHANICS Wind generated waves- Small and finite Amplitude Wave Theory; Formulation and solution, Wave Celerity, Length and Period, Classification of waves based on relative depth, Orbital motions and Pressure – Standing waves – Wave trains and Wave energy – Wave reflection, refraction and diffraction – Breaking of waves. Types of wave theories and its applications. Practical Component: Nil	7 Hours
OFFSHORE STRUCTURES Offshore engineering- Types of Offshore Structures and platforms – Fixed (Gravity and jacket), floating and subsea (hybrid) - Functions of offshore structures, Components of a Typical Offshore Structure, Structural Systems for shallow, medium and deep water, offshore pipelines and risers; Steel, concrete, and hybrid platforms. Practical Component: Nil	8 Hours
 ANALYSIS OF OFFSHORE STRUCTURES Site-specific data collection for meteorological, oceanographic, and geotechnical factors Gravity Loads, Wind Load, Offshore Loads, Fatigue Load, Seismic Loads, Wave load, Current loads - Wave and Structural Analysis – Return Waves: Concept and impact on offshore structures. Static & Dynamic Analyses: Principles and use of approximate methods for fixed platforms- Loads and stability during handling and towing, Fatigue analysis of fixed and floating offshore structure, stress concentration, S-N curves - Palmgren-Miner Cumulative Damage Rule - SDOF and MDOF models, Dynamic response of different platforms. Practical Component: Nil 	8 Hours
DESIGN OF OFFSHORE STRUCTURAL ELEMENTSDesign Specifications & Standards for offshore structure design: API, DNV, IS 4651, APIRP 2A, ISO 19900 series, Lloyd's Register, and other classification societies - OffshorePlatform Construction - Overview of design and construction methods for Jacket andGravity Platforms; Design of Structural Elements of offshore structures - Generalprinciples for platform components - Introduction, failure modes, and designconsiderations as per API codes - Fatigue of Tubular Joints - Practical applications ofcodes in offshore projects through real-world case studies.Practical Component: Nil	15 Hours
MATERIALS AND CORROSION PROTECTIONMaterials for offshore structures - Steel, concrete, and composite materials -Corrosionmechanism - Types of corrosion - Offshore structure corrosion zones - Preventivemeasures of Corrosion - Principles of cathode protection systems and coatings- Sacrificial anode method and impressed current method - Online corrosion monitoring - Corrosion fatigue. Case studies on fixed platform construction and its erection.Practical Component: Nil	7 Hours


Theory	45	Tutorial	0	Practical	0	Project	0 Total	45
Hours:		Hours:		Hours:		Hours:	Hours:	

Learni	ng Resources:
Textbo	oks:
	Srinivasan Chandrasekaran, Dynamic Analysis and Design of Offshore Structures, Springer Nature Publicaions, (2018)
	Mohamed A. El-Reedy, Offshore Structures: Design, Construction and Maintenance, Gulf Professional Publishing, (2019).
Refere	nces:
1.	McClelland, B., and Reifel, M.D. Planning and Design of Fixed Offshore Platforms. Van Nostrand Reinhold, (1986).
2.	API Recommended Practice 2A-WSD, Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms - Working Stress Design, 22nd Edition. (2020)
3.	Indian Standards: IS 4651 (various parts), Code of Practice for Planning and Design of Ports and Harbours. Chakrabarti, S.K. Handbook of Offshore Engineering, Volumes 1 & 2. Elsevier, (2005).
4.	Clauss, G.F., Lehmann, E., and Östergaard, C. Offshore Structures: Volume 1: Conceptual Design and Hydromechanics. Springer, (2012).
5.	B.C Gerwick, Jr., Construction of Marine and Offshore Structures, CRC Press, Florida, (2007).
6.	Planning, Designing and Constructing Fixed Offshore Platforms, API RP 2 A., API., (2009).
Online	Educational Resources:
1.	https://archive.nptel.ac.in/courses/114/106/114106011/#
2.	https://onlinecourses.nptel.ac.in/noc24_oe05/preview
3.	https://onlinecourses.nptel.ac.in/noc24_oe04/preview


Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by		
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)
		Ms. S.Rajalakshmi
		Civil Engineering
Recommended by BoS on		
Academic Council Approval		Date

INDUSTRY DRIVEN ELECTIVES

24STC015		L	Т	Р	J	C
	ENERGY EFFICIENT BUILDINGS	2	0	0	2	3
PE	ENERGI EFFICIENI DUILDING5	SDC	ī	9,11	, 12, 13	3

Pre-requisite courses	Nil	Data Book / Code book (If any)	(ECBC) 2007, ISO 50002:2014
-----------------------	-----	-----------------------------------	--------------------------------

Course Objectives:					
The purp	oose of taking this course is to:				
1	Provide an understanding of the concept of reduction in energy consumption through low				
	or net zero energy building design				
2	Introduce strategies to integrate daylighting and low energy heating/cooling in buildings				

Course	Course Outcomes				
After s	After successful completion of this course, the students shall be able to				
CO 1	Understand the concepts of energy efficiency	U			
CO 2	Understand the principles of passive solar heating and cooling	U			
CO 3	Analyze the components and techniques used in day lighting and electrical lighting	An			
CO 4	Analyze the various systems involved in heat control and ventilation	An			
CO 5	Design various energy efficient buildings	Е			
CO 6	Design and a project that applies energy-efficient design principles to a specific building type and execute Case study/Field visits.	С			

	I	Program Outco	mes (PO) (Str	ong-3, Mediu	um – 2, Weak-	-1)
\widehat{O}	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1	1	2	2	1	
2	1	1	2	2		
3	1		1	3		
4	3		1	3	1	2
5	3	1	3	3	2	2
6	3	3	3	2	2	2

fle

Signature of the BOS Chairman

Course Content	(11
INTRODUCTION	6 Hours
Climate adapted and climate rejecting buildings - Heat Transfer - Measuring	
Conduction – Thermal Storage – Measurement of Radiation – The Greenhouse Effect –	
Convection - Measuring latent and sensible heat - Psychrometry Chart - Thermal	
Comfort – Microclimate, Site Planning and Development – Temperature – Humidity –	
Vind – Optimum Site Locations – Sun Path Diagrams	
Practical Component: Nil	
PASSIVE SOLAR HEATING AND COOLING	6 Hours
General Principles of passive Solar Heating – Key Design Elements – Sunspace – Direct	
ain - Trombe Walls, Water Walls - Convective Air loops - Concepts - Case Studies -	
General Principles of Passive Cooling – Ventilation – Principles – Case studies.	
ractical Component: Nil	
DAYLIGHTING AND ELECTRICAL LIGHTING	6 Hours
faterials, components and details – Insulation – Optical materials – Radiant Barriers –	
Glazing materials - Glazing Spectral Response - Day lighting - Sources and concepts -	
Building Design	
trategies - Case Studies - Daylight apertures - Light Shelves - Codal requirements -	
Day lighting design	
Practical Component: Nil	
HEAT CONTROL AND VENTILATION	6 Hours
Iourly Solar radiation - Heat insulation - Terminology - Requirements - Heat	
ransmission through building sections – Thermal performance of Building sections –	
Drientation of buildings – Building characteristics for various climates – Thermal Design	
f buildings - Influence of Design Parameters - Mechanical controls - Examples.	
Ventilation – Requirements – Design for Natural Ventilation – Calculation of probable	
ndoor wind speed.	
ractical Component: Nil	
DESIGN FOR CLIMATIC ZONES	6 Hours
nergy efficiency – An Overview of Design Concepts and Architectural Interventions –	
Embodied Energy - Low Embodied Energy Materials - Design of Energy Efficient	
uildings for Various Zones - Cold and cloudy - Cold and sunny - Composite - Hot	
nd dry – Moderate – Warm and humid – Case studies of residences, office buildings	
nd other buildings in each zones - Commonly used software packages in energy	
fficient building analysis and design - Energy Audit – Certification	
Practical Component: Nil	
ROJECT COMPONENT	30 Hours
Design an energy-efficient building for a Residential / Commercial /Institutional	
puilding. Integrate principles of passive solar heating, daylighting, heat control, and	

ventilation. Assess energy savings, environmental impact, and potential improvements using software.

Theory 30	Tutorial 0	Practical 0	Project	30 Total	60
Hours:	Hours:	Hours:	Hours:	Hours:	

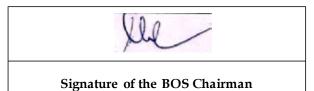
Learning Resources

Textbooks:

- 1. Zhiqiang John Zhai, Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems, Wiley Publications, New Jersey, (2022).
- 2. Majumdar, M (Ed), Energy Efficient Buildings in India, Tata Energy Research Institute, Ministry of Non Conventional Energy Sources, (2002)

References:

- 1. Brown, G.Z. and DeKay, M., Sun, Wind and Light Architectural Design Strategies, John Wiley ad Sons Inc, (2013)
- 2. Energy Conservation Building Code, Bureau of Energy Efficiency, New Delhi, (2017).
- 3. Handbook on Functional Requirements of Buildings Part 1 to 4 SP: 41 (S and T) (1995)
- 4. Moore, F., Environmental Control System, McGraw Hill Inc. (2002).
- 5. Tyagi, A.K. (Ed). Handbook on Energy Audits and Management Tata Energy Research Institute, (2010)


Online Educational Resources:

- 1. http://www.wbdg.org/resources/daylighting.php
- 2. https://www.kaarwan.com/blogs/architecture/key-initiatives-for-energy-efficient-buildingsin-india?id=416
- 3. https://www.energy.gov/eere/energy-efficiency-buildings-and-industry

Assessment (Embedded course)

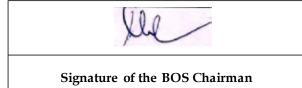
SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by								
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)						
		-						
Recommended by BoS on								
Academic Council Approval		Date						

24CNC016		CON	ISTRUCTION SIT	FE ADMINI	STRATION	L	Т	Р	J	С
2401	24CNC016			ONTROL		2	0	0	2	3
Р	PE (Common for M.E Structural Engineering and M.E Construction Management)			SDC	3	9	,11			
Pre-requisite courses Nil Data Book / Code book (If any) Nil										
Course O	bjectives:									
The purp	ose of takir	ng this d	course is to:							
1	1 Equip students with the skills to analyze project delays and develop effective mitigation strategies.							ation		
2	2 Enable students to evaluate the effectiveness of different project delivery systems.									
3	Provide s	Provide students with site management techniques focused on safety and layout planning.								
4	Develop a	an unde	erstanding of the Fie	eld Procedur	re Manual for la	bour a	ndwa	st e m	anager	nent.

Course	Course Outcomes					
After s	After successful completion of this course, the students shall be able to					
CO 1	Analyse project delays and suggest mitigation strategies.	An				
CO 2	Evaluate project delivery systems' effectiveness.	An				
CO 3	Apply site management techniques for layout and safety.	Ар				
CO 4	Analyse the Field Procedure Manual for labour and waste management.	An				
CO 5	Create a communication plan using digital tools and ERP.	An				
CO 6	Design and execute a project plan focusing on site management and	C				
	control using modern digital tools.					

	P	rogram Outcor	nes (PO) (St	rong-3, Medi	ium – 2, Weak	x-1)
\widehat{O}	1	2	3	4	5	6
Course Outcomes (CO)	Mastering Sustainable Practices	Applying advanced techniques and innovative technology	DEvaluate solution considering public health and environmental factors	adopting advanced design tools for project management & research	technological advancement for complex engineering solutions	Community involvement through appropriate design standards
1	3		2	3	2	3
2	3		2	3	2	3
3	3		2	3	2	3
4	3		2	3	2	3
5	3		2	3	2	3
6	3	3	3	3	3	3


Xle

Signature of the BOS Chairman

Course Content	
INDIAN CONSTRUCTION INDUSTRY AND PROJECT ECONOMICS	
Overview - Sectors - Project Delays: Causes & Mitigation - GDP Contribution - Construction as a Business - Risk Management - Economic Indicators - Sustainable Practices - Technology Integration - Industry Case Studies	6 Hours
PROJECT LIFE CYCLE AND DELIVERY SYSTEMS	
Life Cycle Phases: Concept to Completion - Stakeholder Roles - Delivery Systems: Design-Bid-Build, Design-Build, EPC, PPP - Merits & Demerits - Integrated Project Delivery (IPD) - Technology in Delivery - Agile Management - Stakeholder Communication - Case Studies	6 Hours
CONSTRUCTION SITE MANAGEMENT	
Site Layout Planning - Site Facilities Setup - Safety Management - Accident Prevention - Digital Documentation - Contract Administration - Lean Construction - AI in Site Management - Case Studies	6 Hours
FIELD PROCEDURE MANUAL AND RESOURCE MANAGEMENT	6 Hours
Field Procedure Manual (FPM) - Labor & Subcontractor Management - Site Waste Management - Measurement & Billing - Project Control Estimate - Escalation Management - ERP Systems - Case Studies	
PROJECT COMMUNICATION AND CASE STUDIES	6 Hours
Project Communication Tools - Meetings & Reviews - Organizational Relationships - ERP in Construction - Digital Collaboration - Real-World Case Studies - Lessons Learned - Future Trends.	
PROJECT COMPONENT	30 Hours
Develop a detailed project plan that includes site layout, safety management, digital documentation practices, and communication strategies using ERP tools. Present their plans and showcase their implementation of modern site management techniques.	

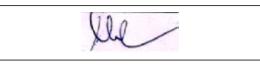
Theory 30	Tutorial	0	Practical	0	Project	30	Total	60
Hours:	Hours:		Hours:		Hours:		Hours:	

Learn	ing Resources
Textb	ooks:
1.	Mincks, W., & Johnston, H. Construction Jobsite Management. Delmar Cengage Learning, New York.
	(2011).
2.	Ritz, G. Total Construction Project Management. McGraw-Hill, Singapore. (1994).

 Jha, N. Construction Project Management: Theory and Practice. Pearson Education, 2nd Edition, India. (2015).

Reference books & Weblinks:

- 1. Joy, P. (2007). Handbook of Construction Management. Macmillan India Limited, New Delhi.
- 2. Moore, D.Project Management Designing Effective Organizational Structures in Construction. Blackwell Publishing, London. (2001).
- 3. Gould, F. E., & Joyce, N. E. Construction Project Management. Pearson, USA. (2011)


Online Resources:

- 1. https://www.leanconstruction.org
- $2. \quad https://www.autodesk.com/solutions/construction-site-management$
- 3. https://www.procore.com

Assessment (Embedded course)

SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by							
Expert(s) from Industry	Expert(s) from Higher Education Institution	n Internal Expert(s)					
		 Dr. P.A.Prabakaran AP/Civil Ms.U.Sindhu Vaardini AP/Civil Mr.P.Aswin Bharath AP/Civil 					
Recommended by BoS on							
Academic Council Approval		Date					

24STC017		L	Т	Р	J	C
	STRUCTURAL HEALTH MONITORING	2	0	0	2	3
PE		SDO	3	9, 11, 12, 13		

Pre-requisite courses	Nil	Data Book / Code book (If any)	(ECBC) 2007, ISO 50002:2014
-----------------------	-----	-----------------------------------	--------------------------------

Course Objectives:					
The purp	ose of taking this course is to:				
1	Make the students familiar with various structural health monitoring tools and techniques				
2	Impart practical skills in structural health monitoring to the students				

Course	Course Outcomes					
After s	After successful completion of this course, the students shall be able to					
CO 1	Comprehend the necessity, benefits, and challenges of Structural Health	U				
	Monitoring (SHM).					
CO 2	Recognize the various types of sensors and instrumentation methods	U				
	used in SHM					
CO 3	Acquire knowledge of both static and dynamic measurement techniques	An				
CO 4	Evaluate and contrast different damage detection techniques	An				
CO 5	Outline the various data processing approaches using case studies	An				
CO 6	Present research findings on structural health monitoring through lab	Ар				
	demonstrations and propose solutions based on the research outcomes					

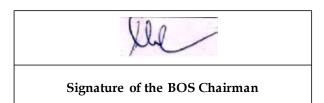
	I	Program Outco	mes (PO) (Str	ong-3, Mediu	um – 2, Weak-	-1)
Ô	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	1	1	2	2	1	
2	1	1	2	2	1	
3	1	1	1	3	2	2
4	1	1	1	3	2	1
5	1	1	2	3	1	3
6	3	3	3	2	2	2

Xle

Signature of the BOS Chairman

Course Content	
INTRODUCTION	6 Hours
Need for Structural Health Monitoring (SHM), SHM versus Non-Destructive Evaluation, Methods of SHM- Local & Global Techniques for SHM, Short & Long-Term Monitoring, Active & Passive Monitoring, Remote Structural Health Monitoring- Advantages of SHM - Challenges in SHM.	
Practical Component: Nil	
SENSORS AND INSTRUMENTATION FOR SHM Sensors for measurements: Electrical Resistance Strain Gages, Vibrating Wire Strain Gauges, Fiber Optic Sensors, Temperature Sensors, Accelerometers, Displacement Transducers, Load Cells, Humidity Sensors, Crack Propagation Measuring Sensors, Corrosion Monitoring Sensors, Pressure Sensors, Data Acquisition – Data Transmission - Data Processing – Storage of processed data - Knowledgeable information processing.	6 Hours
Practical Component: Nil	
STATIC AND DYNAMIC MEASUREMENT TECHNIQUES FOR SHM Static measurement - Load test, Concrete core trepanning, Flat jack techniques, Static response measurement, Dynamic measurement -Vibration based testing- Ambient Excitation methods, Measured forced Vibration-Impact excitation, step relaxation test, shaker excitation method.	6 Hours
Practical Component: Nil	
DAMAGE DETECTION Damage Diagnostic methods based on vibrational response- Method based on modal frequency/shape/damping, Curvature and flexibility method, Modal strain energy method, Sensitivity method, Baseline-free method, Cross-correlation method, Damage Diagnostic methods based on wave propagation Methods.	6 Hours
Practical Component: Nil	
CASE STUDIES Case studies of SHM in Civil/ Structural engineering structures like Bridges, Piers, Dams, Framed structures etc., in India and abroad.	6 Hours
Practical Component: Nil	
PROJECT COMPONENT To assess the health of a structural component applying Non-destructive testing. To test RC elements like beams/columns using load cells. To demonstrate seismic behaviour of models using Vertical Shake Table and Horizontal Shake Table tests & measure acceleration, frequency, amplitude etc., using software. Perform flexure test on RC beam and determine Curvature & assess the damage using wave propagation method like UPV method for a building.	30 Hours

fle	
Signature of the BOS Chairman	

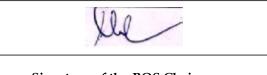

Theory	30	Tutorial	0	Practical	0	Project	30	Total	60
Hours:		Hours:		Hours:		Hours:		Hours:	

Learni	ng Resources
Textbo	
1.	Hua-Peng Chen, Structural Health Monitoring of Large Civil Engineering Structures, Wiley
	Publishers, (2018).
2.	Douglas E Adams, Health Monitoring of Structural Materials and Components Methods with
	Applications, Wiley Publishers, (2007)
Refere	nces:
1.	Daniel Balageas, Peter Fritzen, Alfredo Guemes, Structural Health Monitoring, John Wiley &
	Sons, (2015).
2.	Ansari, F Karbhari, Structural health monitoring of civil infrastructure systems, V.M,Woodhead
	Publishing, (2009)
3.	J. P. Ou, H. Li and Z. D, "Duan Structural Health Monitoring and Intelligent Infrastructure",
	Vol1, Taylor and Francis Group, London, UK, (2006).
4.	Victor Giurglutiu, "Structural Health Monitoring with Wafer Active Sensors", Academic Press
	Inc, (2007)
Online	Educational Resources:
1.	https://archive.nptel.ac.in/courses/114/106/114106046/

Assessment (Embedded course)

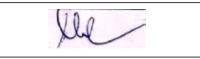
SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by					
Expert(s) from Industry	Expert(s) from Education Ins		Internal Expert(s)		
			Dr.K.Ramadevi		
			Civil Engineering		
Recommended by BoS on					
Academic Council Approval		Date			



L		Г	Р		J	С
2	()	0		2	3
SDC	j			9,	11	

Pre-requisite courses	Course code(s)	Data Book / Code book (If any)	IS 15916-2010
-----------------------	----------------	-----------------------------------	---------------


Course O	Course Objectives:						
The purp	The purpose of taking this course is to:						
1	Understand the Design Principles of Prefabrication						
2	Apply Reinforced Concrete Concepts to Prefabricated Structures						
3	Design Floors, Stairs, Roofs, Wall Systems and Industrial Building for Prefabricated						
	Structures						
4	Design prefabricated elements applying the techniques and demonstrate various case studies						

Course	Course Outcomes					
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)				
CO 1	Apply design principles and IS Code specifications to plan and layout a	Ар				
	prefabrication plant.					
CO 2	Analyze the structural behavior of prefabricated reinforced concrete	An				
	components to optimize connections between beams and columns.					
CO 3	Evaluate different types of floor slabs and roof systems to assess their	Е				
	suitability for prefabrication and construction methods.					
CO 4	Examine wall panel systems and joints to recommend solutions for load	Е				
	transfer and stability in prefabricated structures.					
CO 5	Evaluate the design and erection processes of industrial buildings and	Е				
	shell roofs to ensure compliance with prefabrication standards.					
CO 6	Develop structural design for various prefabricated buildings	Ар				
	incorporating design principles and work on real-world case studies and					
	field visits.					

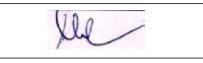
	Program Outcomes (PO) (Strong-3, Medium - 2, Weak-1)						
$\widehat{}$	1	2	3	4	5	6	
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems	
1	3		3	3	3		
2	2		3	3	3		
3	3		3	3	3		
4	2		3	3	3		
5	3		3	3	3		
6	3	3	3	2	2	2	

Course Content	
DESIGN PRINCIPLES	6 Hours
General Civil Engineering requirements, specific requirements for planning and layout	
of prefabrication plant. IS Code specifications. Modular co-ordination, standardization,	
Disuniting of Prefabricates, production, transportation, erection, stages of loading and	
code provisions, safety factors, material properties, Deflection control.	
Practical Component: Nil	
PRECAST ELEMENTS AND CONNECTIONS	6 Hours
Prefabricated structures- Long wall and cross-wall large panel buildings, one way and	0 110 110
two way prefabricated slabs, Framed buildings with partial and curtain walls, -	
Connections- Beam to column and column to column.	
Practical Component: Nil	
FLOORS, STAIRS AND ROOFS	6 Hours
Types of floor slabs, analysis and design example of cored and panel types and two-way	
systems, Design analysis for product manufacture, handling and erection, staircase slab,	
types of roof slabs and insulation requirements, Description of joints, their behaviour	
and reinforcement requirements, Deflection control for short term and long term loads,	
Ultimate strength calculations in shear and flexure.	
0	
Practical Component: Nil	
*	
PRECAST WALLS	6 Hours
Types of wall panels, Blocks and large panels, Curtain, Partition and load bearing walls,	
load transfer from floor to wall panels, vertical loads, Eccentricity and stability of wall	

 panels, Design Curves, types of wall joints, their behaviour and design, Leak prevention, joint sealants, sandwich wall panels, Lateral load resistance, Location and types of shear walls, approximate design of shear walls. Practical Component: Nil 	
INDUSTRIAL BUILDINGS AND SHELL ROOF	6 Hours
Components of single-storey industrial sheds with crane gantry systems, R.C. Roof	
Trusses, Roof Panels, corbels and columns, wind bracing. Cylindrical, Folded plate and	
paraboloid shells Erection and jointing of components in industrial buildings.	
Practical Component: Nil	
PROJECT	
• Students shall undergo field visits and demonstrate various real-world case studies on various prefabricated structures.	30 Hours
• The project work includes applying the prefabricated design principles to design various building elements.	

Theory	30	Tutorial	0	Practical	0	Project	30 Total	60
Hours:		Hours:		Hours:		Hours:	Hours	

Learni	ng Resources				
Textbo	oks:				
1. L. Mokk, Prefabricated Concrete for Industrial and Public Structures, Publishing House of t					
	Hungarian, Academy of Sciences, Budapest, (2007).				
2.	Koncz T., Manual of precast concrete construction, VolI, II and III, Bauverlag, GMBH, (2023).				
Refere	nces:				
1.	Hubert Bachmann and Alfred Steinle, Precast Concrete Structures, (2012).				
2.	Koncz.T. Manual of Precast Concrete Construction, Vol. I, II and III & IV Bauverlag, GMBH,				
	(2023).				
3.	Laszlo Mokk, Prefabricated Concrete for Industrial and Public Structures, Akademiai Kiado,				
0.					
	Budapest, (2023).				
4.	Lewicki.B, Building with Large Prefabricates, Elsevier Publishing Company, (2006).				
5.	Structural Design manual, Precast concrete connection details, Society for studies in the use of				
	Precast concrete, Netherland Betor Verlag, (2009).				
Online	Educational Resources:				
1.	https://nptel.ac.in/courses/105/106/105106117/				
2	https://www.woutuba.com/watch?v=bQWOhnVa81s				


https://www.youtube.com/watch?v=b9WQhnYq81s
 https://www.iith.ac.in/~prestressed/index.htm

Assessment (Embedded course)

SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Xle
Signature of the BOS Chairman

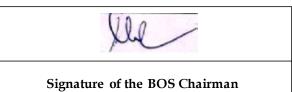
Course Curated by		
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)
		Mr.P.Nandhakumar Civil Engineering
Recommended by BoS on		
Academic Council Approval		Date

24STC019		L	Т	Р	J	С
	DESIGN OF FORMWORK	2	0	0	2	3
PE		SDC	3	9	,11	

Pre-requisite courses	Course code(s)		IRC 87, IS 456, IS 14687
-----------------------	----------------	--	-----------------------------

Course O	Course Objectives:						
The purp	ose of taking this course is to:						
1	1 Provide an exposure on the significance of formwork, materials and design procedures						
2 Design special formwork, decks and falseworks & assess formwork failures							

Course	e Outcomes	
After s	Revised Bloom's Taxonomy Levels (RBT)	
CO 1	Identify proper formwork and select accessories & material required.	U
CO 2	Design the form work for conventional structural elements	Ар
CO 3	Design the form work for special structures and identify formwork management issues	Ар
CO 4	Assess the formwork failures through case studies	An
CO 5	Design decks and falseworks	С
CO 6	Design formwork for various structural elements incorporating design principles and work on real-world case studies and field visits.	Ар


		Program O	utcomes (PO) (Strong-3, Me	dium - 2, Wea	k-1)
Ô	1	2	3	4	5	6
Course Outcomes (CO)	Independently carry out research /investigation and work	Write and present a substantial technical report/document	Demonstrate a degree of mastery over the area	Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems
1	3	1	2	2	2	
2	2	1	3	3	3	
3	3	1	3	3	3	
4	2	1	2	2	2	
5	3	1	2	2	2	2
6	3	3	3	2	2	2

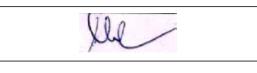
Xle

Course Content	
INTRODUCTION	6 Hours
Formwork and Falsework, Requirements and Selection of Formwork. Formwork	
Materials- Timber, Plywood, Steel, Aluminium, Plastic, and Accessories. Horizontal and	
Vertical Formwork Supports.	
Practical Component: Nil	
FORMWORK DESIGN	6 Hours
Concepts, Formwork Systems and Design for Foundations, Walls, Columns, Slab and	
Beam.	
Practical Component: Nil	
FLYING FORMWORK	6 Hours
Table Form, Tunnel Form, Slip Form, Formwork for Precast Concrete, Formwork	
Management Issues -Pre and Post Award.	
Practical Component: Nil	
FORMWORK FAILURES	6 Hours
Causes and Case studies in Formwork Failure, Formwork Issues in Multi-Storey Building Construction.	
Practical Component: Nil	
DESIGN OF DECKS AND FALSE WORKS	6 Hours
Types of beam, decking and column formwork, Design of decking, False work design, Effects of wind load, Foundation and soil on false work design.	
Practical Component: Nil	
PROJECT	
• Students shall undergo field visits and demonstrate various real-world case	
studies on various formworks.	30 Hours
• The project work includes applying the design principles of formwork to design	

Theory 30	Tutorial	0	Practical	0	Project	30 Total	60
Hours:	Hours:		Hours:		Hours:	Hours:	

Learning Resources							
Textbooks:							
1. Robert L. Peurifoy and Garold D.Oberlender, Formwork for Concrete Structures, McGraw Hil							
Professional, New York, (2011).							
2. K. P. Raghavan, S. Natarajan and V. Thamilarasu, Formwork management In Construction,							
Khanna Publishing House, New Delhi, (2024).							
References:							

- 1. Michael P. Hurst, Construction Press, London and New York, (2003).
- 2. Austin, C.K., "Formwork for Concrete", Cleaver -Hume Press Ltd., London, (2008).
- 3. Hurd, M.K., "Formwork for Concrete", Special Publication No.4, American Concrete Institute, Detroit, (1996)
- 4. Robert L. Peurifoy and Garold D. Oberlender, "Formwork For Concrete Structures", McGraw Hill, (1996).


Online Educational Resources:

1. https://www.researchgate.net/publication/261411286

Assessment (Embedded course)

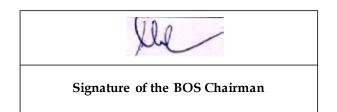
SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by								
Expert(s) from Industry	Expert(s) from Education Ins		Internal Expert(s)					
			- Dr.K.Ramadevi					
			Civil Engineering					
Recommended by BoS on								
Academic Council Approval		Date						

2467.020		L	Т	Р	J	C
24STC020	PRE-ENGINEERED BUILDINGS	2	0	0	2	3
PE		SDC	3	ç	9,11	

Pre-requisite courses	Course code(s)	Data Book / Code book (If any)	IRC 800, IS 15916	
-----------------------	----------------	-----------------------------------	-------------------	--

Course Objectives:						
The purp	ose of taking this course is to:					
1	Introduce pre-engineered buildings, materials used and design methodology.					
2	Evaluate design loads on PEB structures, design framed structures and study the equipment					
	used for transportation of PEB components					


Course	Course Outcomes					
After s	successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)				
CO 1	Classify different materials used for pre-engineered buildings & pre- engineered building components.	U				
CO 2	Classify different building components of pre-engineered buildings	An				
CO 3	Evaluate various types of loads on pre-engineered buildings	An				
CO 4	To design the pre-engineered rigid frames and shear connections for PEB systems as per IS codes	С				
CO 5	Understand the equipment used for transportation of various types of vertical and horizontal of PEB elements	U				
CO 6	Design PEB structure applying pre-engineered building design methodology and work on real-world case studies and field visits.	Ар				

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)									
Ô	1	2	3	4	5	6				
Course Outcomes (CO)	Independently carry out research /investigation and work			Analyze and solve complex structural engineering problems	Use modern/advanced techniques, tools and skills	Communicate with larger community, to design and document complex problems				
1	3	1	2	2	2					
2	2	1	3	3	3					
3	3	1	3	3	3					
4	2	1	2	2	2					
5	3	1	2	2	2	2				
6	3	3	3	2	2	2				

Xle

NTRODUCTION TO PRE-ENGINEERED BUILDINGS 6 Hours ntroduction - History - Advantages of PEB - Applications of PEB - Materials used for nanufacturing of PEB. Difference between Conventional Steel Buildings and Pre- ingineered buildings. 6 Hours *ractical Component: Nil 6 Hours Presenting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo Ventilakes, Ridge vents, Sky Lights, Louvers, Insulation, Staircases. 6 Hours Practical Component: Nil 6 Hours Pasign Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, hickness of Flange to thickness of Web ratio. d/tw, b/tf ratios of secti	Course Content	
nanufacturing of PEB. Difference between Conventional Steel Buildings and Pre- ingineered buildings. Practical Component: Nil Practical Component: Nil 6 Hours PESIGN LOADS ON PRE-ENGINEERED BUILDINGS. 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. 6 Hours Practical Component: Nil 7 EB DESIGN METHODOLOGY 6 Hours Design Prameters of PEB frames - Depth of the section, Depth to Flange width ratios, hickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid rame Moment Connection, Shear Connection- Anchor bolt and base late design (Pinned and Fixed). 6 Hours Practical Component: Nil 7 Practical Component: Nil 6 Hours CUIPMENT FOR TRANSPORTATION 6 Hours 6 Hours Squipment for horizontal and vertical transportation of PEB elements. 6 Hours 7 Practical Compon	INTRODUCTION TO PRE-ENGINEERED BUILDINGS	6 Hours
ingineered buildings. *ractical Component: Nil 6 Hours 'RE-ENGINEERED BUILDING COMPONENTS 6 Hours rimary System: Main frames, Gable End Frame - Secondary frame system: Sizes and ryoperties of Purlins & Girts - Bracing System: Rod, angle, Portal, Pipe bracing - Gheeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo / entilators, Ridge vents, Sky Lights, Louvers, Insulation, Staircases. 6 Hours *ractical Component: Nil 7 DESIGN LOADS ON PRE-ENGINEERED BUILDINGS. 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. 6 Hours *ractical Component: Nil 6 Hours Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, fnickness of Flange to thickness of Web ratio. d/tw, bf/ft ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid rame. Rigid Frame Moment Connection, Shear Connection - Anchor bolt and base olate design (Pinned and Fixed). 6 Hours 'ractical Component: Nil 6 Hours 'GUIPMENT FOR TRANSPORTATION 6 Hours 'Guipment for horizontal and vertical transportation of PEB elements. 7 'ractical Component: Nil 6 Hours 'ProJECT COMPONENT 30 Hours Osign a pre-engineered building applying principles of PEB and as per IS guidelines. 30 Hours	Introduction - History - Advantages of PEB - Applications of PEB - Materials used for	
Practical Component: Nil 6 Hours Primary System: Main frames, Gable End Frame - Secondary frame system: Sizes and Properties of Purlins & Girts - Bracing System: Rod, angle, Portal, Pipe bracing - Steeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo / Petiliators, Ridge vents, Sky Lights, Louvers, Insulation, Staircases. 6 Hours Practical Component: Nil 9 DESIGN LOADS ON PRE-ENGINEERED BUILDINGS. 6 Hours Practical Component: Nil 9 PEB DESIGN METHODOLOGY 9 Pesign Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, hickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS old. Sizes as per Manufacturing Limitations. Analysis and Design of Rigid rames. Rigid Frame Moment Connection, Shear Connection - Anchor bolt and base blate design (Pinned and Fixed). Practical Component: Nil 6 Hours QUIPMENT FOR TRANSPORTATION iquipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours	manufacturing of PEB. Difference between Conventional Steel Buildings and Pre-	
PRE-ENGINEERED BUILDING COMPONENTS 6 Hours Primary System: Main frames, Gable End Frame - Secondary frame system: Sizes and roperties of Purlins & Girts - Bracing System: Rod, angle, Portal, Pipe bracing - Scheeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo / entilators, Ridge vents, Sky Lights, Louvers, Insulation, Staircases. 6 Hours Practical Component: Nil 6 Hours DESIGN LOADS ON PRE-ENGINEERED BUILDINGS. 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. 6 Hours Practical Component: Nil 6 Hours Pressign Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, hickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid rames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base olate design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours CQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours	Engineered buildings.	
Primary System: Main frames, Gable End Frame - Secondary frame system: Sizes and Properties of Purlins & Girts - Bracing System: Rod, angle, Portal, Pipe bracing - Bracing and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo Ventilators, Ridge vents, Sky Lights, Louvers, Insulation, Staircases. Practical Component: Nil 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. 6 Hours Practical Component: Nil 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. 6 Hours Practical Component: Nil 6 Hours Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, hickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base blate design (Pinned and Fixed). 6 Hours Practical Component: Nil 70 6 Hours EQUIPMENT FOR TRANSPORTATION squipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours	Practical Component: Nil	
Properties of Purlins & Girts - Bracing System: Rod, angle, Portal, Pipe bracing - iheeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo iheeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo iractical Component: Nil DESIGN LOADS ON PRE-ENGINEERED BUILDINGS. Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. Practical Component: Nil TEB DESIGN METHODOLOGY Pesign Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, hickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid frame Moment Connection, Shear Connection- Anchor bolt and base blate design (Pinned and Fixed). Practical Component: Nil CQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. Practical Component: Nil ROJECT COMPONENT Design a pre-engineered building applying principles of PEB and as per IS guidelines. Students shall undergo field visits and demonstrate various real-world case studies on	PRE-ENGINEERED BUILDING COMPONENTS	6 Hours
wheeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo /entilators, Ridge vents, Sky Lights, Louvers, Insulation, Staircases. Practical Component: Nil DESIGN LOADS ON PRE-ENGINEERED BUILDINGS. Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. Practical Component: Nil PEB DESIGN METHODOLOGY 	Primary System: Main frames, Gable End Frame - Secondary frame system: Sizes and	
Ventilators, Ridge vents, Sky Lights, Louvers, Insulation, Staircases. 6 Hours Practical Component: Nil 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. 6 Hours Practical Component: Nil 6 Hours Practical Component: Nil 6 Hours PEB DESIGN METHODOLOGY 6 Hours Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, hickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid rames. Rigid Frame Moment Connection, Shear Connection - Anchor bolt and base blate design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours EQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours Practical Component: Nil 30 Hours	Properties of Purlins & Girts - Bracing System: Rod, angle, Portal, Pipe bracing -	
Practical Component: Nil 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and other applicable Loads. Serviceability Limits as per code. 6 Hours Practical Component: Nil 6 Hours Pressign Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid rames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base plate design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours 6 Hours CQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours	Sheeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo	
Design to ADS ON PRE-ENGINEERED BUILDINGS. 6 Hours Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. 6 Hours Practical Component: Nil 6 Hours PEB DESIGN METHODOLOGY 6 Hours Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Trames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base olate design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours 6 Hours CQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours PROJECT COMPONENT 30 Hours Design a pre-engineered building applying principles of PEB and as per IS guidelines. 30 Hours	Ventilators, Ridge vents, Sky Lights, Louvers, Insulation, Staircases.	
Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. Image: Collateral, Wind, Seismic and Practical Component: Nil Practical Component: Nil 6 Hours Pression Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base of the design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours CQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours	Practical Component: Nil	
Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and ther applicable Loads. Serviceability Limits as per code. Image: Collateral, Wind, Seismic and Practical Component: Nil Practical Component: Nil 6 Hours Pression Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base of the design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours CQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours	DESIGN LOADS ON PRE-ENGINEERED BUILDINGS	6 Hours
wher applicable Loads. Serviceability Limits as per code. Practical Component: Nil 6 Hours PEB DESIGN METHODOLOGY 6 Hours Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base olate design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours CQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours		0 110415
PEB DESIGN METHODOLOGY 6 Hours Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base olate design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours EQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours Practical Component: Nil 30 Hours	other applicable Loads. Serviceability Limits as per code.	
PEB DESIGN METHODOLOGY 6 Hours Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base olate design (Pinned and Fixed). 6 Hours Practical Component: Nil 6 Hours EQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours Practical Component: Nil 30 Hours		
Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base olate design (Pinned and Fixed). Practical Component: Nil 6 Hours Equipment for horizontal and vertical transportation of PEB elements. 30 Hours Practical Component: Nil 30 Hours	Practical Component: Nil	
Chickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Crames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base base Clate design (Pinned and Fixed). Practical Component: Nil CQUIPMENT FOR TRANSPORTATION 6 Hours Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours Practical Component: Nil 30 Hours	PEB DESIGN METHODOLOGY	6 Hours
ode. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Grames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base olate design (Pinned and Fixed).6 HoursPractical Component: Nil6 HoursEquipment for horizontal and vertical transportation of PEB elements.30 HoursPractical Component: Nil30 HoursPractical Component: Nil30 Hours	Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios,	
Frames. Rigid Frame Moment Connection, Shear Connection- Anchor bolt and base Plate design (Pinned and Fixed). Practical Component: Nil EQUIPMENT FOR TRANSPORTATION Equipment for horizontal and vertical transportation of PEB elements. Practical Component: Nil ProJECT COMPONENT Design a pre-engineered building applying principles of PEB and as per IS guidelines. Students shall undergo field visits and demonstrate various real-world case studies on	Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS	
Practical Component: Nil 6 Hours EQUIPMENT FOR TRANSPORTATION 6 Hours Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours PROJECT COMPONENT 30 Hours Design a pre-engineered building applying principles of PEB and as per IS guidelines. 30 Hours		
Practical Component: Nil 6 Hours Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours PROJECT COMPONENT 30 Hours Design a pre-engineered building applying principles of PEB and as per IS guidelines. 30 Hours	8	
EQUIPMENT FOR TRANSPORTATION 6 Hours Equipment for horizontal and vertical transportation of PEB elements. 6 Hours Practical Component: Nil 30 Hours PROJECT COMPONENT 30 Hours Design a pre-engineered building applying principles of PEB and as per IS guidelines. 30 Hours	plate design (Pinned and Fixed).	
Equipment for horizontal and vertical transportation of PEB elements. Practical Component: Nil PROJECT COMPONENT Design a pre-engineered building applying principles of PEB and as per IS guidelines. Students shall undergo field visits and demonstrate various real-world case studies on	Practical Component: Nil	
Equipment for horizontal and vertical transportation of PEB elements. Practical Component: Nil PROJECT COMPONENT Design a pre-engineered building applying principles of PEB and as per IS guidelines. Students shall undergo field visits and demonstrate various real-world case studies on	EOUIPMENT FOR TRANSPORTATION	6 Hours
PROJECT COMPONENT 30 Hours Design a pre-engineered building applying principles of PEB and as per IS guidelines. Students shall undergo field visits and demonstrate various real-world case studies on	Equipment for horizontal and vertical transportation of PEB elements.	
PROJECT COMPONENT 30 Hours Design a pre-engineered building applying principles of PEB and as per IS guidelines. Students shall undergo field visits and demonstrate various real-world case studies on	Practical Component: Nil	
Design a pre-engineered building applying principles of PEB and as per IS guidelines. Students shall undergo field visits and demonstrate various real-world case studies on		
Students shall undergo field visits and demonstrate various real-world case studies on	PROJECT COMPONENT	30 Hours
anous pre-engineered structures.	e	
	various pre-engineered structures.	

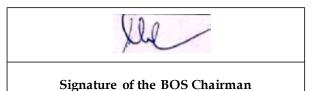
Theory	30	Tutorial	0	Practical	0	Project	30 Total	60
5	00		U U		Ū	110,000	00 1000	
Hours:		Hours:		Hours:		Hours:	Hours:	

Learning Resources Textbooks:

- 1. Aswin palaniappan Subramanian, Hariharan Subbiah Subramanian, Pre Engineered Building(PEB) AND Rules of Thumb For Steel Design (PEB), Kindle Edition, (2021)
- 2. K.S.Vivek&P.Vaishavi Pre Engineered Steel Buildings, Lambert Academic Publishing, (2017).

References:

1. Alexander Newman, Metal Building Systems, Design and Specifications, Mc Graw Hill, 2nd Edition. (2015).


Online Educational Resources:

- chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ofbcipher.s3. amazonaws.com/tendersDataFiles/iocletenders.nic.in/2018_NRO_76642_1/ SpecificationofPreEngineered.pdf
- 2. https://archive.nptel.ac.in/courses/105/106/105106113/

Assessment (Embedded course)

SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by							
Expert(s) from Industry	Expert(s) from Education Ins		Internal Expert(s)				
			- Dr.K.Ramadevi Civil Engineering				
Recommended by BoS on							
Academic Council Approval		Date					

