KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University, Chennai-25)

COIMBATORE – 641 049.

M. Tech BIOTECHNOLOGY

REGULATION 2024

I to IV Semesters

DEPARTMENT OF BIOTECHNOLOGY

To be a globally recognized biotechnology program advancing education, research, and ethical innovation for health, sustainability, and societal well-being.

MISSION

- M1: Deliver a competency-driven curriculum that blends scientific fundamentals with emerging biotechnological advancements.
- M2: Integrate hands-on research and industry exposure to develop problem-solving and innovation skills
- M3: Foster entrepreneurial thinking, ethical practice, and leadership in diverse biotechnological domains.
- M4: Equip students to advance biotechnology with societal responsibility and global impact.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of Master of Technology (M. Tech) in Biotechnology Program are toprepare the graduates:

- PEO1: To apply professional knowledge and skills in academia, industry and research careers.
- **PEO2**: To be competent to evaluate real life problems and to propose biotechnological solutions with economic and social impact.
- **PEO3**: To have intellectual independence to provide innovative solutions.

PROGRAM OUT COMES (POs)

Graduates of the M. Tech Biotechnology Program should have the ability to:

- **PO1:** An ability to independently carry out research / investigation and development work to solve practical problems.
- PO2: An ability to write and present a substantial technical report / document.
- **PO3:** An ability to demonstrate a degree of mastery over the area as per the specialization of the program.
- **PO4:** An ability to apply contemporary techniques to address issues related to health care sector.
- **PO5:** An ability to apply sustainable methodologies to address environmental issues.
- **PO6:** An ability to apply modern engineering tools and techniques to execute interdisciplinary projects.

KUMARAGURU COLLEGE OF TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY REGULATION 2024 M. Tech BIOTECHNOLOGY- Curriculum

Semester I											
S.N o	Course code	Course Title	Course Mode	Course Type	L	T	Р	J	С		
1	24MAI501	Statistical methods for Engineers	Embedded	BS	3	0	2	0	4		
2	24INT501	Research Methodology and IPR			0	0	0	3			
3	24MBT501	Bioprocess Modeling and Simulation	Theory	PC	3	0	0	0	3		
4	24MBT502	Gene Expression and Analysis	Theory	PC	3	0	0	0	3		
5	24MBI503	Animal, Plant and Microbial Cell Culture	Embedded	PC	1	0	4	0	3		
6	24MBT504	Bioproduct Separation and Purification Engineering	Theory	PC	3	0	0	0	3		
7					0	0	4	0	2		
Total Credits											
Total Contact Hours/week											
		S	emester II								
S.N o	Course code	Course Title	Course Mode	Course Type	L	T	Р	J	С		
1	24MBI506	Computational Biology	Embedded	PC	3	0	2	0	4		
2	24MBT507	Regulatory Affairs in Bioproduct Manufacturing	Theory	PC	3	0	0	0	3		
3	24MBP508	Bioproduct Development Lab II	Practical	PC	0	0	2	0	1		
4	24MBP509	Biotechnology Professional Practices lab	Practical	PC	0	0	2	0	1		
5	24MBJ510	Technical Seminar	Practical	PC	0	0	0	2	1		
6	24MBE0	Professional Elective-I	Theory	PE	3	0	0	0	3		
7	24MBE0	Professional Elective-II	Theory	PE	3	0	0	0	3		
8	24MBE0	Professional Elective-III	Theory	PE	3	0	0	0	3		
Total Credits									19 23		
	Total Contact Hours/week										

			Semester III						
S.N 0	Course code	Course Title	Course Mode	Course Type	L	T	Р	J	С
1	24MBJ601	Social Immersion project	Project	PW	0	0	0	4	2
2	24MBJ602	Project Phase I /Industry Internship	Project	PW	0	0	0	20	10
3	24MBE0	Professional Elective-IV	Theory	PE	3	0	0	0	3
4	24MBE0	Professional Elective-V	Theory	PE	3	0	0	0	3
5	24MBE0	Professional Elective-VI	Theory	PE	3	0	0	0	3
Total Credits									21
Total Contact Hours/week									33

Semester IV									
S.N 0	Course code	Course Title	Course Mode	Course Type	L	Т	Р	J	С
1	24MBJ603	Project Phase II/ Industry Project	Project	PW	0	0	0	40	20
Total Credits									
Total Contact Hours/week									40
Total Credits								81	

Semester-wise Credits						
Semester - I	21					
Semester - II	19					
Semester - III	21					
Semester - IV	20					
Total Credits	81					

	Electives										
S.N 0	Course code	Course Title	Course Mode	Course Type	L	Т	Р	J	C		
1	24MBE001	Biorefinery and Sustainable Technology	Theory	PE	3	0	0	0	3		
2	24MBE002	Advanced Wastewater Treatment	Theory	PE	3	0	0	0	3		
3	24MBE003	Bioremediation Technology	Theory	PE	3	0	0	0	3		
4	24MBE004	Enzymes in Food and Feed Industry	Theory	PE	3	0	0	0	3		
5	24MBE005	Cell Culture and Vaccine Technology	Theory	PE	3	0	0	0	3		
6	24MBE006	One Health - an integrative approach to interconnected health challenges.	Theory	PE	3	0	0	0	3		
7	24MBE007	Nanomaterials and Applications	Theory	PE	3	0	0	0	3		
8	24MBE008	Molecular Diagnostics and Biomedical Imaging	Theory	PE	3	0	0	0	3		
9	24MBE009	Human Physiology and Clinical Endocrinology	Theory	PE	3	0	0	0	3		
10	24MBE010	Big Data Analytics and Next Generation Sequencing	Theory	PE	3	0	0	0	3		
11	24MBE011	RNA Biology [#]	Theory	PE	3	0	0	0	3		
12	24MBE012	Fermented Foods and Microbial Technology	Theory	PE	3	0	0	0	3		
13	24MBE013	DNA Fingerprinting and Applications	Theory	PE	3	0	0	0	3		
14	24MBE014	Introduction to Developmental Biology [#]	Theory	PE	3	0	0	0	3		
L		1	1	1		ı	L	۰	I		

#- NPTEL

Course Types	Course Code type	Credits
Basic Science	BS	4
Engineering Science	ES	3
Professional Core	PC	23
Professional Electives	PE	18
Project/Industry Internship/ Technical Seminar	PW	33
Total Credi	81	

R-24 M.Tech Biotechnology

SEMESTER I

24MAI501	\$	STATISTICAL MI ENGINE	 L 3	T 0	P 2	J 0	C 4
BS		(Common to Cl	 SD	G	9,	10, 1	3
Pre-requisite courses		Nil	Data Book / Codes / Standards (If any)			Nil	

Course Objectives**:		The purpose of taking this course is to:					
1	learn key statistical concepts and apply estimation techniques						
2	perform hypothes	perform hypothesis testing for large and small samples					
3	build knowledge	n using correlations techniques and regression models					
4	develop student's	skills in experimental design and multivariate data analysis					

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course Outco mes*** :	After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)
CO1	apply different method and techniques to estimate statistical parameters	Ар
CO2	apply various statistical methods for hypothesis testing of sample data	Ар
CO3	apply hypothetical testing to compare and assess the independence of attributes	Ар
CO4	apply multiple and partial correlation analysis, least squares regression in determining the factors relating engineering data	Ар
CO5	analyse the effectiveness of experimental designs through Analysis of Variance	An
CO6	apply the multivariate concepts and compute covariance and correlation matrices	Ар

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)									
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engineering tools, interdisciplinary implementation				
1.	3	3	3		3					
2.	3	3	3							
3.	3		2	3		3				
4.	3	3		3		3				
5.	3	3								
6.	2	2			3					

Course Content	
ESTIMATION THEORY	9 Hours
Estimators: Unbiasedness, Consistency, Efficiency, and Sufficiency -	
Maximum Likelihood Estimation – Method of Moments.	
Practical Component	
1. Introduction to R programming	
2. Mean, Median and standard deviation	
TESTING OF HYPOTHESIS	9 Hours
Testing of hypothesis for large samples (single mean, difference of means,	
single proportion, difference of proportion) – Small samples – t – test	
(single mean, difference of means, paired t- test) $- F - test$ (variance ratio	
test) - Chi-square test - Tests for independence of attributes. Practical	
Component	
1. Conduct t-tests for small sample sizes, including single mean, difference	
of means, and paired t-test.	
2. Perform F-tests to compare variances of two samples.	
3. Implement Chi-square tests for independence of attributes.	
CORRELATION AND REGRESSION	9 Hours
Multiple and Partial Correlation - Method of Least Squares- Plane of	
Regression - Properties of Residuals - Coefficient of Multiple Correlation -	
Coefficient of Partial Correlation - Multiple Correlation with total and partial	

correlations- Regression and Partial correlations in terms of lower order				
coefficients.				
Practical Component				
1. Applications of Correlation coefficient				
2. Applications of partial correlation and Multiple Correlation				
DESIGN OF EXPERIMENTS	9 Hours			
Principles of experimental design - Completely randomized design-				
Randomized block design –Latin square design.				
Practical Component				
1. ANOVA – one-way classification				
2. ANOVA – two-way classification				
MULTIVARIATE ANALYSIS	9 Hours			
Random vectors and Matrices – Mean vectors and Covariance matrices –				
Multivariate Normal density and its properties – Principal components:				
Population principal components–Principal components from standardized variables.				
Practical Component				
1. Perform PCA on multivariate data and interpret principal components.				

Theory	45	Tutorial	0	Practical	30	Project	0	Total	75
Hours:		Hours:		Hours:		Hours:		Hours:	

Learn	ing Resources*
Textb	ooks
1.	Devore, J. L. Probability and Statistics for Engineering and the Sciences. 8th ed.
	Boston: Thomson and Duxbury, 2012.
2.	Freund, J. E. Mathematical Statistics. 5th ed. New Delhi: Prentice Hall of India, 2001.
3.	Gupta, S. C., and J. N. Kapur. Fundamentals of Mathematical Statistics. 10th rev. ed.
	New Delhi: Sultan & Chand Publishers, 2002.
4.	Johnson, R. A., and D. W. Wichern. Applied Multivariate Statistical Analysis. 6th ed.
	Singapore: Pearson Education Asia, 2007.
5.	Johnson, R. A. Miller & Freund's Probability and Statistics for Engineers. 7th ed.
	Singapore: Pearson Education, 2005.
6.	Spiegel, M. R., and L. J. Stephens. Schaum's Outlines: Statistics. 3rd ed. New York:
	Tata McGraw-Hill, 2000.
Refere	ence books/ Web Links
1.	1. Johnson, R.A., and Wichern, D.W., Applied Multivariate Statistical Analysis,
	Pearson
2.	Education, Asia, 6th Edition, 2007.
3.	2. Johnson. R. A., Miller & Freund's Probability and Statistics for Engineers, 7th

Edition, Pearson

- 4. Education, Delhi, 2005.
- Spiegel, M.R. and Stephens, L.J. Schaum's outlines, Statistics, Tata McGraw-Hill, 3rd Edition, 2000.

Online References:

- 1. https://www.khanacademy.org/math/statistics-probability
- 2. https://archive.nptel.ac.in/courses/103/106/103106120/
- 3. https://onlinecourses.nptel.ac.in/noc21_ma74/preview

Assessment (Embedded course)

SA, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by					
Expert(s) from Industry	Expert(s) from Higher Education Institution		Internal Expert(s)		
Mr. Ramesh V.S., STEPS	Dr.T.Govindan, C	Government	Dr.S.	Meenapriyadarshini,	
Knowledge Services Private	College of Eng	gineering,		Mathematics.	
Limited, Coimbatore. 2.	Srirangam, T	richy. 2.	Dr.D.	Arivuoli, Mathematics.	
Mr.Jayakumar Venkatesan,	Dr.C.Porkodi, PS	G College of			
Valles Marineris International	Technology, Coi	mbatore. 3.			
Private Limited- Chennai. 3.	Dr.P.Paramanath	an, Amrita			
Mr. Imran Khan, GE	Vishwa Vidya	peetham,			
Transportation Company,	Coimbat	ore.			
Bangalore.					
Recommended by BoS on	14.08.2024				
Academic Council Approval	No.27		Date	24.08.2024	

24INT501		L	Τ	P	J	C
24INT501	RESEARCH METHODOLOGY AND IPR	3	0	0	0	3
ES		SD	G		9	

Pre-requisite courses	Nil	Data Book / Codes / Standards (If any)	Nil
		Stanuarus (11 any)	

Course (Objectives**: The purpose of taking this course is to:			
1	Equip students with the knowledge and skills necessary to design, conduct and			
	critically evaluate research			
2	Draft research reports and present effective research findings			
3	Foster an understanding of intellectual property rights and ethical considerations			
	essential for successful research and innovation			

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course Outcomes***:		After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)	
CO 1	11.	ntific method and research planning steps to formulate	Ар	
	-	ems and objectives		
CO 2	•	ent research designs and ethical considerations to classify and ensure ethical integrity	An	
CO 3	Evaluate the structure and components of research reports to organize and present research findings effectively			
CO 4	Interpret data collection tools and statistical methods to visualize and analyse biological research data			
CO 5	• •			

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Progra	m Outcomes ((PO) (Strong	g-3, Medium – 2	, Weak-1)	
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional	Sustainable technology, environmental	Modern engineering tools, interdisciplinary imnlementation
1.	3	3		3	3	
2.	3	3		3		
3.	3			3		
4.	3	3		3		3
5.	3	3		3		3

Course Content	
INTRODUCTION TO RESEARCH METHODS	9 Hours
Definition and Objectives of Research, Scientific Method, Various Steps in Scientific Research, Research Planning, Selection of a Problem for Research, Formulation of Selected Problems, Purpose of the Research, Formulation of Research Objectives, Formulation of Research Questions, Hypotheses Generation and Evaluation, Literature Search and Review Process.	
RESEARCH DESIGN AND ETHICS	9 Hours
Types and Methods of Research, Classification of Research, Research Ethics:	

Informed Consent, Confidentiality, Data Protection, Sampling Techniques, Methods of Collecting Primary Data, Use of Secondary Data, Experimentation, Design of Experiments, Survey Research, Construction of Questionnaires, Pilot Studies, and Pre-tests, Data Collection Methods, Processing, Editing, Classification, and Coding Validity, Reliability, Ethical Dilemmas and Solutions.	
RESEARCH REPORTS	9 Hours
Components of Research Articles, Manuscripts, Thesis, and Review Papers, Preparation of Thesis Documents: Referencing, In-text Citations, Tools like Endnote, Mendeley, Writing Techniques: CARS Model, Organizing Literature Review, Materials, and Methods, Critical Thinking for Writing the Discussion Section.	
DATA COLLECTION AND ANALYSIS FOR RESEARCH	9 Hours
Tools for Data Collection: Clinical Trials, Surveys, Questionnaires, Observational Methods, Data Management and Preparation, Overview of Statistical Concepts, Descriptive Statistics: Mean, Median, Mode, Variance, Standard Deviation, Data Visualization Techniques.	
Case Study: Journal Club on Research Papers Published in Tier 1 Journals.	
INTELLECTUAL PROPERTY RIGHTS (IPR) AND RESEARCH GRANTS	9 Hours
Introduction to Intellectual Property Rights: Patents, Trademarks, Copyrights, Trade Secrets, Importance of IPR in Research and Innovation, Developing a Research Proposal: Components, Do's and Don'ts, Writing Winning Research Proposals, Peer Review, and Feedback, Finalizing Research Plans.	
Case Study: Evaluating Successful Research Proposals and Understanding the Role of IPR.	

Theory	45	Tutorial	0	Practical	0	Project	0	Total	45
Hours:		Hours:		Hours:		Hours:		Hours:	

Learn	ing Resources*
Textbo	ooks
1.	Cooper, D. R., Schindler, P. S., & Sharma, J. K. (2012). Business Research Methods
	(11th ed.). Tata McGraw Hill Education.
2.	Hazari, A. (2023). Research Methodology for Allied Health Professionals. Springer
	Nature Singapore.
3.	Goh, K.M. (2023). Research Methodology in Bioscience and Biotechnology. Springer.
4.	Ganguli, P. (2017). Intellectual Property Rights: Unleashing the Knowledge Economy.
	McGraw Hill Education.

Reference books/ Web Links

- 1. AJIET. (n.d.). Lecture Notes on Research Methodology & Intellectual Property Rights.
- 2. Retrieved from https://www.ajiet.edu.in/img/basic-science/21RMI56%20notes.pdf
- 3. Oxford University Press. (n.d.). Handbook of Intellectual Property Research: Lenses, Methods, and Perspectives. Retrieved from https://academic.oup.com/book/41122
- 4. Goddard, W., & Melville, S. (2004). Research Methodology: An Introduction for Science & Engineering Students. Juta and Company Ltd.
- 5. Kumar, R. (2014). *Research Methodology: A Step-by-Step Guide for Beginners* (4th ed.). SAGE Publications

Online Resources

- 1. <u>https://academic.oup.com/jiplp/article-abstract/19/5/460/7595847</u>
- 2. https://academic.oup.com/jiplp/issue/

Assessment (Theory course)

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated by									
Expert(s) from Industry	Expert(s) from Education In	0	Infernal Exp						
Dr. Lipin Dev,	Dr. N. Selvaraju	, Associate	Ι	Dr. K. Kumaravel					
Scientific Director,	Professor, IIT	Guwahati,		sistant Professor III					
Vee Tee Ecogreen Pvt Ltd,	Assan	n	-	Mr. Nishaant HA					
Angamaly, Kerala			As	ssistant Professor I					
Recommended by BoS on	14.08.2024								
Academic Council Approval	No.27		Date	24.08.2024					

24MBT501						L	Т	P	J	C
24IVID1501		BIOPROCESS MODELING AND			3	0	0	0	3	
РС		SIN	SIMULATION				G	9, 12		
Pre-requisite cour	ses	Nil		1 Book / dards (N	il		

Course Objectives:		The purpose of taking this course is to:				
1. To develop the ab		vility to model and simulate bioprocesses using mathematical and				
computational tec		hniques for process optimization and performance evaluation.				
2. To equip student		s with the skills to analyze bioprocess system performance an				
	identify strategies	for improvement in efficiency and sustainability.				
3. To enable student		s to design sustainable and efficient bioprocesses at various scales,				
	addressing real-wo	orld challenges in bioprocess operations.				

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course After successful completion of this course, the students shall be Bloom's
--

Outcomes :	able to	Taxono
		my
		Level
		(BTL)
CO 1	Explain the fundamental principles of bioreactor design and scale-up	U
	in bioprocess engineering, including kinetic models and process	
	optimization techniques.	
CO 2	Analyze material and energy balances in bioprocess systems to	An
	interpret the efficiency of bioprocesses.	
CO 3	Utilize numerical and machine learning techniques to solve	Ap
	optimization problems and improve bioprocess efficiency.	
CO 4	Apply principles of bioreactor operation and design to develop	Ap
	solutions for batch, semi-continuous, and continuous bioprocess	
	systems.	
CO 5	Design sustainable and cost-effective bioprocesses through	Е
	economic and environmental impact analysis.	

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)										
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental	Modern engineering tools, interdisciplinary implementation					
1.	3										
2.	3										
3.					3	3					
4.		3	3								
5.	3		3		3	3					

Course Content	
FOUNDATIONS OF BIOPROCESS ENGINEERING	9 Hours
Kinetics of Continuous Microbial Culture: Plug-Flow, Chemostat, Turbidostat,	
and Fed-Batch Principles; Unstructured Modelling of Bioreactors; Media	
Optimization, Scale-up, and Scale-down. Case Study: Engineering a Successful	
Scale-up of a Process.	

MATERIAL AND ENERGY BALANCE	12 Hours
Thermodynamic Preliminaries: System and Process, Steady State and	
Equilibrium, Laws of Conservation of Mass; Material Balance: Recycle, By-	
pass, and Purge Streams; Stoichiometry of Growth and Product Formation;	
Basic Energy Concepts: Intensive and Extensive Properties, Enthalpy Equation,	
Energy Balance without Reaction; Thermodynamics of Microbial Growth;	
Energy Balance Equation for Cell Culture.	
MODELING AND SIMULATION OF BIOPROCESSES	9 Hours
Basic Modeling Principles: Uses of Mathematical Modeling, Classification of	
Modeling Techniques; Fundamental Laws: Energy Equations, Continuity	
Equation, Equations of Motion, Transport Equations, Chemical Kinetics;	
Problem Structuring, Process Analysis, and Process Scheme; Modeling Steps,	
Implementation, and Simulation: Spreadsheet Model, Process Simulator;	
Uncertainty Analysis: Scenario Analysis, Sensitivity Analysis, Monte-Carlo	
Simulation.	
DATA ANALYSIS IN BIOPROCESS ENGINEERING	7 Hours
Basics of Data Analysis: Curve Fitting; Solving Problems using MATLAB:	
Numerical Integration, Euler and Fourth Order Runge-Kutta Methods; Machine	
Learning in Process Optimization.	
Case Study: Bioreactor Fault Detection using Data Reconciliation.	
BIOREACTOR MODELING FUNDAMENTALS, FLOWSHEETING	8 Hours
SuperPro Designer Fundamentals: Material and Energy Balance Calculations,	
Units and Properties; Component Library, Batch and Continuous Operations:	
Selection Criteria; Introduction to Flowsheeting: Scheduling, Equipment	
Utilisation Analysis Charts (e.g., Gantt Chart); Report Analysis: Throughput	
Analysis, Debottlenecking, Cost Analysis and Economic Evaluation,	
Environmental Impact (Life Cycle Assessment).	
Case Study: Economic Analysis of Bioprocess at Different Scales.	

Theory	45	Tutorial	0	Practical	0	Project	0	Total 4	5
Hours:		Hours:		Hours:		Hours:		Hours:	

Learn	Learning Resources*						
Textbe	ooks						
1.	Doran, Pauline M. Bioprocess Engineering Principles. 2nd ed. Academic Press, 2013.						
2.	Shuler, Michael L., Fikret Kargi, and Matthew DeLisa. Bioprocess Engineering: Basic						
	Concepts. 3rd ed. Pearson, 2017.						
Refere	ence books/ Web Links						
1.	Stanbury, Peter F., Allan Whitaker, and Stephen J. Hall. Principles of Fermentation						
	Technology. 3rd ed. Butterworth-Heinemann, 2016.						
2	Lynchan William I. Dragge Modeling Simulation and Control for Chamical						

2. Luyben, William L. Process Modeling, Simulation, and Control for Chemical

Engineers. Chemical Engineering Series. McGraw-Hill, 1999.

- 3. Heinzle, Elmar, Andrew P. Biwer, and Charles L. Cooney. Development of Sustainable Bioprocesses: Modeling and Assessment. Wiley, 2007.
- 4. Liu, Shang-Tian. Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design. Elsevier, 2017.
- 5. Li, Yong, and Subhash K. Khanal. Bioenergy: Principles and Applications. John Wiley & Sons, 2016.

Online Resources

- 1. https://onlinecourses.nptel.ac.in/noc22_bt19
- 2. https://onlinecourses.nptel.ac.in/noc23_bt16/preview.

Assessment (Theory course)

CAT, Activity and Learning Task(s)^{*}, Mini project, MCQ, End Semester Examination (ESE)

*Activity and Learning Task(s): assessed through Active Learning Strategies (ALS) Eg: One-minute paper, exit tickets/exit slips, Think-pairshare, Socratic seminar, reflective journal, Low-stakes quizzes, Diagnostic questions, Open-ended questions, Concept map, Homework tasks. Delete Assessment tables that do not apply to this course.

Course Curated by	Course Curated by										
Expert(s) from Industry	Expert(s) fror Education In	0	Internal Expert(s)								
Dr. Lipin Dev,	Dr. N. Selvaraju	, Associate	Dr. N	1. Shanmugaprakash							
Scientific Director,	Professor, IIT (Guwahati,	A	ssociate Professor							
Vee Tee Ecogreen Pvt Ltd,	Assan	1 I	Dr. Ram K								
Angamaly, Kerala			Assistant Professor III								
Recommended by BoS on	14.08.2024	·									
Academic Council Approval	No.27		Date	24.08.2024							

24MBT502		_			Т	P	J	C
24MID1502	GENE EXPRESSION AND ANALYSIS					0	0	3
РС			EILE EAI RESSION AND ANALISIS					
Pre-requisite cour	ses	Nil	Data Book / Codes / Standards (If any)				Nil	

Course Objectives**:		The purpose of taking this course is to:			
1	To acquire in-dept	th knowledge on prokaryotic and eukaryotic genome organization.			
2	To understand the complexities and functional organization of eukaryotic genomes.				
3	To evaluate the feasibility and applications of gene editing and gene expression tools				
	in genetic manipu	lation and functional studies.			

Course	After successful completion of this course, the students shall	Bloom's
Outcomes***:	be able to	Taxonomy

		Level (BTL)
CO1	Apply knowledge of genetic manipulation in expression vectors and	Ар
	analyze methods for recombinant protein analysis to solve problems	
	related to heterologous gene expression and evaluate purification	
	techniques.	
CO2	Evaluate the impact of aberrant splicing, defective DNA methylation,	Е
	and mitochondrial gene expression on cellular functions to interpret	
	their roles in disease pathogenesis.	
CO3	Analyze molecular diagnostic techniques, such as RT-PCR and qPCR,	An
	to assess their applications in identifying hospital-acquired infections	
	and genetic disorders.	
CO4	Apply open-source software tools in pharmacogenomics data analysis	Ар
	to design strategies for personalized medicine.	
CO5	Evaluate case studies on genetic and molecular mechanisms to connect	Е
	theoretical knowledge with practical applications in disease diagnostics	
	and therapeutics.	

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engineering tools, interdisciplinary implementation6			
1.	3		3						
2.	3		3	3					
3.	3	3		3					
4.			3		2	3			
5.	3	3		3					

Course Content

GENE EXPRESSION VECTORS AND PROTEIN PURIFICATION

9 Hours

Gene expression systems in prokaryotes and eukaryotes Design and construction of expression vectors Regulatory elements: promoters, terminators, enhancers, selection markers Transformation and transfection methods Recombinant protein expression systems: E. coli, yeast, insect, mammalian Protein purification methods: affinity chromatography, ion exchange, gel

filtration.	
EPIGENETICS AND ABERRANT GENE EXPRESSION IN DISEASE DNA methylation: mechanisms and enzymes Histone modifications and chromatin remodeling Aberrant splicing and spliceosome machinery Mitochondrial gene expression Epigenetic dysregulation in disease Experimental approaches: Next Generation sequencing, ChIP, RNA-seq.	9 Hours
MOLECULAR DIAGNOSTICS	9 Hours
Principles of nucleic acid-based diagnostics PCR, RT-PCR, and quantitative PCR Applications in infectious disease detection Genetic disorder diagnostics Emerging diagnostic platforms: CRISPR, LAMP Case-based diagnostic decision making.	
PHARMACOGENOMICS AND BIOINFORMATICS TOOLS	9 Hours
Introduction to pharmacogenomics and personalized medicine Gene-drug interactions and pharmacogenetic markers Public databases: dbSNP, PharmGKB, ClinVar Open-source tools: Galaxy, GenePattern, UCSC Genome Browser NGS data analysis workflows Case studies in clinical pharmacogenomics.	
CASE STUDIES IN GENETICS AND DISEASE APPLICATIONS	9 Hours
Genetic mutations and disease Cancer genetics and inherited disorders Gene therapy and CRISPR applications Omics data in diagnostics Translational research Ethical and regulatory aspects.	

ſ	Theory	45	Tutorial	0	Practical	0	Project	0	Total	45
	Hours:		Hours:		Hours:		Hours:		Hours:	

Learni	ing Resources*
Textbo	oks
1.	Lewin, B. Genes. 12th ed. Burlington, MA: Jones & Bartlett Publishers Inc., 2017.
Refere	nce books/ Web Links
1.	Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular
	Cell Biology. 10th ed. New York: W.H. Freeman and Company, 2020.
2.	Alberts, B., et al. Essential Cell Biology. 2nd ed. New York: Garland Science, 2004.
3.	Weaver, R. F. Molecular Biology. 3rd ed. New York: McGraw Hill, 2005.
4.	Watson, J. D. Molecular Biology of the Gene. 5th ed. Singapore: Pearson Education, 2004.
5.	Sambrook, J., and D. M. Russell. Molecular Cloning: A Laboratory Manual. 4th ed. Cold
	Spring Harbor, NY: CSHL Press, 2018.

Online Resources

3. https://onlinecourses.nptel.ac.in/noc22_bt59/preview *Refer to the attached information

Assessment (Theory course)

CAT, Activity and Learning Task(s)^{*}, Mini project, MCQ, End Semester Examination (ESE)

*Activity and Learning Task(s): assessed through Active Learning Strategies (ALS) Eg: One-minute paper, exit tickets/exit slips, Think-pairshare, Socratic seminar, reflective journal, Low-stakes quizzes, Diagnostic questions, Open-ended questions, Concept map, Homework tasks. Delete Assessment tables that do not apply to this course.

Course Curated by							
Expert(s) from Industry	Expert(s) fror Education In	U	Internal Expert(s)				
Dr. Harisankar MK,	Dr Ananthasub	ramanian	Γ	Dr. N. Saraswathy			
Scientist, Biocon Biologics,	Muthusamy, PSC	G College of		Professor			
Bangalore	Technology, Co	oimbatore	Dr. K. Kumaravel				
			Ass	sistant Professor III			
Recommended by BoS on	14.08.2024						
Academic Council Approval	No.27		Date	24.08.2024			

24MBI503	ANI	MAL, PL	ANT AND MIC	ROBIAL CELL	L 1	T 0	P 4	J 0	C 3
РС			CULTURE					3	
Pre-requisite courses		Nil		Data Book / Codes / Standards (If any)Nil					

Course (Objectives**:	The purpose of taking this course is to:				
1	Gain hands-on tra	ining on the methods of sterilization and media preparation for cell				
	culture.					
2	Attain hands on training for establishment of cell culture techniques					
3	Develop skills in working with cells of animals, plants, and microbes for application					
	studies.					

Course Outcomes***:	After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1	Apply aseptic techniques to prepare media, sterilize	R
	equipment, and maintain in-vitro cell cultures effectively.	
CO 2	Perform cell counting, assess viability using microscopy, and	R
	analyze cell health parameters for culture maintenance.	
CO 3	Induce and culture callus from medicinal plants to produce	Ap
	bioactive metabolites in scalable systems such as	
	photobioreactors.	
CO 4	Optimize culture conditions for industrially important	An
	microbes to enhance metabolite production and industrial	
	applications.	
CO 5	Analyze 16S and 18S RNA sequencing data to characterize	Е
	industrially significant microbial strains.	

	Prog	ram Outcomes	(PO) (Strong	-3, Medium –	2, Weak-1)	
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engineering tools, interdisciplinary implementation6
1.	3					
2.	3					
3.					3	3
4.		3	3			
5.	3		3		3	3

Course Content	
MAMMALIAN CELL CULTURE TECHNIQUES	5 Hours
Media Preparation, Sterilization, and Subculturing mammalian cells; Cell	
Counting and Trypan Blue Cell Viability Assay.	
Practical Component	10
Cell Proliferation and MTT Assay; Detection of Apoptosis – Acridine Orange	Hours
Ethidium Bromide Double Staining and Fluorescent Microscopy	
PLANT TISSUE CULTURE TECHNIQUES	5 Hours
MS Media and Stock Solution Preparation and Sterilization; Selection of Explants	
and Induction of Callus from Leaf Explants of Medicinal Plants;	
Practical Component	10

Production of	Secondary Metab	olites from Callus	of Medicinal	Plants by	Hours
Photobioreactor; Regeneration of Plants from Induced Callus/Explants by Direct					
or Indirect Org	anogenesis.				
MICROBIAL CULTURE TECHNIQUES					5 Hours
Isolation,	Screening, a	and Purification	n of	Microbial	
Bacteria/Yeast/	Fungi/Actinomycete	es) Species and	Strains for	Industrial	
Application.	Culture Inoculum	Preparation and	Fixing the	CFU for	
Fermentation/Assays.					10
Practical Component					Hours
Media Preparation and Optimization for Industrially Important Microbial Cultures,					
Cultivation, and Metabolite Production Using Bioreactor. Microbial (16S & 18S					
RNA) Sequencing and Analysis (Genus & Species Identification) and Preservation					
of Industrially Important Microbes.					
Theory Tutorial Practical Project Tot					al
					urs:4
				5	

Learning	g Resources
Textbool	ks
1. M	Masters, J.R.W (2007). Animal Cell Culture: Practical Approach. Oxford University
P	ress, UK.
2. Sa	ant Saran Bhojwani and M. K. Razdan (1996). Plant Tissue Culture: Theory and
P_{i}	<i>ractice</i> . Elsevier Science.
Reference	ce books/ Web Links
1. Ia	an R Freshney (2011). Animal Cell Culture: A Manual of Basic Technique and
Sp	pecialized Applications. Wiley and Sons.
2. V	rinci, V. A., & Parekh, S. R. (Eds.). (2002). Handbook of industrial cell culture:
m	ammalian, microbial, and plant cells. Springer Science & Business Media.
Online R	Resources
1. A	Beginner's Guide to Cell Culture: Practical Advice for Preventing Needless
P	roblems - PMC (nih.gov)
2. A	In Introduction to Plant Tissue Culture: Advances and Perspectives - PubMed
(r	nih.gov)
3. N	A A A A A A A A A A A A A A A A A A A

Assessment (Embedded course)

CAT, Activity and Learning Task(s)^{*}, Mini project, MCQ, End Semester Examination (ESE) Lab Workbook, Experimental Cycle tests, viva-voce, etc...

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution		Ir	iternal Expert(s)		
Dr. Lipin Dev, Scientific Director , Vee Tee Ecogreen Pvt Ltd, Angamaly, Kerala	Dr. Dr Ananthasubramanian Muthusamy, Professor, PSG College of Technology, Coimbatore		A Dr.	Dr. K. Kumaresan ssociate Professor . P. Muthukumaran sistant Professor II		
Recommended by BoS on	14.08.2024					
Academic Council Approval	No.27		Date	24.08.2024		

24MDT504	BIOPRODUCT SEPARATION AND	L	Τ	P	J	C
24MBT504	PURIFICATION ENGINEERING	3	0	0	0	3
PC		SD	G	9	9, 12	

Pre-requisite courses	Nil	Data Book / Codes / Standards (If any)	Nil
-----------------------	-----	--	-----

Course (Objectives**: The purpose of taking this course is to:
1	To understand and apply various cell lysis techniques (physical, chemical,
	enzymatic, and osmotic) to optimize the release of intracellular products in
	bioprocesses, ensuring efficient bioproduct recovery.
2	To evaluate and optimize primary bioseparation methods (membrane filtration,
	centrifugation, and emerging hybrid technologies) for enhancing the efficiency of
	separation processes in biomanufacturing.
3	To design and analyze bioprocessing systems that incorporate integrated strategies
	for continuous processing, scale-up, and techno-economic evaluations, ensuring
	cost-effectiveness and scalability in bioproduct recovery.

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course Outcomes:	After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)
CO 1	Apply advanced physical, chemical, enzymatic, and osmotic	Ар
	cell lysis techniques to optimize the recovery of intracellular	
	bioproducts from various cell types.	
CO 2	Analyze primary bioseparation techniques such as membrane	An
	filtration, centrifugation, and emerging hybrid technologies for	

	effective separation of biomolecules in biomanufacturing.	
CO 3	Evaluate precipitation strategies and chromatographic methods for the efficient isolation and purification of bioproducts, incorporating simulation-based design and optimization.	E
CO 4	Develop process flow diagrams and conduct techno-economic evaluations to assess the cost-effectiveness and scalability of bioproduct recovery processes.	E
CO 5	Design integrated and scalable bioprocessing workflows, leveraging continuous processing strategies and Process Analytical Technology (PAT) for real-time monitoring and automation.	С

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)					
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engineering tools, interdisciplinary implementation6
1.	3		3	2	2	
2.	3	3	3	3	3	
3.	3	3	3	3	2	
4.	3	3	3	3	3	3
5.	3	2		2	3	3

Course Content	
CELL LYSIS TECHNQUIES	9 Hours
Physical methods: High-pressure homogenization, impact of multiple passes,	
scale-up considerations. Bead milling: Optimization of bead size/composition,	
continuous vs. batch operation, energy efficiency. Ultra sonication: probe	
design, scalability challenges. Chemical Methods:Detergent-based lysis, Novel	
surfactants, optimization, selective permeabilization. Enzymatic lysis:	
Engineered lysozymes. Solvent extraction: Green solvents, switchable solvents,	
ionic liquids. Osmotic lysis: Pulsed osmotic treatments, osmolyte selection,	
combined approaches.	
Case study: Enhancing lysis efficiency in microbial, plant, and animal cell	

bioprocesses	
PRIMARY BIOSEPARATION Membrane Filtration Technologies: Tangential flow filtration (TFF), high- performance TFF (HPTFF), vibrating membrane filtration. Centrifugation	9Hours
Techniques: Disc stack centrifugation, continuous tubular centrifugation, zonal centrifugation. Emerging Hybrid Technologies: Centrifugal membrane filtration, acoustic wave-enhanced filtration.	
AI and Machine Learning in Bioseparation Processes:Introduction to the role of AI and machine learning in optimizing the downstream processing	
ISOLATION AND PURIFICATION OF BIOPRODUCT	9 Hours
Precipitation techniques. Liquid-liquid extraction: Aqueous Two-Phase Systems (ATPS). Adsorption. Chromatography: column selection, Packing material selection; Testing procedure for packed columns; Calculation for number of	
theoretical plates; Asymmetry and design aspects; Theory, practices and application of Affinity chromatography, Gel permeation chromatography, Ion exchange chromatography and Hydrophobic interaction chromatography. Case study: Simulation of chromatographic processes and precipitation reactions using simulation software.	
FINAL POLISHING AND ECONOMIC EVALUATION	9 Hours
Lyophilization, spray drying, crystallization. Introduction to Process Design and	
development of process flowsheets using super pro. Economical analysis:	
Capital Cost Estimation, Operating Cost, Estimation and Profitability Analysis.	
Case study: Techno economical analysis of high value and low volume	
bioproducts	
PROCESS INTEGRATION AND SCALE-UP	9 Hours
Continuous processing: Benefits, challenges, and scale-up considerations. Process intensification: Combining unit operations for enhanced productivity. Case studies: Successful integration of continuous bioprocessing strategies. Process Analytical Technology (PAT):Real-time monitoring, in-line sensors, automation in bioprocessing.	

Theory 45	Tutorial	0	Practical	0	Project	0	Total 45
Hours:	Hours:		Hours:		Hours:		Hours:

Learn	Learning Resources*						
Textb	ooks						
1.	Harrison, R. G., P. W. Todd, S. R. Rudge, and D. P. Petrides. Bioseparations Science						
	and Engineering. 2nd ed. Oxford: Oxford University Press, 2015.						
2.	Scopes, R. K. Protein Purification: Principles and Practice. 2nd ed. New Delhi:						
	Narosa Publications, 2005.						
3.	Li, Y., and S. K. Khanal. "Bioenergy: Principles and Applications." In Bioenergy, 505-						
	520. John Wiley & Sons, 2016.						
Refer	ence books/ Web Links						
1.	Forciniti, D. Industrial Bio-separation: Principles and Practice. Oxford: Blackwell						

Publishing, 2008.

- 2. Ghosh, R. *Principles of Bioseparations Engineering*. Singapore: World Scientific Publishing, 2006.
- 3. Janson, J. C., ed. *Protein Purification: Principles, High Resolution Methods, and Applications.* Vol. 149. Hoboken, NJ: John Wiley & Sons, 2011.
- 4. Sofer, G. K., and L. Hagel. *Handbook of Process Chromatography: A Guide to Optimization, Scale-Up, and Validation.* London: Academic Press, 2014.

Online Resources

1. https://archive.nptel.ac.in/courses/102/106/102106022/

Assessment (Theory course)

CAT, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE)

Course Curated by								
Expert(s) from Industry	Expert(s) fror Education In	0	Internal Expert(s)					
Dr. Lipin Dev,	Dr. N. Selvaraju	, Associate	Dr. M. Shanmugaprakasl					
Scientific Director,	Professor, IIT (Guwahati,	Associate Professor					
Vee Tee Ecogreen Pvt Ltd,	Assan	n l	Dr. Ram K					
Angamaly, Kerala	Assistant Professor III							
Recommended by BoS on	14.08.2024							
Academic Council Approval	No.27		Date	24.08.2024				

24MBP505		L	Τ	P	J	C
24NIDE 303	BIOPRODUCT DEVELOPMENT LAB I	0	0	4	0	2
РС		SD	G	9	,12	

Pre-requisite courses	Nil	Data Book / Codes /	Nil
		Standards (If any)	

Course	Objectives**:	The purpose of taking this course is to:					
1	Equip students wi	th hands-on experience in key bioproduct development processes,					
	including gene exp	pression, bioprocess engineering, process simulation, and					
	bioproduct recovery and purification.						
2	Enable students to design, optimize, and execute experiments, applying their						
	theoretical underst	tanding to address real-world bioproduct development challenges					
	effectively.						
3	Develop students'	ability to critically analyze experimental results and foster					
	innovative solutions for bioproduct development and commercialization in the						
	biotechnology ind	ustry.					

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course Outcomes*** :	After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)
CO 1	Apply advanced molecular techniques such as RT-PCR, qPCR,	Ар
	SOE PCR, and Nested PCR to optimize recombinant protein	
	expression, confirm its presence using Western blotting, and	
	diagnose pathogens or identify foreign genes in genetically	
	modified crops.	
CO 2	Design, simulate, and optimize bioprocesses using tools like	An
	SuperPro Designer and MATLAB for material and energy	
	balance, unit operations, and fermentation kinetics to enhance	
	industrial production of biomolecules such as monoclonal	
	antibodies and biodiesel.	
CO 3	Apply advanced techniques such as protein precipitation, affinity	Ар
	chromatography, ion exchange chromatography, gel filtration	
	chromatography, and ultrafiltration to recover, purify, and	
	concentrate biomolecules effectively for industrial and research	
	applications.	

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engineering tools, interdisciplinary implementation6		
1.	3							
2.	3							
3.					3	3		

Course Content

GENE	EXPRESSION	10 Hours
1.	Optimization of inducer concentration for recombinant protein	
	expression.	
2.		
3.		
4.	QPCR for identification of foreign genes from genetically modified	
	crops.	
5.	RAPD for DNA fingerprinting.	
BIOP	ROCESS ENGINEERING	5 Hours
1.	Batch Fermentation : Operation and Kinetic Parameter Estimation	
PRO	CESS SIMULATION	5 Hours
1.	Introduction to SuperPro Designer – Material and Energy balance	
2.	Simulation of Batch and continuous operations	
3.	Simulation of monoclonal antibodies production	
4.	Simulation of biodiesel from degummed oil production	
5.	Modelling batch, fed-batch & continuous fermentation kinetics using	
	MATLAB	
BIOP	RODUCT RECOVERY AND PURIFICATION	10 Hours
1.	Protein Precipitation Using Ammonium Sulfate	
2.	Affinity Chromatography for Protein Purification	
3.	Ion Exchange Chromatography for Protein Separation	
4.	Gel Filtration Chromatography (Size Exclusion Chromatography)	
5.	Ultrafiltration for Concentration and Desalting	

Theory	0	Tutorial	0	Practical	30	Project	0	Total 30
Hours:		Hours:		Hours:		Hours:		Hours:

Learn	ing Resources*
Textbo	ooks
1.	Lewin, Benjamin. Genes. 12th ed. Jones & Bartlett Publishers, 2017.
2.	Doran, Pauline M. Bioprocess Engineering Principles. 2nd ed. Academic Press, 2013.
3.	Scopes, Robert K. Protein Purification: Principles and Practice. 2nd ed. Narosa
	Publications, 2005.
Refere	ence books/ Web Links
1.	Shuler, Michael L., and Fikret Kargi. Bioprocess Engineering: Basic Concepts. 2nd ed.
	Prentice Hall, 2002.
2.	Ladisch, Michael R. Bioseparations Engineering: Principles, Practice, and Economics.
	2nd ed. Wiley, 2018.
3.	Walls, Daniel, and Ewa Toth. Protein Chromatography: Methods and Protocols. 2nd ed.
	Humana Press, 2017.
4.	Koutinas, Michalis, ed. Computer Aided Applications in Biopharmaceutical
	Technology. Elsevier, 2020.

- Sinclair, Craig, and Salvador García Munoz, eds. Process Systems Engineering for Biochemical Engineering: Advanced Modeling and Analysis Tools for Bioprocess Simulation. CRC Press, 2016.
- 6. Green, Michael R., and Joseph Sambrook. *Molecular Cloning: A Laboratory Manual.* 4th ed. Cold Spring Harbor Laboratory Press, 2019.

Online Resources

- 1. https://ocw.mit.edu MIT OpenCourseWare Molecular Biology Techniques
- 2. https://www.intelligen.com/ SuperPro Designer and MATLAB Tutorials by Intelligen, Inc.
- 3. https://www.cytivalifesciences.com Protein Purification Guide by GE Healthcare

Assessment (Practical course)

Lab Workbook, Experimental Cycle tests, viva-voce, etc...

Course Curated by								
Expert(s) from Industry	Expert(s) fror Education In	U	Ir	nternal Expert(s)				
Dr. Lipin Dev, Scientific Officer , Vee Tee Ecogreen Pvt Ltd, Angamaly, Kerala	Dr. N. Selvaraju Professor, IIT (Assan	Guwahati,	A	A. Shanmugaprakash ssociate Professor Dr. Ram K sistant Professor III				
Recommended by BoS on	14.08.2024	·						
Academic Council Approval	No.27		Date	24.08.2024				

R-24 M.Tech Biotechnology

SEMESTER II

24MBI506		L	Τ	P	J	C
24MIDI300	COMPUTATIONAL BIOLOGY	3	0	2	0	4
РС	COMI UTATIONAL BIOLOGI		G		3,9	

Dra raquisita aquesas	NI	Data Book / Codes /	NI
Pre-requisite courses	1911	Standards (If any)	1811

Course	Objectives**:	The purpose of taking this course is to:		
1	Develop expertise i	n biological sequence alignment, phylogenetic analysis, protein structure		
	analysis, molecular	docking for drug design, and machine learning techniques.		
2	Gain hands-on expe	rience in sequence alignment, protein modelling, drug design, and		
	neural networks through practical exercises and case studies.			
3	Apply acquired skil	ls to real-world problems, enhancing understanding and capability in the		
	areas of sequence as	nalysis, structural modelling, and computational drug design.		

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course Outco mes*** :	After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO1	Apply sequence alignment techniques to evaluate the similarity between biological sequences using appropriate tools.	Ар
CO2	Analyze protein structures to compare their stability and folding patterns for accurate structural predictions.	An
CO3	Evaluate molecular docking approaches and post-processing techniques to optimize drug-target interaction predictions.	Е
CO4	Analyze molecular dynamics simulations to interpret conformational changes and their impact on molecular behavior.	Ap
CO5	Create machine learning models for biological data analysis to enhance predictive accuracy in computational biology.	С
CO6	Compare and contrast various force field models and energy minimization techniques to assess their effectiveness in simulations.	E

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental	Modern engineering tools, interdisciplinary implementation		
1.	3							
2.	3							
3.					3	3		
4.		3	3					
5.	3		3		3	3		
6.	3			3	3	3		

Course Content	
SEQUENCE ALIGNMENT AND PHYLOGENETIC ANALYSIS	12 Hours
Biological Databases: Classification and Functions, Sequence Alignment Basics - Dotplot, Measures of sequence similarity, Scoring schemes; Dynamic Programming Algorithm: Optimal pairwise alignment, Scoring Matrices: PAM and BLOSSUM, BLAST Programs: PSI-BLAST, PHI-BLAST. Multiple Sequence Alignment- Assessing the quality of an alignment, Profiles, Hidden Markov Models (HMMs): Introduction and application in MSA; Phylogenetic Analysis - Clustering methods, Cladistics methods, Addressing varying rates of evolution, Bootstrapping Techniques. Case Study 1: Optimizing substitution matrix choice and gap parameters for sequence alignment.	
 Practical Component Basics of Unix Operating System – commands and Scripts. Pairwise , Multiple and Phylgenetic analysis of Biological Sequences 	5 Hours
 PROTEIN STRUCTURE ANALYSIS Protein stability and folding, Superposition of structures and structural alignments – DALI and MUSTANG; Protein structure prediction and modeling – Apriori and Empirical methods; Secondary structure prediction, Homology modeling, fold recognition, Protein structure comparison; Solvent Accessibility - Naccess; residue-residue contacts – short, medium, and long-range contacts, Conformational energy calculation. Practical Component Molecular visualization using Pymol and Chimera 	10 Hours
 Molecular Visualization using Pythol and Children Homology Modelling of Protein – Single, Multiple and Loop Refinement 	5 Hours

	10.11
MOLECULAR DOCKING FOR COMPUTER-AIDED DRUG DESIGN	12 Hours
Tools and Techniques in Computer-Aided Drug Design (CADD), Docking -	
Approaches, Post-Processing of Docking Results - Tools and Strategies; Best Practices	
for Docking-Based Virtual Screening; Virtual Libraries.	
Empirical Force Field Models - Molecular Mechanics - General Features of Molecular	
Mechanics Force Fields, Bond Stretching, Angle Bonding, Torsional Terms,	
Introduction to non-bonded interaction, Electrostatic Interactions, Van der Waals	
Interactions, Hydrogen Bonding in molecular mechanics. Introduction to Energy	
Minimization - Derivative and non-derivative, Applications of Energy Minimization.	
Molecular Dynamics using Simple Model - Setting up and running molecular	
Dynamics simulation - MD at constant temperature and pressure, Conformational	
changes from MD Simulation.	
Practical Component :	
1. Structure-based drug design – Molecular docking using Autodock and Virtual	
screening using Autodock	
 Molecular Dynamics of protein only and protein-ligand complex 	10 Hours
2. Molecular Dynamics of protein only and protein-figure complex	
MACHINE LEARNING TECHNIQUES	8 Hours
Artificial Neural Network - Perceptron, Characteristics of neural networks, models of	
neuron, Single and multi-layer ANN perceptron, back propagation, learning, input -	
hidden and output layer computation, Application of ANN.	
Practical Component:	10 Hours
1. Construction of an ANN-based model for enzyme inhibition studies	

Theory Hours:	45	Tutorial	0	Practical Hours:	30	Project Hours:	0	Total	75
mours.		Hours:		mours.		liouis.		Hours:	

Learn	ing Resources*
Textbo	poks
1.	Pevsner, Jonathan. Bioinformatics and Functional Genomics. 3rd ed. Wiley-Blackwell, 2015.
2.	Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
Refere	ence books/ Web Links
1.	Jones, Neil C., and Pavel A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT
	Press, 2004.
2.	Baxevanis, Andreas D., and B. F. Francis Ouellette. Bioinformatics: A Practical Guide to the
	Analysis of Genes and Proteins. 43rd ed. John Wiley & Sons, 2004.
3.	Gromiha, M. M. Protein Bioinformatics: From Sequence to Function. Academic Press, 2010.
4.	Coumar, S. M., ed. Molecular Docking for Computer-Aided Drug Design: Fundamentals,
	Techniques, Resources and Applications. Academic Press, 2021.

 Da Silva, I. N., D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves. Artificial Neural Networks. Springer International Publishing, 2017

Online Resources

- 1. https://onlinecourses.nptel.ac.in/noc21 bt06/preview
- 2. https://onlinecourses.nptel.ac.in/noc21 bt29/preview
- 3. https://onlinecourses.nptel.ac.in/noc23_cs18/preview
- *Refer to the attached information

Assessment

CAT, Activity and Learning Task(s)*, Mini project, MCQ, End Semester Examination (ESE)

Course Curated By					
Expert(s) from Industry	Expert(s) from Higher Institutions	Education	Internal E	spert(s)	
Dr M. Harishankar	Dr. Anantharai	nan	Dr. Vinohar Stephen Rapheal		
Head- R&D Syngene	Professor and H	Iead	Associate Professor & Head		
Biocon Biologicals Pvt Ltd	Department of Biote	chnology	Dr. Ram K		
Bengaluru	PSG College of Eng	ineering,	Assistant Professor III		
	Coimbatore	e -	Departme	ent of Biotechnology	
Recommended by BoS on	14-08-2024				
Academic Council Approval	No.27	Date		24-08-2024	

24MB	BT507		REGULATORY AFFAIRS IN			L 3	Т 0	P 0	J 0	C 3		
Р	С	BIO	BIOMANUFACTURING PROCESSES SDG				G	3,9				
Pre-requ	isite cour	ses	Nil	Data Book / C book(If any)		Nil Nil		Nil				
Course (Objectives	5:										
The purp	ose of tak	ing thi	s course is to:									
1	Analyze the regulatory framework governing biomanufacturing and risk management strategies for assuring quality techniques in biomanufacturing processes											
2	Examine the risk management strategies to ensure compliance and maintain product safety											
	throughout	it the p	roduct lifecycle									

Course Outcomes** *:	After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO1	Apply the roles and responsibilities of key regulatory bodies such	Ар
	as the FDA and EMA in the biomanufacturing process	
CO2	Analyse Good Manufacturing Practices (GMP) principles to	An
	identify compliance requirements in a given biomanufacturing	
	scenario	
CO3	Analyze the regulatory pathways for biologics to determine the	An

	appropriate approval process for a new biopharmaceutical product.	
CO4	Examine risk management strategies and evaluate their effectiveness in maintaining compliance within biomanufacturing processes	An
CO5	Evaluate post-market surveillance to identify adverse trends and recommend improvements for ongoing product safety and determine the best practices from successful and unsuccessful regulatory strategies.	An

Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engineering tools, interdisciplinary implementation		
1.			3	3				
2.			3	3				
3.			3	3				
4.			3	3				
5.			3	3				

Course Content					
INTRODUCTION TO REGULATORY AFFAIRS IN					
BIOMANUFACTURING					
Overview of Regulatory Bodies: Key regulatory agencies: FDA, EMA and					
international counterparts) and their roles and responsibilities; Regulatory					
Pathways and Processes: Regulatory pathways for biologics: IND and BLA and					
approval processes for new biologics and biosimilars; Regulatory Landscape					
and Frameworks: International regulations and harmonization (ICH guidelines).					
GOOD MANUFACTURING PRACTICES (GMP)					
Principles of GMP: Overview of GMP requirements for biologics; key					
principles: hygiene, training and environmental monitoring; Quality Systems					
and Documentation: Importance of quality systems in GMP, types of					
documentation, and record-keeping practices; Process Validation and					
Equipment Qualification: Steps in process validation (installation, operational,					
and performance qualification), and the importance of equipment calibration					
and maintenance.					
QUALITY ASSURANCE AND RISK MANAGEMENT QUALITY	9 Hours				
---	---------				
ASSURANCE (QA) AND QUALITY CONTROL (QC)					
Definitions and roles, techniques for ensuring product quality and consistency;					
Risk Management Strategies: Identifying and assessing risks in					
biomanufacturing, tools and techniques for risk mitigation : HACCP, FMEA;					
Compliance and Audit Processes: Maintaining compliance with regulations,					
preparing for, and conducting regulatory audits.					
PRODUCT LIFECYCLE MANAGEMENT AND POST-MARKET	9 Hours				
SURVEILLANCE					
Stages of Product Lifecycle: Development, clinical trials, and					
commercialization stages, with regulatory considerations at each stage; Post-					
Market Surveillance: Importance of monitoring product safety and efficacy,					
adverse event reporting, and management; Pharmacovigilance: Role of					
pharmacovigilance in biomanufacturing, systems for ongoing safety					
monitoring, and risk assessment.					
REGULATORY CHALLENGES, TRENDS, AND CASE STUDIES	9 Hours				
CURRENT CHALLENGES IN REGULATORY AFFAIRS					
Evolving regulations and technological advancements:impact of globalization					
on regulatory practices; Future Trends in Regulatory Science: Emerging trends					
such as personalized medicine and digital health, potential future directions and					
innovations in regulatory science; Case Studies and Real-World Examples:					
Analysis of successful and unsuccessful regulatory strategies, lessons learned					
from industry case studies.					

Theory 45	Tutorial	0	Practical	0	Project	0 Total	45
Hours:	Hours:		Hours:		Hours:	Hours:	

Learn	ing Resources
Textbo	ooks:
1.	Desai, Mihir A., and Venkatesh Jorapur. Biopharmaceuticals: Biochemistry and
	Biotechnology. CRC Press, 2018.
Refere	ences:
2.	Nally, John D., ed. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total
	Quality Control. CRC Press, 2016
3.	Hockmeyer, William T., and Michael A. Palladino. Biomanufacturing: Principles and
	Applications. Springer, 2017.
4.	Wang, Wei, and Sandeep K. Singh, eds. Formulation and Process Development
	Strategies for Manufacturing Biopharmaceuticals. John Wiley & Sons, 2018.
5.	Poon, C., and Didier R. Thevenot, eds. Emerging Trends in Cell and Gene Therapy.
	Springer, 2015.
Online	e Educational Resources:
6.	https://archive.nptel.ac.in/courses/127/106/127106137/

Assessment (Theory course)

CAT, Activity and Learning Task(s)^{*,} MCQ, End Semester Examination (ESE)

Course Curated by								
Expert(s) from Industry	Expert(s) from Higl Instituti]	Internal Expert(s)				
Dr M. Harishankar	Dr. Jibu Th	omas		Dr.S.Nithya Priya				
Head- R&D Syngene	&D Syngene Professor and Head,		А	ssistant Professor III				
Biocon Biologicals Pvt Ltd	Karunya University	, Coimbatore		Dr.K.Kumaresan				
Bengaluru			1	Associate Professor				
Recommended by BoS on	14.08.2024							
Academic Council Approval	No.27	ſ	Date	24.08.2024				

24MBP508		L	Τ	P	J	C
	BIOPRODUCT DEVELOPMENT LAB II	0	0	2	0	1
РС		SD	G	3	,6 12	

Pre-requisite courses	NIL	Data Book / Codes /	
Pre-requisite courses	NIL.	Standards (If any)	

Course	Objectives**:	The purpose of taking this course is to:					
1	Develop hands-on	expertise in applying advanced analytical techniques such as					
	spectroscopy, chromatography, and thermal analysis for the characterization and						
	evaluation of biological, pharmaceutical, and environmental bioproducts.						
2	Enable students to design and perform experiments tailored to real-world scenarios,						
	ensuring proficiency in quantification, purification, and profiling of various						
	biomolecules using standard and modern instrumentation.						
3	Interpret and valid	ate experimental data with scientific rigor, fostering the ability to					
	troubleshoot analytical procedures and relate experimental outcomes to product						
	quality, regulatory	standards, and sustainability goals.					

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course Outcomes*** :	After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1	Apply advanced analytical techniques (ATR-FTIR, AAS, Kjeldahl) for	Ар
	the quantification of biomolecules and contaminants in biological and	
	environmental samples.	
CO 2	Analyze and optimize bioproduct purification and profiling using	An
	chromatography-based methods such as FPLC, HPLC, HPTLC, and	
	GC.	
CO 3	Evaluate the stability, purity, and functional characteristics of	Е
	bioproducts using integrated instrumental data to support product	

development and process decisions.

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engincering tools, interdisciplinary implementation			
1.	3	3	3	2	2	2			
2.	3	3	3	2	2	3			
3.	3	3	3	3	3	3			

Cours	e Content	
Biomo	lecular Characterization and Analysis:	15 Hours
1.	ATR-FTIR Spectroscopy for Organic Contaminant Detection in Water Samples	
2.	AAS-Based Quantification of Heavy Metals in Acid-Digested Soil	
3.	Determination of Protein Concentration in Biological Samples Using the Kjeldahl Nitrogen Estimation Method	
4.	FPLC-Based Purification of Proteins Using Ion exchange chromatography	
5.	Quantitative Analysis of Active Pharmaceutical Ingredients (APIs) via HPLC	
6.	Phytochemical Profiling of Plant Bioactives Using HPTLC	
7.	Biogas Composition Analysis Using Gas Chromatography (GC)	
8.	Thermogravimetric Analysis (TGA) for Evaluating Thermal Stability of Bioproducts	

Theor Hours	·	Tutorial Hours:	0	Practical Hours:	30	Project Hours:	0	Total Hours:	30	
Learni	Learning Resources*									
Textbo	oks									
1.	Skoog, I	D. A., Holler, F. J.,	& Crouch,	, S. R. (2017). Pr	rinciples	s of Instrumental A	Analysis	(7th ed.).		
	Cengage Learning.									
Refere	nce boo	oks/ Web Links	5							
1.	1. Pavia, Donald L., Gary M. Lampman, George S. Kriz, and Randall G. Engel. Introduction to									
	Spectros	copy: A Guide for	Students o	f Organic Chem	<i>istry</i> . 5th	n ed. Cengage Lea	arning, 2	2014.		

- 2. Crouch, S. R., and J. C. W. Morris. Atomic Absorption Spectroscopy. 2nd ed. Wiley, 2001
- 3. Burgess, J. A., and J. J. Murphy. *Enzyme Assays: Methods and Protocols*. Humana Press, 2016.
- 4. Svensson, Anders, and K. H. Meyer. *Fast Protein Liquid Chromatography (FPLC): Principles and Applications*. Academic Press, 2019.
- 5. Snyder, Lloyd R., Joseph J. Kirkland, and John W. Dolan. *Introduction to Modern Liquid Chromatography*. 3rd ed. Wiley, 2010.
- 6. Wilson, Ivor D., and John Walker. *Gas Chromatography and Mass Spectrometry: A Practical Guide*. 2nd ed. Academic Press, 2020.

Online Resources

1. https://archive.nptel.ac.in/courses/104/106/104106122/

Assessment (Practical course)

Lab Workbook, Experimental Cycle tests, viva-voce, etc...

Course Curated by							
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert(s)					
Dr. Lipin Dev,	Dr. N. Selvaraju, Associate	Dr. M. Shanmugaprakash					
Scientific Director, Vee Tee	Professor, IIT Guwahati, Assam Associate Professor						
Ecogreen Pvt Ltd, Angamaly,		Dr. Ram K					
Kerala		Assistant Professor III					
Recommended by BoS on	14.08.2024						
Academic Council Approval	No.27	Date 24.08.2024					

24MBP509
PC

BIOTECHNOLOGY PROFESSIONAL PRACTICES LAB

 L
 T
 P
 J
 C

 0
 0
 2
 0
 1

 SDG
 9, 6, 13

Pre-requisite courses	Nil	Data Book / Codes / Standards (If any)	Nil
-----------------------	-----	--	-----

Course Objectives:		The purpose of taking this course is to:			
1.	Equip students v	with hands-on experience in R&D, Quality Control (QC), and			
	Quality Assurance (QA) practices, along with exposure to Good Manuf				
	Practices (GMP) in biotech industries.				
2.	Develop compe	tencies in biotechnology process optimization, regulatory			
	compliance, and d	ata analysis through practical exercises and industry interactions.			
3.	Enhance students	' professional communication and career readiness for roles in			
	research, manufacturing, and allied biotech sectors through industry-orient				
	training.				

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Course Outco mes:	After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)
CO1	Demonstrate the ability to analyze, interpret, and document biological product quality parameters by applying R&D, QC, and QA practices in biotechnology.	Ар
CO2	Analyze the implementation of Good Manufacturing Practices (GMP) and Good in biopharma and food industries by assessing compliance and identifying key process improvements.	An
CO3	Develop professional competencies for the biotech industry by crafting industry-specific resumes, cover letters, and participating in mock interviews.	С

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)						
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental issues	Modern engineering tools, interdisciplinary implementation	
1.	3	3	3	3	3	3	
2.	3	3	3	3		3	
3.	3	3	3	3	3	3	

Research & Development: Optimization and scale-up of secondary	15 Hours
metabolite production	
Study the impact of media composition and environmental factors on secondary	
metabolite yield, transform small-scale batch and fed-batch culture	
experiments, study growth kinetics and metabolite accumulation, and sssess	
purity using spectroscopic and chromatographic methods.	
QC/QA and GLP/GMP in Biotech Manufacturing:	
Study sterility, endotoxin, and potency tests on biologics, studies as per	
regulatory guidelines, GMP Compliance in Biopharma Manufacturing, simulate	
aseptic processing and contamination control strategies, maintain batch records	
and standard operating procedures (SOPs),	
GMP Standards in Food Biotechnology, perform HACCP (Hazard Analysis and	
Critical Control Points) evaluation, conduct microbial and physicochemical	
testing of food biotech products.	
Industry Career Preparedness	
Workshops on creating effective resumes and cover letters tailored to the	
biotech industry, mock interviews with feedback from industry professionals.	

Theory	0	Tutorial	0	Practical	15	Project	0	Total	15
Hours:		Hours:		Hours:		Hours:		Hours:	

Learning Resources*							
Textbo	ooks						
1.	Fermentation Microbiology and Biotechnology – E.M.T. El-Mansi, C.F.A. Bryce, A.L.						
	Demain & A.R. Allman, CRC Press 4th Edition (2018)						
2.	Good Manufacturing Practices for Pharmaceuticals – Joseph D. Nally, CRC Press, 7th						

Edition (2016)

3. Biotechnology Entrepreneurship: Starting, Managing, and Leading Biotech Companies – Craig Shimasaki, Academic Press, 2nd Edition (2020)

Reference books/ Web Links

- 1. Secondary Metabolism in Microorganisms, Plants and Animals Michael Wink, CRC Press, 1st Edition (2010)
- ICH Quality Guidelines: An Implementation Guide Andrew Teasdale, David Elder & Raymond W. Nims, Wiley, 1st Edition (2017)
- 3. Building a Successful Career in Scientific Research Phil Dee, 1st Edition (2006), Cambridge University Press

Online Resources

- 1. <u>MIT OpenCourseWare Principles of Chemical Science</u>
- 2. <u>U.S. FDA Good Manufacturing Practices (GMP) Regulations</u>
- 3. Biotechnology Industry Organization (BIO) Career Center

Assessment (Laboratory course)

Report preparation, Continuous Assessment, Journal paper discussion

Course Curated by								
Expert(s) from Industry	Expert(s) from Education In	U	Iı	nternal Expert(s)				
Dr. Lipin Dev,	Dr. N. Selvaraju	, Associate	Dr. N.	Sivarajasekar, AP III,				
Scientific Director,	Professor, IIT (Guwahati,	Bi	otechnology, KCT				
Vee Tee Ecogreen Pvt Ltd,	Assan	n						
Angamaly, Kerala								
Recommended by BoS on	14.08.2024							
Academic Council Approval	No.27		Date	24.08.2024				

24MBJ510	TECHNICAL SEMINAR	L 0	T 0	P 0	J 2	C 1
РС			G	1	2	
		_	-			

Dro roquisito coursos	Nil	Data Book / Codes /	NH
Pre-requisite courses	1911	Standards (If any)	1911

Course (Objectives**:	The purpose of taking this course is to:
1	Enhance the abilit	y of self-study
2	To Improve preser	ntation and communication skills
3	3 To Increase the breadth of knowledge.	

**Min requirements- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed

Intermes * * * ·	· · · · · · · · · · · · · · · · · · ·	Bloom's Taxono my Level (BTL)	
Identify and choose appropriate topic of relevance.			
Assimilate literature on technical articles of specified topic and develop comprehension			
Prepare technical report.		E	
Design, develop and delive	r presentation on specified technical topic		
	Jutcomesstudents slIdentify and choose appropAssimilate literature on teccomprehensionPrepare technical report.	students shall be able to Identify and choose appropriate topic of relevance. Assimilate literature on technical articles of specified topic and develop comprehension	

BTL: R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental	Modern engineering tools, interdisciplinary implementation			
1.	3								
2.	3								
3.					3	3			
4.		3	3						
5.	3		3		3	3			

Guidelines

• The student is expected to present a seminar in one of the current topics in the field of Thermal Engineering related issues / technology.

The seminar shall be of 30 minutes duration and give presentation to the Seminar Assessment Committee (SAC).
A faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
In a session of three periods per week, 4 students are expected to present the seminar.
Students are encouraged to use various teaching aids such as power point presentation and demonstrative models.
Students are required to prepare a seminar report in the prescribed format given by the Department.

Theory	0	Tutorial	0	Practical	0	Project	20	Total 2	20
Hours:		Hours:		Hours:		Hours:		Hours:	

Learning Resources*

Textbooks

1. Zeiger, M. (2000). Essentials of Writing Biomedical Research Papers. McGraw-Hill Education.

2. Alley, M. (1996). The Craft of Scientific Presentations. Springer.

Reference books/ Web Links

1. Day, R. A., & Gastel, B. (2012). How to Write and Publish a Scientific Paper. Cambridge University Press.

Online Resources

1. NPTEL Course: Effective Writing – https://nptel.ac.in/courses/109/104/109104032/

2. Coursera: Writing in the Sciences - https://www.coursera.org/learn/sciwrite

3. Elsevier Researcher Academy - https://researcheracademy.elsevier.com/

Course Curated By						
Expert(s) from Industry	Expert(s) from Higher Education Institutions	Internal Expert(s)				
Dr. M.K. Harishankar	Dr.Jibu Thomas	Dr.N.Saraswathy				
Principal Scientist	Associate Professor	Dr.K.Kumaravel				
Syngene International Ltd	Karyunya University	Dr.P.Muthukumaran				

R-24 M.Tech Biotechnology

SEMESTER III

24MBJ601 PW		SO	SOCIAL IMMERSION PROJECT		Г 0		P 0	J 4	C 2
				SI)G	SI)G 3	, 6, 1	3, 15
Pre-requisite courses Nil				Data Book / Code book(If any)Nil			il		
Course	Objectives:								
The purp	ose of taking this	s course is to:							
1	Sensitize students	to real-world so	cietal challenges, especially i	n underse	rved	comn	nuniti	es.	
2	Foster empathy, pr	oblem-solving,	and innovation using biotech	nology.					
3	Integrate field eng	Integrate field engagement with sustainable, ethical, and impactful interventions.							
4	Align student worl	k with relevant S	Sustainable Development Go	als (SDGs).				

Note: Course Objectives:- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed. Number of Course objectives must range from 3 to 5

Course Outcomes***:		After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)	
CO 1	After successful	l completion of this course, the students shall be able to	An	
CO 2	Identify and ana	alyze real-time societal and environmental issues through	Ap	
	direct field enga	agement, considering relevant social, economic, and		
	ecological conte	exts.		
CO 3	Collect, interpre	et, and evaluate field data to design appropriate	Е	
	biotechnologica	l or awareness-based interventions addressing identified		
	community problems.			
CO4	Collaborate effe	ectively with local communities, NGOs, and institutional	Ap	
	bodies to imple	ment context-sensitive and sustainable project solutions.		

RBT levels: Write the abbreviated levels - R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional	Sustainable technology, environmental	Modern engineering tools, interdisciplinary immlementation			
1.	3	3	3	3	3	3			
2.	3	3	3	3	3	3			
3.	3	3	3	3	3	3			
4.	3	3	3	3	3	3			

SIP Activities – Structured Guidelines	
A. Preparation & Orientation	30 Hours
• Understand the scope, objectives, and relevance of SIP.	
• Study successful biotech-based social innovations.	
• Learn about SDGs and how biotechnology aligns with social progress.	
• Identify target community/region (rural or urban underserved).	
• Plan field visit logistics with mentor approval.	
• Map stakeholders relevant to the target community/problem.	
B. Field Engagement	
• Conduct field visits to selected sites.	
• Carry out:	
 Household/community surveys 	
 Interviews with key stakeholders 	
 Observational studies and informal interactions 	
• Document findings through:	
• Written field notes	
• Photo/video logs	
• Recorded interviews (with consent)	
C. Problem Identification & Analysis	
Analyze collected data (quantitative and qualitative).	
• Identify gaps, pain points, and unmet needs of the community.	
• Perform SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis.	
• Formulate a clear, concise problem statement.	
• Validate problem relevance with stakeholders and mentor.	
D. Solution & Proposal Development	
Brainstorm possible biotech/awareness-based interventions.	
• Design a prototype or educational/awareness tool.	
• Develop implementation plan, budget, and impact strategy.	
• Consult with subject experts and community partners.	
• Pilot test intervention in a small sample/group if feasible.	
E. Implementation & Feedback	
• Implement the proposed solution through:	
 Workshops, demonstrations, health/awareness campaigns Prototyme deployment or trial interventions 	
 Prototype deployment or trial interventions 	

- Monitor community participation, feedback, and reaction.
- Modify or adapt the solution based on real-time response.

F. Reporting & Reflection

- Prepare a comprehensive project report including:
 - Background, objectives, methods, outcomes, and challenges
 - Visual documentation (photos, videos, charts)
 - o Ethical, social, and environmental impact analysis
- Submit a **reflective journal** (individual) summarizing personal learning.
- Present the project via **poster and/or oral presentation**.
- Participate in **peer review** and group feedback sessions.

Theory	Tutorial	Practical	Project	30 Total
Hours:	Hours:	Hours:	Hours:	Hours:30

L	Learning Resources					
Τ	extbo	poks:				
	1.	Chambers, R. Participatory Rural Appraisal: Principles and Practice, Earthscan Publications (1994).				
	2.	Gupta, Anil K. Grassroots Innovation: Minds on the Margin Are Not Marginal Minds, Penguin Books				

India (2016).

References:

- Pretty, Jules N. "Participatory Learning for Sustainable Agriculture." World Development, Vol. 23, No. 8 (1995): pp. 1247–1263.
- 2. Leach, Melissa, Ian Scoones, and Andy Stirling. "Dynamic Sustainabilities: Technology, Environment, Social Justice." STEPS Centre Working Paper, Institute of Development Studies, University of Sussex (2010).
- Sachs, Jeffrey D. "From Millennium Development Goals to Sustainable Development Goals." The Lancet, Vol. 379, No. 9832 (2012): pp. 2206–2211.
- 4. Desai, Vandana, and Robert B. Potter (Eds.) The Companion to Development Studies, Routledge (2014).

Online Educational Resources:

- 1. https://swayam.gov.in
- 2. https://nptel.ac.in/courses/121106007 NPTEL course on Sustainable Development
- 3. <u>https://www.un.org/sustainabledevelopment/</u>

Assessment (Practical course)

- 1. Activity and Learning Tasks (Reflective journal, problem scoping report, field report)
- 2. Mini Project Proposal and Implementation Report
- 3. Final Presentation (Poster + Oral defense)
- 4. Peer and Mentor Feedback

Course Curated by								
Expert(s) from Industry	Expert(s) from High Institutio			Internal Expert(s)				
Dr. Lipin Dev,	Dr. Jibu Th	iomas	Dr	[•] Kumaresan K, BT				
Scientific Director,	Professor an	d Head	Dr. Ram K					
Vee Tee Ecogreen Pvt Ltd,	Karunya Uni	iversity	Dr Vinohar Stephen Raphea					
Angamaly, Kerala	Coimbat	ore						
Recommended by BoS on	07.05.2025							
Academic Council Approval	No.		Date	26.06.2025				

24MBJ602	PROJECT PHASE I / INDUSTRY	L	Т	P	J	C
241VIDJ002	PROJECT	0	0	0	20	10
EEC		SDG	Ţ	SDO	G 1-17	7

Dra raquisita goursas	Nil	Data Book / Code	Nil
Pre-requisite courses	1811	book(If any)	1811

Course (Course Objectives:					
The purp	The purpose of taking this course is to:					
1	Identify important social needs and problems for research					
2	To formulate a research component for solve the problem and collect relevant					
	literature survey					
3	Carry out standardization and foundational work					

Note: Course Objectives:- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed. Number of Course objectives must range from 3 to 5

Course Outcomes*** :	After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)
CO 1	Formulate a suitable experimental design by identifying and	An
	defining biotechnological problems through comprehensive	
	literature surveys.	
CO 2	Demonstrate the ability to critically review scientific literature	Е
	and synthesize relevant information to support project planning.	
CO 3	Apply appropriate technical skills to carry out standardization and	Ар
	foundational experimental work.	
CO4	Interpret experimental results effectively and communicate	An

project progress through scientific presentations and reports.

RBT levels: Write the abbreviated levels - R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental	Modern engineering tools, interdisciplinary implementation		
1.	3	3	3	3	3	3		
2.	3	3	3	3	3	3		
3.	3	3	3	3	3	3		
4.	3	3	3	3	3	3		

Theory	Tutorial	Practical	Project	20	Total	20
Hours:	Hours:	Hours:	Hours:		Hours:	

Assessment (Practical course)

Rubrics based Evaluation, Faculty and Panel review, Viva voce, Report Submission

Course Curated by						
Expert(s) from Industry	Expert(s) from Higl Institution			Internal Expert(s)		
Dr. Lipin Dev,	Dr. Jibu Th	omas	Dr	Kumaresan K, BT		
Scientific Director,	Professor an	Professor and Head		Dr. Ram K		
Vee Tee Ecogreen Pvt Ltd,	Karunya Uni	iversity	Dr Vinohar Stephen Raphe			
Angamaly, Kerala	Coimbat	ore				
Recommended by BoS on	07.05.2025					
Academic Council Approval	No.		Date	26.06.2025		

R-24 M.Tech Biotechnology

SEMESTER IV

24MBJ603	PROJECT PHASE II /	L	Т	P	J	C
24WIDJ00J	INDUSTRY PROJECT	0	0	0	40	20
EEC		SDC	T T	SDO	G 1-17	7

Dra raquisita agunsas	Nil	Data Book / Code	NH
Pre-requisite courses	1111	book(If any)	1111

Course (Course Objectives:				
The purp	The purpose of taking this course is to:				
1	Identify important social needs and problems for research				
2	To formulate a research component for solve the problem and collect relevant				
	literature survey				
3	Carry out standardization and foundational work				

Note: Course Objectives:- should cover Knowledge to be Acquired, Skills to be gained, and Competency to be Developed. Number of Course objectives must range from 3 to 5

Course Outcomes*** :	After successful completion of this course, the students shall be able to	Bloom's Taxono my Level (BTL)
CO 1	Formulate a suitable experimental design by identifying and	An
	defining biotechnological problems through comprehensive	
	literature surveys.	
CO 2	Demonstrate the ability to critically review scientific literature	Е
	and synthesize relevant information to support project planning.	
CO 3	Apply appropriate technical skills to carry out standardization and	Ap
	foundational experimental work.	
CO4	Interpret experimental results effectively and communicate	An
	project progress through scientific presentations and reports.	

RBT levels: Write the abbreviated levels - R, U, Ap, An, E, C (Remember, Understand, Apply, Analysis, Evaluate, Create)

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
Course Outcomes (CO)	Independent Research and Development	Technical Report and documentation	Mastery over domain specialization	Bio-based techniques, health, professional ethics	Sustainable technology, environmental	Modern engineering tools, interdisciplinary implementation		
1.	3	3	3	3	3	3		
2.	3	3	3	3	3	3		
3.	3	3	3	3	3	3		
4.	3	3	3	3	3	3		

Theory	Tutorial	Practical	Project	40	Total	40
Hours:	Hours:	Hours:	Hours:		Hours:	

Assessment (Practical course)

Rubrics based Evaluation, Faculty and Panel review, Viva voce, Report Submission

Course Curated by										
Expert(s) from Industry	Expert(s) from Higl Institutio		Internal Expert(s)							
Dr. Lipin Dev,	Dr. Jibu Th	iomas	Dr Kumaresan K, BT							
Scientific Director,	Professor an	d Head	Dr. Ram K							
Vee Tee Ecogreen Pvt Ltd,	Karunya University		Dr Vinohar Stephen Rapheal							
Angamaly, Kerala	Coimbat	ore								
Recommended by BoS on	07.05.2025		1							
Academic Council Approval	No.		Date	26.06.2025						