KUMARAGURU COLLEGE OF TECHNOLOGY,

M. Tech - DATA SCIENCE REGULATION 2024

I to IV Semesters

Department of Information Technology

VISION

The department of Information Technology aspires to become a school of excellence in providing quality education, constructive research, and professional opportunities in Information Technology

MISSION

- To provide academic programs that engage, enlighten, and empower the students to learn technology through practice, service, and outreach
- To educate the students about social responsibilities and entrepreneurship
- To encourage research through continuous improvement in infrastructure, curriculum, and faculty development in collaboration with industry and institutions

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of Data Science Postgraduate Program are

PEO1: Graduates of the program will be employed in industry, government, and entrepreneurial endeavours to have a successful professional career.

PEO2: Graduates of the program will pursue higher education and /or research.

PEO3: Graduates of the program utilize the acquired technical skills and knowledge for the benefit of society.

PROGRAM OUTCOMES (POs)

Graduates of the Data Science Postgraduate Program should have the ability to:

PO1:	An ability to independently carry out research /investigation and development work to
	solve practical problems
PO2:	An ability to write and present a substantial technical report/document
PO3:	Students should be able to demonstrate a degree of mastery over the area as per the
	specialization of the program. The mastery should be at a level higher than the
	requirements in the appropriate bachelor program
PO4:	Apply knowledge of data science methodologies, algorithms, and technologies to
	design, develop, and implement data-driven applications that address real-world
	challenges
PO5:	Develop innovative and ethical data analytics solutions that cater to societal and
	industrial needs

KUMARAGURU COLLEGE OF TECHNOLOGY

INFORMATION TECHNOLOGY REGULATION 2024

M. Tech Data Science Curriculum - 2024 Batch

M. Tech Data Science Curriculum – 2024 Batch									
Semester I									
S.No	Course code	Course Title	Course Mode	Course Type	L	T	P	J	C
1	24DSP501	Technical Communication in Data Science	Practical	HS	0	0	4	0	2
2	24MAI505	Mathematics for Data Science	Embedded	BS	3	0	2	0	4
3	24DSI502	Research Methodology and Ethics	Embedded	BS	3	0	2	0	4
4	24DSI503	Data Analysis and Visualization	Embedded	PC	3	0	2	0	4
5	24DSI504	Artificial Intelligence and Machine Learning	Embedded	PC	3	0	2	0	4
6	24DSI505	Data Security and Privacy	Embedded	PC	3	0	2	0	4
7	2400	Open Elective – I	Theory	OE	3	0	0	0	3
Total Credits									
				To	tal Co	ntact	Hour	s/week	32
	Semester II								
		50	inester 11						
S.No	Course code	Course Title	Course Mode	Course Type	L	Т	P	J	C
S.No			Course		L 0	T	P 4	J	C 2
	code	Course Title Exploratory Research and	Course Mode	Type					
1	code 24DSP506	Course Title Exploratory Research and Ideation	Course Mode Practical	Type HS	0	0	4	0	2
1 2	24DSP506 24DSI507 24DSI508 24DS-0	Course Title Exploratory Research and Ideation Bigdata Technologies Natural language Processing	Course Mode Practical Embedded	HS PC	0 3	0	4 2	0	2 4 4 3
1 2 3	24DSP506 24DSI507 24DSI508 24DS-0 24DS-0	Course Title Exploratory Research and Ideation Bigdata Technologies Natural language Processing Techniques	Course Mode Practical Embedded Embedded	HS PC PC	0 3 3	0 0	4 2 2	0 0	2 4 4 3 3 3
1 2 3 4	24DSP506 24DSI507 24DSI508 24DS-0 24DS-0 24DS-0	Course Title Exploratory Research and Ideation Bigdata Technologies Natural language Processing Techniques Professional Elective – I	Course Mode Practical Embedded Embedded Embedded	HS PC PC PE	0 3 3 *	0 0 0 *	4 2 2 *	0 0 0 *	2 4 4 3 3 3
1 2 3 4 5	24DSP506 24DSI507 24DSI508 24DS-0 24DS-0	Course Title Exploratory Research and Ideation Bigdata Technologies Natural language Processing Techniques Professional Elective – I Professional Elective – II	Course Mode Practical Embedded Embedded Embedded Embedded	HS PC PC PE PE	0 3 3 *	0 0 0 * * * * 0	4 2 2 * * *	0 0 0 * * * * 0	2 4 4 3 3 3 3
1 2 3 4 5 6	24DSP506 24DSI507 24DSI508 24DS-0 24DS-0 24DS-0	Course Title Exploratory Research and Ideation Bigdata Technologies Natural language Processing Techniques Professional Elective – I Professional Elective – II Professional Elective – III	Course Mode Practical Embedded Embedded Embedded Embedded Embedded	HS PC PC PE PE PE	0 3 * * * *	0 0 0 * * * * 0	4 2 2 * * *	0 0 0 * * * *	2 4 4 3 3 3

Semester III									
S.No	Course code	Course Name	Course Mode	Course Type	L	Т	P	J	С
1	24DS-0	Professional Elective – IV	Theory	PE	*	*	*	*	3
2	24DSJ601	Project Phase-I	Project	PRJ	0	0	0	20	10
3	24DSJ603	Internship*	Project	PRJ	0 0		0	0	2
	1	,		1	I	7	Total (Credits	15
				То	tal Co	ntact	Hour	s/week	24
* Man	datory for a mi	nimum period of Three Weeks							
		Sei	mester IV						
1	24DSJ602	Project Phase-II	Project	PRJ	0	0	0	40	20
	•			•		1	Total (Credits	20
Total Contact Hours/week								40	

LIST	LIST OF PROFESSIONAL ELECTIVES									
S.No	Course code	Course Title	Course Mode	Course Type	L	Т	P	J	C	
1	24DSE001	Internet of Things	Embedded	PE	2	0	2	0	3	
2	24DSE002	Cloud and Data Engineering	Embedded	PE	2	0	2	0	3	
3	24DSC003	Generative AI	Embedded	PE	2	0	2	0	3	
4	24DSE004	Computer Vision	Theory	PE	3	0	0	0	3	
5	24DSC005	Blockchain Technologies and DApp Development	Embedded	PE	2	0	0	2	3	
6	24DSC006	Network Science and Social Analytics	Embedded	PE	2	0	2	0	3	
7	24DSC007	Business Intelligence and Strategic Decision Analytics	Embedded	PE	2	0	2	0	3	
8	24DSC008	Advanced Geospatial Data Science	Embedded	PE	2	0	2	0	3	

OPEN	OPEN ELECTIVES									
S.No	Course code	Course Title	Course Mode	Course Type	L	Т	P	J	C	
1	24MEO001	Sustainable Innovations and Practices	Theory	OE	3	0	0	0	3	
2	24MEO002	Electric and Autonomous Mobility	Theory	OE	3	0	0	0	3	
3	24IEO074	Modern Financial Strategies and Innovations	Theory	OE	3	0	0	0	3	
4	24IEO075	Sports Analytics and Emerging Technologies	Theory	OE	3	0	0	0	3	
5	24IEO076	Healthcare Innovation and Technology	Theory	OE	3	0	0	0	3	
6	24IEO077	Corporate Strategy and Innovation	Theory	OE	3	0	0	0	3	
7	24IEO078	Gamification and Gaming	Theory	OE	3	0	0	0	3	
8	24IEO079	Environmental Innovations and Management	Theory	OE	3	0	0	0	3	

Semester-wise Credits				
Semester – I	25			
Semester – II	22			
Semester – III	15			
Semester – IV	20			
Total Credits	82			

Course types	Credits
Humanities and Social Sciences	4
Basic Sciences	8
Professional Core	20
Professional Elective	12
Open / General Electives	6
Experiential Learning (Projects/Internship)	32
Total Credits	82

24DSP501	Technical Communication in Data	L 0	T 0	P 4	J	C 2
HSS	Science	SDO	J	4	, 9	
Pre-requisite cours	es Nil Data Book / Co Standards (If a			N	ΙA	

	L.	
Course	Objectives:	The purpose of taking this course is to:
1	Develop the skills no results to diverse and	ecessary to effectively communicate complex data science concepts and iences.
2	Create clear, concise data science.	, and compelling technical documents, presentations, and visualizations in
3	Understand the key considerations in data	principles of technical writing, data storytelling, and the ethical a science.
4	Present data-driven i stakeholders.	nsights in a manner that is accessible to both technical and non-technical

Course C	After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1	Understand the principles of technical communication and their application in data science and develop familiarity with the key terminology and language used in data	
	science.	
CO 2	Develop clear and concise technical documents, reports, research papers, presentations, and documentation.	Ap
CO 3	Enhance storytelling and visualization skills to create compelling narratives around data.	An
CO 4	Tailor technical communication to different audiences, including peers, management, and the public.	An

(00)	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
sət	1	2	3	4	5				
Course Outcomes	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions				
1	2	3	3						
2	2	3	3						
3	2	3	3						
4	2	3	3						

Course Content VOCABULARY FOR DATA SCIENCE Basic Sentence Structure in Technical Writing, Overview of Data Science Terminology, Commonly Used Data Science Acronyms and Abbreviations, Key Data Science Vocabulary: Statistics, Machine Learning, AI, etc., Using Precise Language to Describe Data and Algorithms, Common Phrasing and Sentence Structures in Data Science Writing, Building a Technical Vocabulary Bank. Demonstrate command of Data Science vocabulary by writing short papers on Data Science fields.

Signature of the BOS Chairman	

COMPREHENDING DATA SCIENCE THROUGH REPORTS Identifying Key Ideas and Supporting Details, Summarizing Technical Content, Reading	12 Hours
Strategies for Understanding Complex Data Science Texts, Structure of a Technical Report,	
Writing Clear and Concise Abstracts, Developing an Introduction, Methodology, and Conclusion, Using Data Visualizations and Explaining Results, Structure of a Research Paper in Data Science,	
Developing Logical Arguments and Supporting Evidence and Citation Styles and Avoiding Plagiarism.	
Develop the ability to comprehend data science literature and write technical reports.	
DOCUMENTATION, AND PREPARING PROJECT REPORTS IN DATA SCIENCE REPORTING	12 Hours
Writing User Manuals and Technical Documentation, Documenting Code and Algorithms, Creating Data Science Project Reports, Best Practices for Clear and Effective Documentation.	
Understand the structure and elements of a document, research article, etc. in data science, and represent the same.	
ORAL PRESENTATIONS AND COLLABORATION IN DATA SCIENCE	12 Hours
Structuring a Data Science Presentation, Using Visual Aids Effectively (Graphs, Charts, Tables), Techniques for Explaining Complex Data Clearly, Handling Questions and Engaging the	
Audience, Effective Communication in Data Science Teams, Discussing Data Science Concepts in English, Collaborative Writing and Peer Reviews, Managing and Leading Data Science Meetings.	
Develop Oral Presentation skills and contribute to collaborative communication.	
CASE STUDIES, PROJECTS, AND PRESENTATIONS IN DATA SCIENCE	12 Hours
Analyzing Case Studies in Data Science, Writing Case Study Reports, Group Discussions on Case	
Study Outcomes, Practical Exercises in Data-Driven Decision Making, Individual or Group Projects: Writing and Presenting a Data Science Report, Peer Review and Feedback Sessions,	
Final Presentation of Data Science Projects and Course Reflection and Language Development Plan.	
Analyze case studies and prepare reports on case studies in Data Science.	

Theory		Tutorial		Practical		Project		Total	
Hours:	0	Hours:	0	Hours:	60	Hours:	0	Hours:	60

Textbooks

- 1. Leo Finkelstein, Jeanine Elise Aune and Leslie Potter "Technical Writing for Engineers & Scientists" Fourth Edition, McGraw Hill, (2016)
- 2. Jeff Leek, "The Elements of Data Analytic Style" First Edition, (2015)
- 3. Foster Provost and Tom Fawcett, "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking" First Edition, Shroff, (2013)

Reference books/ Web Links

Towards Data Science

Online Resources

- 1. English for Science, Technology, Engineering, and Mathematics | Coursera
- 2. Data Science Ethics Professional Certificate | edX

Signature of the BOS Chairman

Assessment

Assignments/Reports, Oral Presentation, Model Exam

Course Curated by								
Expert(s) from Industry	Expert(s) from Higl Institution			Internal Expert				
-	-		Dr. P. C.	Thirumal,				
			Departn	nent of Information				
	Technology			ogy				
Recommended by BoS on	16.08.2024							
Academic Council Approval	No: 27		Date	24.08.2024				

24MAI505		L	T	P	J	C
	Mathematics for Data Science	3	0	2	0	4
BS		SDG 3,4,8		3,4,8,9	,11,1	2,13

Dwa waquisita aayygag	Nil	Data Book / Codes /	Normal
Pre-requisite courses	INII	Standards (If any)	Distribution Table

Course	Objectives:	The purpose of taking this course is to:				
1	Develop a strong for	undation in vector spaces and linear transformations to enable students to				
	solve matrix operations, eigenvalue problems, and their applications in data science.					
2	Provide a solid und	erstanding of probability theory and random variables to help students				
	model, analyze, and solve problems involving uncertainty in data.					
3	Equip students with the ability to analyze distributions and apply statistical theorems such as					
	the Central Limit Th	neorem for data interpretation.				
4		rve fitting, regression analysis, and multivariate analysis techniques to				
	assess predictive mo	odels and reduce dimensionality in large datasets.				
5	Enable students to	apply optimization techniques to solve constrained and unconstrained				
	problems in enginee	ring and data science using methods like Lagrange multipliers.				

Course	Outcomes:	After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)	
CO 1		ties of vector spaces, subspaces, and linear transformations to solve o matrix operations and eigenvalue computation.	Ap	
CO 2	Apply concepts of probabilities, expected values, and Baye's theorem to discrete and continuous random variables in real-world scenarios.			
CO 3	Apply marginal and conditional distributions and apply the Central Limit Theorem and normal distribution to interpret statistical data.			
CO 4		pility of regression models using correlation and regression techniques o data using the method of least squares.	Е	
CO 5		rariate concepts, including principal component analysis (PCA), to asionality and compute covariance and correlation matrices.	Ap	
CO 6		multipliers to solve constrained and unconstrained optimization mine optimal solutions in engineering contexts.	Ap	

(CO)	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
Course Outcomes (Research & Development	Technical Reporting	3 Domain Mastery	4 Data Science Applications	5 Ethical Analytics Solutions				
1	3	2	3						
2	2	1	3						
3	3	1	3						
4	3	2	3						
5	3	2	3						
6	3	2	3						

Signature of the BOS Chairman	

Γ

Course Content	
VECTOR SPACES	8 Hours
Vector spaces and subspaces - Null spaces, column spaces and linear transformations -Bases -	
Dimension of a vector space – Rank – Change of basis – Eigenvalues and Eigenvectors of Real	
Symmetric Matrices – Diagonalization of symmetric matrices – Singular value decomposition.	
Practical Component	8 Hours
Understanding the MATLAB Interface and Basic MATLAB Commands.	
Vectors and Matrices, plotting, saving and loading data, writing and running scripts.	
Understanding the R Interface and Basic R Commands.	
Vectors and Matrices, Plotting in R, Data Frames and Basic Data Manipulation, Importing Data	
from a CSV File, Writing and Running Scripts.	
Basic vector operations, Basis and Dimension in MATLAB, Eigenvalues and Eigenvectors in	
MATLAB, Singular Value Decomposition (SVD) in MATLAB.	
PROBABILITY AND RANDOM VARIABLES	9 Hours
Axioms of probability - Conditional probability - Statistical independence - Law of total	
probability - Baye's theorem - Random variable - Discrete and Continuous random variables -	
Probability mass function – Probability density function – Expected value of a random variable.	
Practical Component	4 Hours
Probability Distributions, Expected Value Calculation in R.	
TWO-DIMENSIONAL RANDOM VARIABLES	9 Hours
Pairs of random variables – Marginal and conditional distributions – Expected values of functions	
of two variables- Central limit theorem - Normal distribution -properties - Bivariate Normal	
distribution – Multivariate Normal distribution.	
Practical Component	4 Hours
Marginal and Conditional Distributions in R, Central Limit Theorem in MATLAB, Normal	
Distribution in R.	
REGRESSION ANALYSIS AND ESTIMATION	9 Hours
Curve fitting by method of least squares – Assessing the reliability of predictions using goodness-	
of-fit measures such as R^2 , Adjusted R^2 , RMSE, MAE, and MAPE – Correlation – Properties of	
$correlation\ coefficient-Linear\ regression-Least\ square\ estimation\ of\ regression\ coefficients-$	
Regression lines – Maximum Likelihood Estimation.	
Practical Component	6 Hours
Correlation, Linear Regression in R and Curve Fitting using Least Squares in MATLAB.	
MULTIVARIATE ANALYSIS	5 Hours
Random vector – Mean Vector – Correlation Matrix - Covariance Matrix – Principal components	
 Population Principal Components - Principal Components from standardized variables. 	
Practical Component	4 Hours
Principal Component Analysis (PCA) in R and Covariance and Correlation Matrix in MATLAB.	
CLASSICAL OPTIMIZATION THEORY	5 Hours
Unconstrained optimization problems – Equality constraints – Lagrange's method.	
Practical Component	4 Hours
Solve constrained optimization problems using Lagrange multipliers in MATLAB.	

Theory	Tutorial		Practical		Project	t To		
Hours: 45	Hours:	0	Hours:	30	Hours:	0	Hours:	75

Textbooks

- 1. Veerarajan T., "Probability, Statistics and Random Process", Tata McGraw Hill, 4th Edition, 2021.
- 2. Devore J. L., "Probability and Statistics for Engineering and the Science", 9th Edition, Cengage Learning, 2021.
- 3. Gupta S.C. and Kapoor V.K., "Fundamentals of Mathematical Statistics", Sultan and Sons, New Delhi, 12th Edition, (2020).
- 4. Richard A. Johnson and Dean W. Wichern, "Applied Multivariate Statistical Analysis", 6th Edition, Pearson Education, Asia, (2019).
- 5. Anderson, T. W., "An Introduction to Multivariate Statistical Analysis", John Wiley and Sons, 4th Edition, (2020).
- 6. Kreyszig, E., "Advanced Engineering Mathematics", Wiley, 10th Edition, (2015).

<u>. Liigiii</u>	Signatu	re of the	, <u>,</u>	<u>11, (201.</u>

7. Sharma J. K., "Operations Research", Macmillan India Ltd, Delhi, 5th Edition, (2019).

Reference books/ Web Links

- 1. Freund John, E. and Miller, Irvin, "Probability and Statistics for Engineering", Duxbury Press, 9th Edition, (2018).
- 2. Devore, J.L., "Probability and Statistics for Engineering and the Sciences", Thomson and Duxbury, Singapore, 9th Edition, (2021).
- 3. Freund, J.E., "Mathematical Statistics", Prentice Hall of India, 7th Edition, (2017).
- 4. Gupta S.C. and Kapur J.N., "Fundamentals of Mathematical Statistics", Sultan & Chand, Publishers, New Delhi, 11th Revised Edition, (2019).
- 5. Johnson, R. A., "Miller & Freund's Probability and Statistics for Engineers", 8th Edition, Pearson Education, (2017).
- 6. Spiegel, M.R. and Stephens, L.J., "Schaum's Outlines: Statistics", Tata McGraw-Hill, 5th Edition, (2020).
- 7. Taha, H.A., "Operations Research: An Introduction", Pearson, 10th Edition, (2017).

Online Resources

- 1. MIT Open Course Ware Introduction to Optimization https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-251j-introduction-to-mathematical-programming-fall-2009/
- 2. NPTEL Probability and Statistics https://nptel.ac.in/courses/111105090
- 3. NPTEL Optimization Techniques https://nptel.ac.in/courses/112106134
- 4. edX Fundamentals of Optimization https://www.edx.org/course/fundamentals-of-optimization
- 5. Coursera Data Analysis with R https://www.coursera.org/learn/data-analysis-r
- 6. edX Introduction to Probability https://www.edx.org/course/introduction-to-probability
- 7. Stack Overflow R Programming https://stackoverflow.com/questions/tagged/r

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by								
Expert(s) from Industry	Expert(s) from Higher Ed Institution	lucation	Internal Expert					
1. Mr. Ramesh V.S., STEPS	,		ta Iyer, Mathematics					
Knowledge Services Private	<u> </u>	ineering,						
Limited, Coimbatore.	Srirangam, Trichy.							
2. Mr.Jayakumar Venkatesan,	2. Dr.C.Porkodi, PSG Co	ollege of						
Valles Marineris International	Technology, Coimbator	e.						
Private Limited- Chennai.	3. Dr.P.Paramanathan,	Amrita						
3. Mr. Imran Khan, GE	Vishwa Vidya	peetham,						
Transportation Company,	Coimbatore.							
Bangalore.								
Recommended by BoS on	16.08.2024							
Academic Council Approval	No: 27	Date	24.08.2024					

Signature of the BOS Chairman	

24DCI502		L	T	P	J	C
24DSI502	Research Methodology and Ethics		0	2	0	4
BS		SD	G		4	

Pre-requisite courses Nil	Data Book / Codes Standards (If any)	NA
---------------------------	--	----

Course	Objectives:	The purpose of taking this course is to:		
1	1 To understand the philosophy of science and ethics.			
2	To understand the research integrity and publication ethics.			
3	To prepare article a	nd submit to the journal.		

Course Outcomes:		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)		
CO 1	Understand the concepts of research and formulate a research problem.				
CO 2	Design and plan the research, collect data, interpret data and organize data.				
CO 3	Demonstrate skill in writing research papers and prepare effective presentation.				
CO 4 Understand the p		hilosophy of science and ethics, research integrity and publication	U		
ethics.					
CO 5	Understand the in	dexing and citation databases.	U		
CO 6	Familiarize the ty	pes of open access publications and research metrics.	U		

Outcomes	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
utco	1	2	3	4	5			
Course Or (CO)	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions			
1	3	2	3	2	2			
2	2	3	2	3				
3	2	3						
4	2	2	1	1	3			
5	1	2			2			
6		2			2			

Course Content	
INTRODUCTION TO RESEARCH METHODS	9 Hours
Definition and Objectives of Research - Scientific Methods, Various Steps in Scientific Research,	
Research planning - Selection of a Problem for Research, Formulation of the Selected Problems	
-Purpose of the Research, Formulation of research objectives - Formulation of research questions	
- Hypotheses Generation and Evaluation -Literature search, and review, Research abstract.	
Practical Component	8 Hours
Problem formulation.	
Formulate research questions for domain specific Problems.	

Signature of the BOS Chairman

RESEARCH DESIGN/PLAN Types and Methods of Research - Classification of Research - Sampling Techniques, Methods of Collecting Primary Data, Use of Secondary Data, Experimentation - Design of Experiments, Survey Research and Construction of Questionnaires - Pilot Studies and Pre-tests - Data Collection methods, Processing of Data, Editing, Classification and Coding, Transcription, Tabulation, Validity and Reliability.	9 Hours
RESEARCH REPORTS/THESIS Structure and Components of Research Report/thesis, Types of Report, Planning of Report/thesis Writing, Research Report Format, Layout of Research Report, Presentation of data and Data Analysis Reporting, Mechanism of writing a research report, Principles of Writing, Writing of Report-Writing of thesis-Differences between thesis and research paper writing. Practical Component 1. Software tool to identify predatory publications 2. Journal finder / journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer, Journal Suggester, etc.	9 Hours 8 Hours
PHILOSOPHY AND ETHICS Introduction to philosophy: definition, nature and scope, concept, branches - Ethics: definition, moral philosophy, nature of moral judgements and reactions. Ethics with respect to science and research - Intellectual honesty and research integrity - Scientific misconducts: Falsification, Fabrication and Plagiarism (FFP) - Redundant Publications: duplicate and overlapping publications, salami slicing - Selective reporting and misrepresentation of data. Practical Component 1. Indexing database - Citation databases Scopus and Web of science. 2. Plagiarism software - Use of plagiarism checking software like Turnitin, Urkund and other open-source software tools.	9 Hours 8 Hours
PUBLICATION ETHICS AND OPEN ACCESS PUBLISHING Publication ethics: definition, introduction and importance -Publication misconduct: definition, concept, problems that lead to unethical behaviour and vice versa, types - Violation of publication ethics, authorship and contributor ship - Identification of publication misconduct, complaints and appeals. Practical Component 1. Research Metrics: Impact Factor of journal as per Journal Citations Report, SNIP, SJR, IPP, Cite Score - Metrics: h-index, g index, i10 Index. 2. Open access publications and initiatives. 3. Upload manuscript to a journal through editorial manager.	9 Hours 6 Hours

Theory		Tutorial		Practical		Project		Total	
Hours:	45	Hours:	0	Hours:	30	Hours:	0	Hours:	75

Textbooks

- 1. C.R. Kothari, Research Methodology Methods and Techniques, Fourth edition, New Age International Publishers, (2019).
- 2. Ranjit Kumar, Research Methodology, A Step-by-Step Guide for Beginners, 4th Edition, Sage Publishing, (2023).
- 3. R. Pannerselvam, Research Methodology, 2nd edition, Prentice Hall India, (2019).
- 4. C. Neal Stewart Jr., Research Ethics for Scientists: A Companion for Students, Wiley Publishing, (2011).

Reference books/ Web Links

1. Paul Oliver, The student's guide to research ethics, Open University Press, McGraw-Hill Education, McGraw-Hill House, second edition, (2010).

Signature of the BOS Chairman

Assessment (Embedded)

Research Assignment, Group Presentation, SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by				
Expert(s) from Industry	Expert(s) from High Institution			Internal Expert
				anivel Muralidaran,
	Department of Mechani Engineering			
Recommended by BoS on	16.08.2024		•	
Academic Council Approval	No: 27		Date	24.08.2024

24DSI503						L	T	P	J	C
		I	Dat	a Analysis and Visualizatio	n	3	0	2	0	4
PC						SDO	J	3,	8, 9	
Pre-requ	isite cours	es	Nil	Data Bool Standards			NA			
Course	Objective	es:		The purpose of taking this cours	se is to:					
1	Gain expertise in exploratory data analysis (EDA), statistical inference, and dimensionality reduction methods to effectively summarize, interpret, and reduce complex datasets.							nality		
2	Handle missing data, perform data imputation, normalize, and scale features to prepare datasets for accurate and meaningful analysis.									
3	_			nt effective visualizations using adv s, identify patterns, and support decis		_	•		nd too	ols to
4	Power BI,	unicate insights, identify patterns, and support decision-making processes. re skills in building dynamic and interactive dashboards using tools such as Tablea BI, and Dash, including real-time data visualization to facilitate real-time decision and data exploration						-		

Course O		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1		ed data analysis techniques and their application as tools for extracting s from complex and large datasets.	U
CO 2		e visualization methods and tools to effectively represent data, ensuring and impact in the communication of analytical results.	Ap
		veness of various visualization techniques by examining their ability to ends, and relationships within the data, while adhering to best practices eation.	
CO 4		data visualizations and interactive dashboards that integrate real-time sual components, facilitating dynamic and insightful data exploration.	Ap
	in business, health	ta analysis and visualization techniques to domain-specific challenges care, finance, and social media, demonstrating the ability to deliver and informed decision-making.	

	Program Outcomes (PO) (Strong-3, Medium - 2, Weak-1)								
es	1	2	3	4	5				
Course	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions				
1	3	2	3						
2	2	2	3	2	2				
3	2	2	3						
4	2	2	3	3	3				
5	2	2	3	3	3				

Signature of the BOS Chairman	

Course Content	
FOUNDATIONS OF DATA ANALYSIS	12 Hours
Exploratory Data Analysis (EDA): Advanced techniques for summarizing data, identifying	
patterns, and outlier detection. Statistical Inference: Hypothesis testing, confidence intervals, and	
p-values in the context of large datasets Data Cleaning and Preprocessing: Handling missing	
data, data imputation, normalization, and feature scaling. Correlation and Causation: Techniques	
for identifying and quantifying relationships between variables.	
Practical Component	8 Hours
Implement Exploratory Data Analysis, Dimensionality Reduction and Data Pre-processing.	
OVERVIEW OF DATA VISUALIZATION	12 Hours
Visualization Principles: Understanding color theory, perceptual principles, and effective visual encoding. Plotting Libraries: Advanced usage of Matplotlib, Seaborn, Plotly, and Bokeh for static and interactive visualizations Geospatial Data Visualization: Techniques for visualizing spatial data, including maps, choropleths, and heatmaps using Folium and Geopandas. Time-Series Visualization: Techniques for visualizing temporal data, including line charts, candlestick charts,	
and horizon charts. Network Visualization: Visualization of complex networks, using tools like	
NetworkX, Gephi, and D3.js. Real-Time Data Visualization.	
Practical Component	8 Hours
Creating complex visualizations using tools like Matplotlib, Seaborn, Plotly.	
ADVANCED VISUALIZATION AND DASHBOARDING	12 Hours
Interactive Dashboards: Creating dynamic dashboards using tools like Tableau, Power BI, and Dash. Custom Visualizations: Building custom visualizations using D3.js - Techniques for visualizing streaming data, using Apache Kafka and real-time dashboards. Visualization Best Practices: Ethical considerations, avoiding misleading visualizations, and ensuring accessibility.	
Practical Component	8 Hours
Creating interactive dashboards using Tableau and Power BI.	
APPLICATIONS AND CASE STUDIES	9 Hours
Business Analytics: Applying data analysis and visualization techniques to business data for	
decision-making. Healthcare Data Visualization: Techniques for visualizing and analyzing	
complex healthcare datasets, including patient records and genomic data. Financial Data Analysis:	
Visualization and analysis of financial data, including stock prices, economic indicators, and	
portfolio performance. Social Media Analytics: Techniques for analyzing and visualizing social	
media data, including sentiment analysis and network graphs.	
Practical Component	6 Hours
Working with large datasets from industries like finance, healthcare, and social media.	

Theory	Tutorial		Practical	Project		Total
Hours: 45	Hours:	0	Hours: 30	Hours:	0	Hours: 75

Textbooks

- 1. McKinney, Wes. Python for Data Analysis. O'Reilly Media, Sebastopol (2022).
- 2. Dykes, Brent. Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals. Wiley, Hoboken (2020).
- 3. Wilke, Claus O. Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O'Reilly Media, Sebastopol (2019).
- 4. Healy, Kieran. Data Visualization: A Practical Introduction. Princeton University Press, Princeton (2018).
- 5. Glass, Russell, and Sean Callahan. The Big Data-Driven Business: How to Use Big Data to Win Customers, Beat Competitors, and Boost Profits. Wiley, Hoboken (2018).

Reference books/ Web Links

- 1. Johnson, David S. R., Data Cleaning and Preparation: A Practical Guide for Data Scientists., CRC Press, Boca Raton (2020).
- 2. VanderPlas, Jake., Python Data Science Handbook: Essential Tools for Working with Data., O'Reilly Media, Sebastopol (2016).

Signature of the BOS Chairman

- 3. Knaflic, Cole Nussbaumer., Storytelling with Data: A Data Visualization Guide for Business Professionals., Wiley, Hoboken (2015).
- 4. Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome., The Elements of Statistical Learning: Data Mining, Inference, and Prediction., Springer, New York (2009).

Online Resources

- 1. https://www.coursera.org/learn/python-for-data-visualization
- 2. https://www.khanacademy.org/math/statistics-probability
- 3. https://www.datacamp.com/courses/dimensionality-reduction-in-python
- 4. https://www.udacity.com/course/data-visualization--ud1009
- 5. https://www.edx.org/micromasters/data-science

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution			Internal Expert		
			Dr. S. Kavitha, Departmen			
	Information Technolog			tion Technology		
Recommended by BoS on	16.08.2024					
Academic Council Approval	No: 27		Date	24.08.2024		

Signature of the BOS Chairman	

24DSI504	A =	tificial Intelligence and Machine	L	T	P	J	C
2 10 5150 1	Ar	tificial Intelligence and Machine	0	2	0	4	
PC		Learning	SDC	j	4,9,	12,1	7
Pre-requisite courses		Nil Data Book / Cod		NA			

Course	Objectives:	The purpose of taking this course is to:
1		a knowledge of advanced AI and machine learning techniques, enabling and and apply sophisticated algorithms for solving complex problems in
2	Enable students to frameworks.	design and implement cutting-edge AI models using modern tools and
3	Develop skills in op scalability.	timizing and evaluating AI and ML models for enhanced performance and
4	Explore the use of r	einforcement learning algorithms to solve problems on open platforms.
5	Address ethical, so applications with a	cietal, and technical challenges in AI, preparing students for real-world broader perspective.

Course Outcomes:		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1	Understand and complex problem	apply advanced machine learning algorithms and techniques to solve ns.	U
CO 2	Design, impleme	ent, and evaluate AI models using state-of-the-art tools and frameworks.	Е
CO 3	Develop and dep	ploy AI systems that address real-world challenges in various domains.	С
CO 4	Evaluate and opt	timize AI and ML models for performance, accuracy, and scalability.	Е
CO 5	Apply reinforcer	nent learning algorithms to solve problems using open platforms.	Ap

(0)	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
) (C	1	2	3	4	5			
Course Outcomes (CO)	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions			
1	3		2					
2		3		2				
3	3			2				
4			2	3				
5	3				3			

Course Content	
MACHINE LEARNING TECHNIQUES	9 Hours
Overview of AI and ML - Deep Leaning - Ensemble Learning Methods: Bagging, Boosting,	Jiours
Random Forests - Dimensionality Reduction Techniques: PCA, t-SNE, UMAP - Representation	
Learning: Auto encoders, Variational Auto encoders - Advanced Neural Network Architectures:	
Convolutional, Recurrent, Transformers.	
Practical Component	6 Hours
Implement ensemble methods and dimensionality reduction techniques. Use frameworks like	
scikit-learn.	
FRONTIER TECHNIQUES IN DEEP NEURAL NETWOKS	9 Hours

Signature of the BOS Chairman

Convolutional Neural Networks (CNNs) and Applications - Transfer Learning and Fine-Tuning	
for Computer Vision Tasks - Generative Adversarial Networks (GANs) and Applications - Object	
Detection - Segmentation – Recognition.	
Practical Component	6 Hours
Develop and fine-tune CNN models and GANs for computer vision tasks using TensorFlow or	
PyTorch.	
NATURAL LANGUAGE PROCESSING AND SPEECH RECOGNITION	9 Hours
Sequence-to-Sequence Models: RNNs, LSTMs, Transformers - Language Models: BERT, GPT,	
ELMo, and Applications - Speech Recognition and Synthesis Using Deep Learning - Multimodal	
Learning and Applications.	
Practical Component	6 Hours
Build and evaluate NLP models including language models and sequence-to-sequence models.	
Use libraries like Hugging Face Transformers.	
AI TECHNIQUES AND APPLICATIONS	9 Hours
Meta-Learning and Few-Shot Learning - Neural Architecture Search (NAS) - Hyper parameter	
Optimization - Federated Learning and Edge AI - Advanced Reinforcement Learning: Actor-	
Critic Methods, Policy Gradient Methods, AI for Autonomous Systems and Robotics.	
Practical Component	6 Hours
Apply reinforcement learning algorithms to solve problems using OpenAI Gym and RL libraries.	
ETHICAL, SOCIETAL, AND POLICY IMPLICATIONS OF AI	9 Hours
Explainable AI (XAI) and Model Interpretability - Adversarial Machine Learning and	
Robustness - Privacy-Preserving Machine Learning Techniques (e.g., Differential Privacy) - AI	
Governance - Policy Frameworks – Regulation - Societal Impact of AI: Case Studies and Future	
Directions.	
Practical Component	6 Hours
Analyse case studies and work on projects addressing ethical concerns and societal impacts of	
AI.	

Theory	Tutorial		Practical	Project		Total	
Hours: 45	Hours:	0	Hours: 30	Hours:	0	Hours:	75

Textbooks

- 1. Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT Press, Cambridge (2016).
- 2. Sutton, Richard S., and Barto, Andrew G. Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018).
- 3. Russell, Stuart, and Norvig, Peter. Artificial Intelligence: A Modern Approach. Pearson, London (2020).
- 4. Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Sebastopol (2019).

Reference books/ Web Links

- 1. Burkov, Andriy. The Hundred-Page Machine Learning Book. Kindle Direct Publishing, Seattle (2019).
- 2. Foster, David. Generative Deep Learning. O'Reilly Media, Sebastopol (2019).

Online Resources

- 1. https://onlinecourses.nptel.ac.in/noc19 cs85/preview
- 2. https://nptel.ac.in/courses/106105077
- 3. https://www.coursera.org/specializations/deep-learning

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by						
Expert(s) from Industry	Expert(s) from High Institution			Internal Expert		
			Mr. K. Manoj, Department of			
			Computer Science and Engineering			
Recommended by BoS on	16.08.2024					
Academic Council Approval	No: 27		Date	24.08.2024		

24DCI505		L	T	P	J	C
24DSI505	Data Security and Privacy	3	0	2	0	4
PC	Duta security and 1117acy	SDO	J	4,	9, 16	6

Pre-requisite courses	Nil	Data Book / Codes / Standards (If any)	NA
		Stanuarus (11 any)	

Cou	rse Objectives:	The purpose of taking this course is to:	
	Comprehend the fundam availability.	ental concepts of data security, including confidentiality, integrity, and	
2	Explore key data protection regulations and standards, such as GDPR, CCPA, HIPAA, and others.		
3	Analyse the ethical consid	derations and societal impacts of data security and privacy decisions.	
4	Develop skills to assess a	nd manage risks associated with data security and privacy.	
5	Apply theoretical knowle	dge to real-world scenarios through case studies and hands-on projects.	

Course Outcomes	After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1	Apply encryption algorithms to ensure confidentiality and integrity in the data using a mathematical approach.	Ap
CO 2	Analyze network security protocols used for secure client-server data communication.	An
CO 3	Examine the threats of data repository and the security policies for secure data management.	An
CO 4	Identify the mitigation steps for the vulnerabilities in data breach.	Ap
CO 5	Relate the security breach with legal regulation to analyze the impact of minimal data security.	An

	Pr	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
es	1	2	3	4	5					
ourse utcomes (O)	Research &	Technical	Domain	Data Science	Ethical					
Course Outcon (CO)	Development	Reporting	Mastery	Applications	Analytics Solutions					
1	3		3	3	2					
2	2		2	3	2					
3	-	2	3	3	3					
4	-	3	3	2	2					
5	2	3	3	2	3					

Course Content	
INTRODUCTION TO DATA SECURITY AND CRYPTOGRAPHIC DATA INTEGRITY	9 Hours
APPROACH	
Data Security Concepts-Security Attacks-Security Services-Security Mechanisms-Model for	
Security-Classical Encryption Principles-Classical Encryption Techniques-Block Ciphers and	
Data Encryption Standards-Block Cipher Design Principles-Advanced Encryption Standard-	
Public Key Cryptography and RSA-Cryptographic Hash Functions-Message Authentication	
Codes.	
Practical Component	6 Hours

Signature of the BOS Chairman

Demonstration of Classical Cryptographic algorithms.	
Analyse the algorithms in a simulator.	
NETWORK AND INTERNET SECURITY	9 Hours
Network access control and cloud security-Data Protection in cloud-Transport Layer Security:	
Web security considerations-Transport Layer Security (TLS)-HTTPS-Secure Shell-Wireless	
Network Security-Electronic Mail Security-IP Security.	
Practical Component	6 Hours
Demonstrate various Email attacks and Phishing related attack using Pen testing tools.	
Demonstrate the protection of sensitive data through encryption to ensure data privacy on HIPAA	
data.	
DATA PRIVACY PRINCIPLES AND DATA STORAGE SECURITY	9 Hours
Data Privacy Principles -Personal Data vs. Sensitive Data-Data Collection, Processing, and	
Storage-Data Ownership and Control-Importance of Privacy Policies- Key Elements of a Privacy	
Policy- Data Protection Measures: Anonymization and Pseudonymization, Secure Data Storage	
and Transmission- Role-Based Access Control (RBAC)- Data Masking- Data Center Security-	
Data Segregation: Logical Segregation and Physical Segregation.	
Practical Component	6 Hours
Apply data minimization principles by removing non-essential fields and ensuring that only	
necessary data is collected and stored.	
Configure access control mechanisms for a database or file storage system.	
DATA THREATS AND THREAT MANAGEMENT	9 Hours
Cyberattacks- Data Breaches- Insider Threats- Physical Threats- Advanced Persistent Threats	
(APTs)- Social Engineering- Risk Assessment-Access control, Firewalls and Intrusion Detection	
Systems (IDS)- Data Backup and Recovery: Regular Backups, Disaster Recovery Planning-	
Monitoring and Incident Response - Compliance and Auditing -Case Studies: Cyber-attacks on	
data breach.	
Practical Component	6 Hours
Demonstration of Social Engineering attacks.	
COMPLIANCE ASSESSMENT AND PRIVACY REGULATIONS	9 Hours
Legal and Ethical Issues in Computer Security: Protecting Programs and Data, Information and	
the Law, Rights of Employees and employers, Redress for Software Failures, Computer Crime,	
Ethical Issues in Computer Security. Legal Regulation Act: General Data Protection Regulation	
(GDPR), California Consumer Privacy Act (CCPA), Personal Data Protection Act (PDPA).	
Practical Component	6 Hours
Demonstration of various mechanism to ensure data is free from software and Hardware related	
attacks.	

Theory	Tutorial		Practical	Project		Total	
Hours: 45	Hours:	0	Hours: 30	Hours:	0	Hours:	75

Textbooks

- 1. William Stallings, Cryptography and Network Security: Pearson Education,7th edition,(2017).
- 2. Gurpreet Dhillon, John Wiley & Sons, Principles of Information Systems Security: Texts and Cases, By, 1st edition, (2006).

Reference books/ Web Links

- 1. David Salomon ,Data Privacy and Security, Springer Professional Computing, (2003).
- 2. Katharine Jarmul, Practical Data Privacy: Enhancing Privacy and Security in Data:,O'Reilly, (2023).
- 3. David Alexander, Amanda Finch, David Sutton, Information Security Management Principles, by Andy Taylor, 3rd edition, BCS, The Chartered Institute for IT Publishers, (2020).
- 4. David Sutton, Cyber Security: A practitioner's guide, BCS, The Chartered Institute for IT Publishers, (2017).

Online Resources

- 1. Data Security and Privacy Training | Udemy.
- 2. Data, Security, and Privacy | Coursera.
- 3. Cyber Security and Privacy Course (nptel.ac.in)

Signature of the BOS Chairman	

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution		Internal Expert			
				oshini, Department of		
			Compute	er Science and Engineering		
Recommended by BoS on	16.08.2024					
Academic Council Approval	No: 27		Date	24.08.2024		

24DSP506	E	Exploratory Research and Ideatio			and Ideation	<u>L</u>	T 0	P 4	J 0	C 2
HSS		-1-	<i>j</i> -	The section and received				2	4,8,9)
Pre-requisite courses			1		Data Book / Co Standards (If a		N	ΙA		
Course Objectiv	es:		The purpo	se of takin	g this course is to):				

Cours	se Objectives: The purpose of taking this course is to:
1	To understand the role of exploratory research in innovation and problem-solving across various disciplines.
2	To apply structured and unstructured research methodologies for gathering and analyzing data relevant to complex challenges.
3	To develop proficiency in ideation techniques such as brainstorming, mind mapping, and the SCAMPER method for creative problem-solving.
4	To evaluate and refine innovative ideas using criteria such as feasibility, impact, and potential for innovation.
5	To effectively communicate research insights and ideation outcomes through written reports and oral presentations.

		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)	
	Understand and a information.	pply various exploratory research methods to gather and analyse	U	
CO 2	Employ ideation techniques to generate creative solutions to complex problems.			
CO 3	Develop skills in bi	rainstorming, mind mapping, and other creative processes.	Ap	
CO 4	Evaluate and refine	ideas to ensure feasibility and innovation potential.	Е	
CO 5	Present research findings and ideas effectively in both written and oral formats.			

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
COS	1	2	3	4	5			
1	3	1	2					
2	3	2	3					
3	2	2	2					
4	3	2	3					
5	1	3	2					

INTRODUCTION TO EXPLORATORY RESEARCH AND IDEATION Importance of exploratory research in innovation-Differences between exploratory and confirmatory research-Overview of the ideation process -When to use exploratory research-Exploratory research questions-Exploratory vs. explanatory research-Advantages and disadvantages of exploratory research. Activity: Explore the differences between exploratory and confirmatory research. Task: Conduct a literature review on a selected topic, summarize findings, and present in groups. Tool/Method: Secondary research, peer discussions, and presentation tools. EXPLORATORY RESEARCH TECHNIQUES 12 Hours

Signature of the BOS Chairman

Literature review and secondary research-Qualitative research methods: interviews, focus groups, and ethnographic studies-Quantitative methods: surveys and data analysis-Tools for organizing and analysing research findings.	
Activity1: Hands-on practice with qualitative research methods (interviews, focus groups,	
ethnographic studies).	
Task : Conduct an interview or focus group related to a specific problem. Document and analyse	
results.	
Tool/Method : Audio/video recording tools, transcription, thematic analysis.	
Activity2: Practice survey design and data analysis for exploratory research.	
Task : Design a survey for a selected research topic, collect data from peers, and analyse the results	
using basic statistical methods.	
Tool/Method: Google Forms/SurveyMonkey, Excel/SPSS for data analysis.	
IDEATION TECHNIQUES	12 Hours
Brainstorming: methods and best practices-Mind mapping and concept mapping-SCAMPER	
(Substitute, Combine, Adapt, Modify, Put to another use, Eliminate, Reverse) technique-Role-	
playing and scenario analysis-Use of digital tools for ideation.	
Activity: Ideation exercises using brainstorming and mind mapping.	
Task: Choose a complex problem, conduct a brainstorming session, and map out ideas using	
digital or manual mind mapping techniques.	
Tool/Method: Mind mapping software (e.g., MindMeister, XMind), SCAMPER technique	
EVALUATING AND REFINING IDEAS	12 Hours
Criteria for evaluating ideas: feasibility, impact, and innovation-Iterative design and prototyping-	
Feedback loops and collaborative refinement-Techniques for overcoming creative blocks.	
Activity: Criteria-based evaluation of ideas generated in previous sessions.	
Task: Refine ideas based on feasibility, impact, and innovation potential using feedback loops	
and peer reviews.	
Tool/Method: Iterative prototyping tools (e.g., Sketch, Figma), peer feedback.	
APPLICATION IN VARIOUS CONTEXTS	12 Hours
Case studies in technology, product design, and academic research-Cross-disciplinary	
applications of research and ideation techniques- Exploratory research data collection-Step-by-	
step example of exploratory research.	
Activity: Develop and present a comprehensive research project, incorporating all stages of	
exploratory research and ideation.	
Task: Choose a real-world problem, conduct exploratory research, apply ideation techniques,	
and present findings.	
Tool/Method: Presentation tools (e.g., PowerPoint, Prezi), report writing.	

Theory		Tutorial		Practical		Project	Total	
Hours:	0	Hours:	0	Hours:	60	Hours: 0	Hours:	60

Signature of the BOS Chairman	

Textbooks

- 1. Michael Lewrick, Patrick Link, and Larry Leife," "The Design Thinking Playbook: Mindful Digital Transformation of Teams, Products, Services, Businesses and Ecosystems",(2020)
- 2. Nigel Cross," "Design Thinking: Understanding How Designers Think and Work", (2019).

Reference books/ Web Links

- 1. Tim Brown," "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", (2019).
- 2. Jeff Gothelf and Josh Seiden," "Lean UX: Designing Great Products with Agile Teams", (2021).
- 3. Hasso Plattner, Christoph Meinel, and Larry Leifer, "Design Thinking Research: Building Innovators" edited by, Springer, (2016).
- 4. Tom Kelley and David Kelley, "Creative Confidence: Unleashing the Creative Potential Within Us All", Crown Business, (2013).
- 5. Tom Kelley and Jonathan Littman, "The Art of Innovation" by, Crown Business, (2001).

Online Resources

- 1. https://www.designkit.org/
- 2. https://www.interaction-design.org/
- 3. https://dschool.stanford.edu/resources

Assessment

Assignments/Reports, Oral Presentation, Project Reviews

Course Curated by							
Expert(s) from Industry	Internal Expert						
				thyavathi, Department of			
			Informat	tion Technology			
Recommended by BoS on	16.08.2024						
Academic Council Approval	No: 27		Date	24.08.2024			

Signature of the BOS Chairman	

24DSI507 PC		Big Data Technologies			<u>L</u>	T 0	P 2	J	C 4	
				8			3	3, 9,11		
Pre-requisite courses		es	Nil		Data Book / Coo Standards (If a		N	ΙA		
Course Objectives: The purpose of taking this course is to:										
1	1 Evaluate Big Data platforms for scalability and data governance challenges.									
2	Master Hadoop architecture and advanced MapReduce techniques for distributed computing					ing.				
3 Design optimized Big Data workflows using Python/Scala and Apache Spark for real-ti- analytics.				-time						
4	Engineer advanced NoSQL solutions for key-value, document, columnar, and graph database in real-world cases.						bases			

Course Outcomes:		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)		
CO 1	Outline scalable data processing systems by exploring the Hadoop and Spark ecosystems.				
CO 2	Practice NoSQL databases and optimize queries for efficient data handling.				
CO 3	3 Analyze machine learning models to large datasets to achieve predictive analytics.				
CO 4	Utilize cloud platforms to effectively manage, store, and perform analytics on big data.				
CO 5	Integrate real-ti	me data processing systems using stream-processing frameworks.	An		

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)											
ıes	1	2	3	4	5							
Course	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions							
1	2		3	3	2							
2	2		3	3	3							
3	3	2	3	3	3							
4	2		3	3	3							
5	3	2	3	3	3							

Course Content	
BIG DATA	8 Hours
Definition, characteristics (Volume, Velocity, Variety, Veracity, Value) - Big Data vs Traditional	
Data - Data generation sources (IoT, social media, Transactions) - Data storage types: Structured,	
Semi-Structured, Unstructured - Data storage, Processing and Scalability - Security and Privacy	
concerns - Data Quality and Governance - Overview of Big Data platforms.	
Practical Component	4 Hours
Hands-on with Hadoop, MapReduce.	

Signature of the BOS Chairman

HADOOP	10 Hours
History and evolution of Hadoop - Hadoop ecosystem and components -Hadoop distributions -	10 mours
Hadoop Architecture: Hadoop cluster architecture - Role of NameNode, DataNode, and	
Secondary NameNode - HDFS (Hadoop Distributed File System): HDFS architecture and	
components - HDFS design and goals - HDFS blocks, replication, and fault tolerance - Setting	
Up a Hadoop Cluster: Single-node and multi-node cluster setup - Configuration files - Managing	
and monitoring Hadoop clusters - Introduction to MapReduce: MapReduce programming model	
- Phases of MapReduce - Combiner and Partitioner in MapReduce - Advanced MapReduce	
concepts (Joins, Counters, Distributed Cache).	4.77
Practical Component	4 Hours
Big Data analytics using cloud services.	
BIG DATA PROGRAMMING PARADIGMS	9 Hours
Functional Programming, Parallel Programming - Introduction to Python/Scala for Big Data -	
Data Processing with Pig and Hive - Introduction to Apache Spark: RDDs, DataFrames, Spark	
SQL - Real-time processing with Spark Streaming - Working with GraphX and MLib - Case	
Study: Analyzing customer behavior.	
Practical Component	10 Hours
Data processing using Hive and Pig.	
Real-time data processing with Apache Spark.	
Data analysis using machine learning algorithms in Spark.	
ADVANCED DATABASE SYSTEMS	9 Hours
NoSQL Databases: Key-Value Stores (Redis, Riak) - Document Stores (MongoDB, CouchDB) -	
Column Stores (HBase, Cassandra) - Graph Databases (Neo4j) - SQL vs NoSQL: ACID vs BASE	
properties - Query optimization, indexing in NoSQL - Case Study: Healthcare data analytics.	
Practical Component	4 Hours
Data ingestion and ETL using Apache Flume, Sqoop.	
REAL-TIME DATA PROCESSING	
Stream Processing: Introduction to real-time data and event-driven architecture - Frameworks:	9 Hours
Apache Storm, Flink, Kafka Streams - Case Studies: Real-time monitoring, Fraud detection -	
Lambda and Kappa Architectures: Combining batch and stream processing -Design and	
implementation for low-latency data processing.	
Practical Component	8 Hours
Building real-time data pipelines using Kafka and Flume.	
Stream processing with Apache Storm, Flink.	

Theory Tutorial Practi		Practical	Project		Total		
Hours: 45	Hours:	0	Hours: 3	0 Hours:	0	Hours:	75

Textbooks

- 1. White, Tom. Hadoop: The Definitive Guide. O'Reilly Media, Sebastopol (2023).
- 2. Holmes, Alex. Hadoop in Practice (2nd Edition). Manning Publications, Shelter Island (2023).
- 3. Alapati, Sam. Expert Hadoop Administration: Managing, Tuning, and Securing Spark, YARN, and HDFS. Addison-Wesley, Boston (2023).
- 4. Aven, Jeffrey. Hadoop in 24 Hours, Sams Teach Yourself. Sams Publishing, Indianapolis (2023).

Reference books/ Web Links

- 1. Karau, Holden, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learning Spark: Lightning-Fast Data Analytics. O'Reilly Media, 2nd Edition, (2020).
- 2. Bradshaw, Shannon, Eoin Brazil, and Kristina Chodorow. MongoDB: The Definitive Guide. O'Reilly Media, 3rd Edition (2019).
- 3. Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, 2nd Edition, (2019).
- 4. Narkhede, Neha, Gwen Shapira, and Todd Palino. Kafka: The Definitive Guide. O'Reilly Media, (2017).

Signature of the BOS Chairman	

Online Resources

- 1. https://www.coursera.org/specializations/big-data
- 2. https://www.coursera.org/specializations/cloudera-big-data-analysis-sql
- 3. https://www.coursera.org/learn/introduction-to-big-data-with-spark-hadoop

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by							
Expert(s) from Industry	Expert(s) from Industry Expert(s) from Higher Education Institution						
			Mr. S. Kanagaraj, Department of Information Technology				
Recommended by BoS on	1.500.000						
Academic Council Approval	No: 27		Date	24.08.2024			

Signature of the BOS Chairman	

24DSI5 PC	81508		Natural Language Processing Techniques			L 3 SD(T 0	P 2 4,	J 0 9, 16	C 4
Pre-requisite courses		Nil	Data Book / Codes / Standards (If any)							
Course	Objectiv	es:	The purpose of taking	this course is to	0:					
1			f the basics of linguistics, rphology, language mode				vant to	o NLP	, incl	uding
2	Implement foundational NLP tasks such as text classification, part-of-speech tagging, and morphological analysis using Python libraries.					g, and				
3	Develop and evaluate parsers for syntactic structures, experiment with word send disambiguation, and explore dialogue systems and question-answering models for real-wor applications.									

Course C		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1		basics of linguistics, probability, and statistics as they relate to Natural essing (NLP) and apply these concepts to NLP tasks.	U
CO 2		Part-of-Speech (POS) Tagger using rule-based, statistical, and machine uches, and evaluate its performance.	Ap
CO 3		element a sequence labelling solution for a given domain, focusing on tasks tity Recognition (NER) or Chunking.	Ap
CO 4		nplement semantic processing tasks and a document indexing and searching g NLP concepts to enhance information retrieval.	Ap
CO 5	_	chatbot using dialogue system principles, including intent recognition and ation, with practical implementation using NLP tools.	С

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)							
COS	1	2	3	4	5			
	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions			
1	2							
2	3		2					
3	3			3				
4		2		3	3			
5		2		3	3			

Course Content	
INTRODUCTION	8 Hours
Natural Language Processing – Components - Basics of Linguistics and Probability and Statistics	
- Words-Tokenization-Morphology-Finite State Automata.	
Practical Component	6 Hours
Implement foundational NLP tasks such as tokenization and morphological analysis using Python	
libraries.	

Signature of the BOS Chairman

STATISTICAL NLP AND SEQUENCE LABELLING	10 Hours
N-grams and Language models -Smoothing -Text classification- Naïve Bayes classifier -	
Evaluation - Vector Semantics - TF-IDF - Word2Vec- Evaluating Vector Models -Sequence	
Labelling – Part of Speech – Part of Speech Tagging -Named Entities –Named Entity Tagging.	
Practical Component	6 Hours
Implement text classification using Python libraries.	
CONTEXTUAL EMBEDDING	9 Hours
Constituency -Context Free Grammar -Lexicalized Grammars- CKY Parsing - Earley's	
algorithm- Evaluating Parsers -Partial Parsing - Dependency Relations- Dependency Parsing -	
Transition Based - Graph Based.	
Practical Component	6 Hours
Develop and evaluate language models, sequence labelling techniques, and parsers for syntactic	
and dependency structures.	
COMPUTATIONAL SEMANTICS	9 Hours
Word Senses and WordNet - Word Sense Disambiguation - Semantic Role Labelling -	
Proposition Bank- FrameNet- Selectional Restrictions - Information Extraction - Template	
Filling.	6 Hours
Practical Component	
Explore semantic role labelling and word sense disambiguation for creation of dialogue systems.	
DISCOURSE ANALYSIS AND SPEECH PROCESSING	9 Hours
Discourse Coherence – Discourse Structure Parsing – Centering and Entity Based Coherence –	
Question Answering -Factoid Question Answering - Classical QA Models - Chatbots and	
Dialogue systems – Frame-based Dialogue Systems – Dialogue–State Architecture.	
Practical Component	6 Hours
Explore discourse analysis by creating dialogue systems and basic question-answering models.	

Theory		Tutorial	Practical	Project	Total	
	Hours: 45	Hours: 0	Hours: 30	Hours: 0	Hours:	75

Textbook

- 1. Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Prentice Hall Series in Artificial Intelligence (2020).
- 2. Samuel Burns "Natural Language Processing: A Quick Introduction to NLP with Python and NLTK". Paperback (2019).

Reference books/ Web Links

- 1. Jacob Eisenstein. "Natural Language Processing", MIT Press (2019).
- Nitin Indurkhya, Fred J. Damerau, "Handbook of Natural Language Processing", Second edition, Chapman & Hall/CRC: Machine Learning & Pattern Recognition, Hardcover (2010).
- 3. Christopher Manning, "Foundations of Statistical Natural Language Processing", MIT Press (2009).

Online Resources

- 1. Natural Language Processing | Coursera
- 2. https://www.mltut.com/best-natural-language-processing-courses-online-to-become-expert/#2-become-a-natural-language-processing-expert-udacity
- 3. https://www.mltut.com/best-natural-language-processing-courses-online-to-become-expert/#7-applied-text-mining-in-python-coursera

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Signature of the BOS Chairman

Course Curated by							
Expert(s) from Industry	ert(s) from Industry Expert(s) from Higher Education Institution			Internal Expert			
			Dr.S.Rajini, Department of				
			Information Technology				
Recommended by BoS on	16.08.2024						
Academic Council Approval	No: 27		Date	24.08.2024			

24DSJ601	
PRJ	

PROJECT PHASE I

L	ı	T	P	•	J	C
0		0	0	1	20	10
SDG		4	,9,	,11		

Duo magnisita agungas	NISI	Data Book / Codes /	NIA
Pre-requisite courses	Nil	Standards (If any)	NA

Cour	Course Objectives:					
The p	urpose of taking this course is to:					
1	To identify and define a research problem in the data science domain with societal or					
	industrial relevance.					
2	To conduct a comprehensive literature survey and gap analysis.					
3	To formulate a clear research methodology and plan of execution.					
4	To document the project idea with a structured interim report					

Cour	rse Outcomes:	
After successful completion of this course, the students shall be able to		Bloom's Taxonomy Level (BTL)
CO 1	Identify a relevant research problem in data science and formulate research objectives.	An
CO 2	Conduct a critical review of existing literature and summarize research gaps.	An
CO 3	Design a suitable methodology or solution framework for the selected problem.	Ap
CO 4	Present the problem statement, methodology and expected outcomes in a structured technical report.	Ap
CO5	Demonstrate initial prototype development or simulation results aligned with the research plan.	Ap

utcomes	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)						
\circ	1	2	3	4	5		
Course (CO)	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions		
1	3				3		
2	3		3				
3		3					
4		3					
			3		3		

Signature of the BOS Chairman

Assessment

Rubrics based Evaluation, Faculty and Panel review, Viva voce, Report Submission

Course Curated by				
Expert(s) from Industry	Expert(s) from Higher Education Institution			Internal Expert
-	-		Dr. N.F	Rajathi ,
			Departi	ment of Information
			Techno	logy
Recommended by BoS on	09.05.2025			
Academic Council Approval	No:28		Date	26.06.2025

24DSJ602	
PRJ	

PROJECT PHASE II

L	T	P	J	C
0	0	0	40	20
SDG		4,	9,11	

Pre-requisite courses	Nil	Data Book / Codes / Standards (If any)	NA
-----------------------	-----	---	----

Cour	Course Objectives:				
The p	urpose of taking this course is to:				
1	To implement and evaluate the proposed solution using appropriate data science tools				
	and techniques.				
2	To interpret and analyze experimental results using relevant metrics.				
3	To demonstrate innovation, ethical practices, and technical mastery in project execution.				
4	To document and present the research outcomes in a professional manner.				

Course Outcomes:					
After successful completion of this course, the students shall be able to					
CO 1	Develop a complete solution or application based on the proposed methodology.	Level (BTL)			
CO 2	Analyze and interpret results using appropriate performance metrics and visualization techniques.	An			
CO 3	Demonstrate innovation, ethical responsibility, and domain mastery in solving the problem.	Ap			
CO 4	Prepare a well-structured, technically sound project report with proper citations and documentation.	Ap			
CO5	Present and defend the project outcomes to a technical audience with clarity and confidence.	Ap			

mes	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)					
e Outcomes	1	2	3	4	5	
Course (CO)	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions	
1	3			3		
2			3	3		
3			3	3	3	
4		3				
5		3	3			

Signature of the BOS Chairman						

Assessment

Rubrics based Evaluation, Faculty and Panel review, Viva voce, Report Submission

Course Curated by							
Expert(s) from Industry	Expert(s) from Higher Education Institution		Internal Expert				
-	-		Dr. N. Rajathi,				
			Department of Information				
			Technology				
Recommended by BoS on	09.05.2025						
Academic Council Approval	No:28		Date	26.06.2025			

PROFESSIONAL ELECTIVES

24DSE001 PE			Internet of Things $\frac{L}{2}$ SDC			T 0	P 2 9, 1	J 0 1, 1	C 3 2	
Pre-requ	isite cours	es	Nil		Data Book / Co Standards (If a		NA			
Course Objectives: The purpose of taking this course is to:										
1	Understand the fundamental concepts, technologies, and architecture of IoT systems.									
2	Explore IoT devices, protocols, data management techniques, and analytics of IoT data.									
3	Design, implement, and analyze IoT systems in real-world applications through hands-on projects and labs.									
4	Address security, privacy, and ethical considerations in IoT deployments.									

Course o		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)	
CO 1	CO 1 Understand the architecture, components, and evolution of IoT.			
CO 2	Design IoT applications using sensors, actuators, and microcontrollers.			
CO 3	Apply IoT protocols and networking technologies, ensuring secure and efficient data transmission.			
CO 4	Analyze dat	a collected from IoT devices and implement data management strategies.	An	
CO 5	CO 5 Understand the security, privacy, and ethical considerations in IoT deployments.			
CO 6	CO 6 Develop solutions for real-world problems using IoT technologies and tools.			

	Program Outcomes (PO) (Strong-3, Medium - 2, Weak-1)								
COS	1	2	3	4	5				
	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions				
1	2		3	3	2				
2	3		2	3	2				
3	3			2	2				
4	3	1		3	3				
5	3			2	1				
6	3	2	3	3	3				

FUNDAMENTALS OF IOT	6 Hours
Overview of IoT: Concepts, terminologies, characteristics and Evolution-IoT ecosystem and	
standards - IoT architecture -types-design considerations- Applications and challenges	
IoT Hardware Platform: IoT Devices-Sensors-Behavior, Selection, Circuits -Actuators -	
embedded system and Microcontrollers, Battery Issue and Energy Management- IoT hardware	
platforms (Arduino, Raspberry Pi- NVIDIA Jetson).	
Practical Component	6 Hours
Set up an IoT development board (e.g., Arduino, Raspberry Pi) and connect various sensors	
(temperature, humidity, motion etc.,).	
IOT PROTOCOLS	6 Hours

	1
Application Layer Protocols-MQTT, CoAP, HTTP, AMQP- Network Layer Protocols:	
6LoWPAN, RPL, IPv6, Zigbee, LoRaWAN, BLE, GSM/GPS- Edge and Fog Computing:	
Concepts and Architectures- Connectivity Challenges in IoT.	4 Hours
Practical Component	
Write a basic script to read data from sensors and display it on a local console.	
DATA STORAGE AND MANAGEMENT FOR IOT	6 Hours
IoT cloud Storage -IoT Core Services-IoT Registry-IoT Rules-IoT Shadows- MQTT/HTTP/Web	
sockets- Computing on the Edge - IoT Greengrass-Deeplens-Time-series databases (InfluxDB,	
TimescaleDB)-IoT data streaming and real-time databases- Security and privacy issues in IoT	
data storage.	8 Hours
Practical Component	
Collect and store IoT data using cloud and local storage solutions.	
IOT ANALYTICS	6 Hours
IoT Analytics- Types of Analytics- Descriptive Analytics -Predictive Analytics-Prescriptive	
Analytics and Decision Making-Time Series Analysis- IoT Analytics Platforms- Open-Source	
Tools for IoT Analytics.	
Practical Component	6 Hours
Process and analyze IoT data in real-time.	
IOT SECURITY	6 Hours
Security Threats and Vulnerabilities-Security Mechanisms: Authentication, authorization, and	
encryption techniques-Secure firmware updates and device management-Privacy Considerations:	
Data privacy regulations (GDPR, CCPA)-Privacy-preserving techniques and data	
anonymization.	
Case Studies: Industries such as smart agriculture, smart transportation, healthcare, and	
environment.	
Practical Component	6 Hours
Build IoT application with sensors (temperature, motion, and lighting etc.,) integrating with cloud	ļ
services.	

Theory	Tutorial		Practical	Project		Total	
Hours: 30	Hours:	0	Hours: 30	Hours:	0	Hours:	60

Textbooks

- 1. Andrew Minteer, Analytics for Internet of Things, Packt Publications Mumbai (2017).
- Rajkumar Buyya, Amir Vahid Dastjerdi, Morgan Kaufmann. Internet of Things: Principles and Paradigms. Elsevier (2016).

Reference books/ Web Links

- 1. Rachael Tatman, Data Science for the Internet of Things, O'Reilly Media (2021).
- 2. David Hanes, Gonzalo Salgueiro, and Patrick Grossetete, IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things, Cisco Press (2017).
- 3. K. K. R. Choo, R. H. J. A. S. M. G. A. Singh, Architecting the Internet of Things: State of the Art, Springer (2016).
- Arshdeep Bahga and Vijay Madisetti, Internet of Things: A Hands-On Approach, VPT Universities Press (2015).
- Olivier Hersent, David Boswarthick, and Omar Elloumi, The Internet of Things: Key Applications and Protocols, Wiley publication (2012).

Online Resources

- 1. Introduction to the Internet of Things and Embedded Systems | Coursera
- 2. IoT (Internet of Things) Wireless & Cloud Computing Emerging Technologies | Coursera
- 3. IoT (Internet of Things) Wireless & Cloud Computing Emerging Technologies | Coursera
- 4. IoT Communications | Coursera

Signature of the BOS Chairman

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by							
Expert(s) from Industry	Expert(s) from Higher Education Institution			Internal Expert			
				hobana, Department of ion Technology			
Recommended by BoS on	16.08.2024	ion reciniology					
Academic Council Approval	No: 27		Date	24.08.2024			

24DSE002		L	T	P	J	C
PE	Cloud and Data Engineering	$\frac{2}{\text{CD}}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	12	3
		SDO	SDG 4,9,12			
Pre-requisite cours	es Nil Data Book / C Standards (I		NA	L		

Course	Objectives:	The purpose of taking this course is to			
1	Understand the key cengineering needs.	concepts of cloud computing and evaluate different cloud platforms for data			
2	Learn to manage and optimize cloud-based resources, including storage, computing, and databases for large-scale data processing.				
3	Implement cloud sec regulatory compliance	urity best practices, focusing on identity management, data protection, and ce.			
4	Design and deploy so time analytics and bi	calable, resilient cloud applications, leveraging advanced services for real- g data processing.			

Course O		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)	
CO 1		ndamental Concepts of Cloud Computing and Compare Services Across		
	different clouds.		U	
CO 2	2 Efficiently manage and optimize essential cloud services, including computing resources,			
	storage solutions, a	nd databases.	Ap	
CO 3	Implement Security	Best Practices in Cloud Environments Using Identity Management		
	and Compliance To	pols.	Ap	
CO 4	Utilize Advanced (Cloud Services for Data Processing, Analytics, and Serverless		
	Computing.	·	An	
CO 5	Design and Manag	e Scalable and Resilient Cloud-Based Applications Using Appropriate		
	Cloud Architecture	S.	An	

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
COS	1	2	3	4	5				
	Research &	Technical	Domain	Data Science	Ethical				
	Development	Reporting	Mastery	Applications	Analytics Solutions				
1	1	2	3	-	-				
2		2		3	3				
3				2	3				
4				3	2				
5	3			2	3				
6	1	2	3						

Course Content INTRODUCTION TO CLOUD COMPUTING FOR DATA ENGINEERING

5 Hours

Overview of Cloud Computing: Evolution of modern IT and the role of cloud computing in transforming data engineering and IT practices. Major Cloud Service Providers: An introduction to leading cloud platforms, focusing on their key services and capabilities related to data engineering. Cloud Deployment Models: Understand the differences between Public, Private, and Hybrid Cloud models, and how each affects data storage, processing, and scalability. Service Models: IAAS, PAAS, SAAS and their applications in data engineering workflows.

Signature o	f the	BOS	Chairman
-------------	-------	-----	----------

Practical Component:	6 Hours
Account Setup and Dashboard Exploration of different clouds, deploy a virtual machine using	o mouns
IaaS.	
CORE CLOUD SERVICES	7 Hours
Introduction to Cloud Services: Essential cloud services used for data storage, processing, and	
analytics. Features, scalability, and key use cases for data storage and building data lakes. Explore	
ETL (Extract, Transform, Load) processes and the creation of data pipelines. Big data processing	
and analytics using popular frameworks like Hadoop and Spark. Data warehousing solutions for	
large-scale data analysis. Serverless computing for efficient and scalable data processing tasks.	
Techniques for migrating databases Cloud solutions for big data processing. Orchestrate data	
pipelines using cloud orchestration service.	
Practical Component:	6 Hours
Cloud Services for Extraction, Transform and Load.	
ADVANCED CLOUD DATA MANAGEMENT AND PROCESSING	6 Hours
Build and manage data lakes for centralized data storage and processing, ensuring efficient data	
governance and security. configuration and usage of VMs for scalable data processing tasks,	
Relational database services: MySQL, MariaDB, PostgreSQL, Oracle, and Microsoft SQL Server.	
Managing identity and access control - secure handling and protection of data within cloud	
environments. Integration of big data and data warehousing capabilities for advanced analytics,	
enabling comprehensive insights and data-driven decision-making.	
Practical Component:	6 Hours
Run a sample data processing job, such as a word count or data aggregation task in cloud,	
Infrastructure and Database Deployment.	
CLOUD STORAGE AND IDENTITY MANAGEMENT	6 Hours
Cloud Storage Solutions: Scalable data storage options using different cloud Storage and focusing	
on best practices for data management. Identity and Access Management (IAM): Manage users,	
groups, roles, and policies to ensure secure data access and maintain compliance within cloud	
environments. Data Modelling and Schema Design: Concepts of data modelling and schema	
design, and how they influence data engineering workflows and efficiency.	(II
Practical Component:	6 Hours
Upload, manage, and access different types of data (e.g., CSV, JSON). Implement versioning and lifecycle policies. Compare scalability and performance.	
CLOUD SECURITY AND BEST PRACTICES	6 Hours
Security in Cloud Computing: Strategies to ensure data protection, privacy, and compliance	o nours
within cloud environments. Comprehensive security management and threat protection offered	
by Cloud. Compliance and Governance: Implementing data encryption, key management, and	
regulatory compliance to secure cloud-based data and meet governance requirements. Disaster	
Recovery and Business Continuity Planning (BCP): Develop strategies to ensure data availability,	
resilience, and continuity in the face of potential disruptions, critical for data engineering	
contexts.	
Practical Component:	6 Hours
Create IAM users, groups, roles, and policies. Implement least privilege access for cloud	
resources and test access controls.	
resources and test access controls.	L

Theory	Tutorial		Practical	Project		Total	
Hours: 30	Hours:	0	Hours: 30	Hours:	0	Hours:	60

Text Books:

- 1. Thomas Erl, Zaigham Mahmood, & Ricardo Puttini, Cloud Computing: Concepts, Technology & Architecture, (2013).
- 2. Paul Crickard, Data Engineering with Python: Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python, (2020).
- 3. Ronald L. Krutz & Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, (2010).

Signature of the BOS Chairman	

- 4. Michael J. Kavis, Architecting the Cloud: Design Decisions for Cloud Computing Service Models (SaaS, PaaS, and IaaS), (2014).
- 5. Martin Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems, (2017).

Reference books/ Web Links

- 1. Nishant Neeraj, Cloud Data Engineering: Building Modern Data Platforms, (2022).
- 2. Vlad Riscutia, Data Engineering on Azure: A Guide to Designing and Building Scalable Data Solutions, (2021).
- 3. Martin Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems, (2017).
- 4. Thomas Erl, Robert Cope, & Amin Naserpour, Cloud Computing Design Patterns, (2015).
- 5. Nathan Marz & James Warren, Big Data: Principles and Best Practices of Scalable Real-Time Data Systems, (2015).
- 6. Liang Zhao, Cloud Data Management, (2014).

Online Resources

- 1. https://learn.microsoft.com/en-us/training/
- 2. https://aws.amazon.com/training/
- 3. https://www.coursera.org/specializations/gcp-data-machine-learning
- 4. https://cloudsecurityalliance.org/

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution Interna		Internal Expert			
				eganathan, Department of		
			Informat	ion Technology		
Recommended by BoS on	16.08.2024					
Academic Council Approval	No: 27		Date	24.08.2024		

Signature of the BOS Chairman

24DSC	003		Generative	Δ1	<u>L</u>	T ₀	P 2	J 0	C 3
PE						G	4,	9, 12	2
Pre-requisite courses Ir		ADSI504 / Artificial ntelligence and Iachine learning Data Book / Codes / Standards (If any)		NA	1				
Course	Objective	es:	The purpose of taking	ng this course is to:					
1		comprehensive understanding of Generative AI, focusing on foundational theories							

Course	Objectives:	The purpose of taking this course is to:
1	Provide a comprehen	nsive understanding of Generative AI, focusing on foundational theories
	and hands-on practic	es.
2	Explore the architector	are and significance of Transformers in language and text generation tasks.
3	Equip students with	techniques like prompt engineering and fine-tuning to effectively guide
	Large Language Mod	dels.
4	Study advanced mod	lel optimization methods, including Parameter Efficient Fine-Tuning and
	Reinforcement Learn	ning with Human Feedback.
5	Design and develop a	applications powered by LLMs for text and image generation.

Course (After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)
CO 1	Understand the archerocessing.	hitecture of Transformers and their role in language generation and text	U
CO 2	Apply prompt engined Models for desired	neering techniques and instruction fine-tuning to guide Large Language outputs.	Ap
CO 3		ement Parameter Efficient Fine-Tuning and Reinforcement Learning ack to optimize LLM performance.	Ap
CO 4	Develop and deploy	y LLM-powered applications for text and image generation.	An
CO 5	Analyse ethical co	onsiderations and biases in Generative AI and apply responsible AI orld applications.	An

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)						
COS	1	2	3	4	5		
1	2	2	3				
2			2				
3							
4	3	3	3	3	3		
5	2			3	3		

Course Content	
INTRODUCTION TO GENERATIVE AI	6 Hours
Introduction to Generative AI, History and Evolution of Generative AI, Natural Language	
Processing, Tokenization, Word Embedding, Word2Vec, Learnable Word Embeddings,	
Probabilistic Models in Generative AI, Sequential Models, Recurrent Neural Networks, Long	
Short-Term Memory Cell, Gated Recurrent Unit, Text Generation Using Sequential	
Models.	
Practical Component	6 Hours
Build classification and regression models using Neural Networks.	
LARGE LANGUAGE MODELS	6 Hours

Encoder-Decoder models, Bidirectional RNN, Attention Mechanism, Self-Attention, Multi Head	
Attention, Positional Encoding, Normalization, Transformer Architecture, Pre-training and Fine-	
tuning, Architectural Variants of transformers, Tokenization techniques, Evaluation metrics,	
Vison Transformer, Applications of LLM.	
Practical Component	6 Hours
Making text generation models using RNN.	
PROMPT ENGINEERING AND FINE-TUNING TECHNIQUES	6 Hours
Introduction to Prompt Engineering, Role of Prompts in Generative AI, Structure of Prompts,	
Prompt Templates and Patterns, Prompt Optimization Strategies, Feedback to Improve Prompts,	
Instruction Fine-Tuning, Supervised Fine-Tuning, Parameter Efficient Fine-Tuning,	
Reinforcement Learning with Human Feedback.	
Practical Component	6 Hours
Apply prompt engineering and fine-tuning techniques on text generation model.	
ADVANCED GENERATIVE MODELS	6 Hours
Generative Adversarial Networks (GANs), Deep Convolutional GANs, Conditional GANs,	
Wasserstein GANs, Progressive Growing GANs, Variational Autoencoders (VAEs), Conditional	
VAEs, Diffusion Models, Autoregressive Models, Transformers for Image Generation, BERT	
and Variants, Hybrid Models.	
Practical Component	6 Hours
Image Generation using GANs.	
DEVELOPING AND DEPLOYING LLM-POWERED APPLICATIONS	6 Hours
Applications of LLMs: Text and Image Generation, Contrastive Language-Image Pre-Training,	
Building Custom Applications and Pipelines, Deployment Strategies, Best Practices for LLM	
Training and Deployment, Model Optimization Techniques. Ethical Considerations and	
Responsible AI Practices	_
Practical Component	6 Hours
Building and deploying Text to Speech and Speech to Text models.	

Theory	Tutorial	Practical	Project	Total	
Hours: 30	Hours: 0	Hours: 30	Hours: 0	Hours:	60

Textbooks

- 1. James Phoenix, Mike Taylor, Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs, (2024).
- 2. Charu C Aggarwal, Neural Networks and Deep Learning: A Textbook, (2023).

Reference books/ Web Links

- 1. Lewis Tunstall, Leandro von Werra, Thomas Wolf, Natural Language Processing with Transformers: Building Language Applications with Hugging Face, (2022).
- 2. Chip Huyen, Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications, (2022).
- 3. David Foster, Generative Deep Learning-Teaching Machines to Paint, Write, Compose, and Play, (2019).

Online Resources

- 1. https://www.nvidia.com/en-us/glossary/generative-ai/
- 2. https://aws.amazon.com/what-is/generative-ai/
- 3. https://www.ibm.com/topics/generative-ai

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Signature	of the BC	98 Chairn	nan

Course Curated by				
Expert(s) from Industry	Expert(s) from Higher Education Institution Internal Expert			Internal Expert
				jith C Prakash, Department
		of	f Inforn	nation Technology
Recommended by BoS on	16.08.2024			
Academic Council Approval	No: 27		Date	24.08.2024

24DSE0 PE	004		Computer Vision 3						L 3 SD(T 0	P 0 3,	J 0 9, 11	3		
Pre-requisite courses N			Nil	1						/ Cod (If an		N.	A		
Course	Course Objectives: The purpose of taking this course is to:														
This course delves into advanced computer vision techniques with deep learning, from image formation to feature detection and object segmentation.															
2	2 Students will learn to apply CNNs for real-world tasks such as object localization, 3D reconstruction, and motion estimation.														
The Advanced Computer Vision and Deep Learning course delves into cutting-edge techniques for analysing and interpreting visual data.															
4 It covers advanced neural network architectures, such as convolutional and generative models, for tasks like image recognition and synthesis.															
5	Students will explore state-of-the-art methodologies in object detection, segmentation, and visual reasoning. The course aims to equip learners with the skills to tackle complex vision problems and innovate in the field.														

Course C		After successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)	
CO 1	Evaluate the impact different camera m	t of geometric and photometric factors on image formation using odels.	Е	
CO 2	Implement and assess feature detection and image processing techniques using OpenCV and Pillow.			
CO 3	Apply and critique advanced object detection and segmentation algorithms to solve real-world problems.			
CO 4	Integrate 3D vision sequences.	techniques to reconstruct scenes and estimate motion from image	An	
CO 5	Develop and optim style transfer.	ize deep learning models for tasks such as face recognition and neural	An	

	Program Out	comes (PO) (Weak-1)	Strong-3, Medium – 2,		
COS	1	2	3		
1	3	2	3	3	3
2	3	2	3	3	3
3	3	2	3	3	3
4	3	2	3	3	3
5	3	2	3	3	3

Course Content	
INTRODUCTION TO COMPUTER VISION AND IMAGE FORMATION	9 Hours
Introduction to Computer Vision: Definition, scope, and real-world applications, Image	
Formation and Representation: Geometric transformations (2D and 3D), Camera models and	
projections (pinhole model, lens distortions), Photometric Image Formation: Lighting models,	

Signature of the BOS Chairman

reflectance, and shading, Image Representation and Capture: Sampling, quantization, and color	
theory, Linear Filtering: Convolution, correlation, and edge detection	1
techniques.	
FEATURE DETECTION AND IMAGE PROCESSING	9 Hours
Feature Detection: Corners, blobs, edges, and lines (e.g., Harris, SIFT, SURF), Scale-space and	İ
scale selection, Image Processing Techniques with OpenCV and Pillow: Manipulating Images,	İ
Pixel Transformations, Geometric Operations, Spatial Operations in Image Processing.	1
OBJECT DETECTION AND SEGMENTATION	9 Hours
Object Detection: Landmark detection, sliding window techniques, bounding box predictions,	İ
Intersection over Union (IoU), non-max suppression, anchor boxes, Object Detection Algorithms:	İ
YOLO algorithm, Faster R-CNN, Semantic Segmentation: U-Net architecture, segmentation	
techniques.	ĺ
3D VISION, RECONSTRUCTION, AND MOTION ESTIMATION	9 Hours
3D Vision: Two-view geometry, epipolar constraints, structure from motion (SfM), Multi-view	İ
stereo, shape from shading, 3D Reconstruction Techniques: Depth estimation, stereo	I
correspondence, Motion Estimation: Optical flow, dense motion estimation.	1
DEEP LEARNING IN COMPUTER VISION	9 Hours
Face Recognition: One-shot learning, Siamese networks, triplet loss, Neural Style Transfer: Style	İ
and content cost functions, advanced neural transformations, Convolutional Neural Networks	I
(CNNs): Architectures like ResNet, VGG, and transfer learning, Generative Models: Generative	İ
Adversarial Networks (GANs), Reinforcement Learning in Vision: Applications in robotics and	
autonomous systems.	

Theory	Tutorial		Practical		Project		Total	
Hours: 45	Hours:	0	Hours:	0	Hours:	0	Hours:	45

Textbooks

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition, Springer (2022).
- 2. Vaibhav Verdhan, Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras, 1st Edition, Apress (2021).

Reference books/ Web Links

- 1. Benjamin Planche & Eliot Andres, Hands-On Computer Vision with TensorFlow 2: Leverage Deep Learning to Create Powerful Image Processing Apps with TensorFlow 2.0 and Keras, 1st Edition, Packt Publishing Limited (2019).
- 2. Rajalingappaa Shanmugamani, Deep Learning for Computer Vision: Expert Techniques to Train Advanced Neural Networks Using TensorFlow and Keras, 1st Edition, Packt Publishing Limited (2018).
- 3. Salman Khan, Hossein Rahmani, Syed Afaq Ali Shah, & Mohammed Bennamoun, A Guide to Convolutional Neural Networks for Computer Vision, 1st Edition, Morgan & Claypool Publishers (2018).

Online Resources

- 1. https://www.coursera.org/learn/advanced-computer-vision-with-tensorflow?msockid=0b25de636016615406b8cdaf61006069
- 2. https://www.coursera.org/learn/advanced-deep-learning-techniques-computer-vision?msockid=0b25de636016615406b8cdaf61006069

Acces	ment i	(Theory	1
A33033	шсис	I I II CUI V	,

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE)

Signature of the BOS Chairman

Course Curated by					
Expert(s) from Industry	Expert(s) from Higher Education Institution		lucation Internal Expert		
			Dr. S. Sangeetha, Department of AI&DS		
Recommended by BoS on	16.08.2024				
Academic Council Approval	No: 27		Date	24.08.2024	

Signature of the BOS Chairman

24DSC005	5
PE	

BLOCKCHAIN TECHNOLOGIES AND DAPP DEVELOPMENT

L	T		P	J	C
2	0		0	2	3
SDG			9		

Pre-requisite courses	Nil	Data Book / Codes / Standards (If any)	NA
------------------------------	-----	---	----

Cour	Course Objectives:				
The p	urpose of taking this course is to:				
1	Understand and differentiate blockchain architectures, consensus mechanisms, and decentralized				
	storage systems.				
2	Equip learners with skills to develop smart contracts using Solidity and connect them to Web3				
	frontends.				
3	Explore decentralized storage protocols, indexing tools, and their integration in DApps.				
4	Examine data-driven blockchain applications, including identity, privacy, and DAO frameworks.				

Cour	Course Outcomes:					
After	successful completion of this course, the students shall be able to	Bloom's Taxonomy Level (BTL)				
CO 1	Apply appropriate blockchain architecture and consensus mechanism to demonstrate decentralized network deployment	Ap				
CO 2	Analyze smart contract logic to develop interactive Web3 DApps	An				
CO 3	Analyze storage and indexing methods to ensure efficient data handling in DApps	An				
CO 4	Evaluate identity and privacy models to design secured blockchain systems.	Е				

les (CO)	Prog	ram Outcomes (PO) (Strong-3	3, Medium – 2,	Weak-1)
e mes	1	2	3	4	5
Course	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions
1	2			2	2
2	2			3	2
3	2			3	2
4	2			2	3

<u>Course Content</u>	
BLOCKCHAIN AND DECENTRALIZATION FUNDAMENTALS Blockchain architectures (public, private, consortium) - Decentralized storage concepts and IPFS basics - Cryptographic primitives: Hashing, Merkle Trees, Digital Signatures - Consensus mechanisms: PoW, PoS, PBFT, DPoS - Blockchain scaling challenges: Layer 1 vs Layer 2 solutions - Blockchain interoperability: Polkadot, Cosmos	
Practical Component Setup blockchain environment with Node.js, Ganache, and MetaMask - Simulate basic transactions in a local blockchain (Ganache + MetaMask) - Demonstrate cryptographic primitives (Hashing, Merkle Trees) using simple JS or Python scripts.	4 Hours

Signature of the BOS Chairman	

SMART CONTRACTS AND DAPPS	7 Hours
Smart Contract Basics -Solidity programming essentials: data types, control structures -	/ Hours
Smart contract deployment: Hardhat and Truffle workflows - JSON-RPC model and	
provider mechanisms - Connecting smart contracts to frontend: Web3.js vs Ethers.js - Handling transactions and events from frontend - Introduction to wallet SDKs:	
MetaMask, WalletConnect	
Practical Component	
Write and deploy smart contracts using Solidity on Hardhat - Use Remix IDE for initial testing and debugging - Connect contract to frontend using Web3.js or Ethers.js, and	4 Hours
handle wallet-based interactions (MetaMask).	
DECENTRALIZED STORAGE AND INDEXING	
Using IPFS: node setup, pinning, gateways - Filecoin basics and decentralized storage	8 Hours
economics - Uploading and fetching metadata with Web3.Storage - Cross-chain data retrieval techniques - Challenges in decentralized data storage: Privacy, Redundancy,	
Speed	
Practical Component	4 77
Upload and retrieve data using IPFS via Pinata or Web3.Storage - Display retrieved	4 Hours
metadata on a simple frontend (HTML/JS) - Intro demo of indexing with The Graph	
(hosted playground; no deployment). DATA-DRIVEN BLOCKCHAIN APPLICATIONS	8 Hours
Blockchain for Data Privacy: zk-SNARKs, zk-STARKs basics - Introduction to	o Hours
Decentralized Identity Systems (DID, SSI models) - Use of NFTs for asset tokenization	
in data marketplaces - Decentralized Autonomous Organizations (DAOs) for	
collaborative analytics - Legal and ethical considerations in blockchain-based data	
solutions - Real-world case studies: Healthcare, Finance, Supply Chain, Education	
Mini-Project Options:	
1. NFT Marketplace - with smart contracts, file storage (IPFS), frontend	18 Hours
(React/Web3.js), MetaMask login 2. Decentralized Voting App - with privacy logic (zk-SNARKs concept), basic	
UI, and event recording	
3. DID Demo - setup identity (using tools like Ceramic or open-source SDKs) and	
access control	
4. Token-gated Learning App - restrict content access using NFT/token verification	
Tool Options: Solidity, Hardhat, IPFS/Web3.Storage, MetaMask, React,	
Web3.js/Ethers.js, OpenZeppelin libraries, zk-demo kits	

Theory	Tutorial		Practical		Project		Total	
Hours: 30	Hours:	0	Hours:	0	Hours:	30	Hours: 6	60

Text books:

- 1. Imran Bashir. *Mastering Blockchain: Unlocking the Power of Cryptocurrencies, Smart Contracts, and Decentralized Applications*. 3rd Edition, Packt Publishing (2020).
- 2. Pethuru Raj, Anupama C. Raman, Blockchain Technology and Applications, Springer(2019).
- 3. Arshdeep Bahga, Vijay Madisetti, Blockchain Applications: A Hands-On Approach, , Publisher: VPT (Vijay P. Madisetti & Arshdeep Bahga), (2017).

Reference books:

- 2. Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain Programming for Beginners, Chris Dannen, Apress (Springer) ISBN: 978-1484225349
- 3. Wattenhofer, R. P, Distributed Ledger Technology: The Science of the Blockchain (Inverted Forest Publishing), 2017, 2nd Edition, CreateSpace Independent Pub, Scotts Valley, California, US.
- 4. Bashir, I. (2020). Mastering Blockchain: A Deep Dive into Distributed Ledgers, Consensus Protocols, Smart Contracts, DApps, Cryptocurrencies, Ethereum, and More Third Edition. United Kingdom: Packt Publishing.

Online Resources (Weblinks)

- 1. https://ethereum.org/en/developers/
- 2. https://web3.storage/docs/
- 3. https://www.weforum.org/reports/blockchain-beyond-the-hype
- 4. https://www.investopedia.com/terms/b/blockchain.asp
- 5. https://www.debutinfotech.com/blockchain-technology
- 6. https://www.coursera.org/specializations/blockchain
- 7. https://nptel.ac.in/courses/106105184/

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution Internal E		Internal Expert			
-	-		Dr. J.C	ynthia,		
			Departi	ment of Computer		
		Science and Engineering		e and Engineering		
Recommended by BoS on	09.05.2025					
Academic Council Approval	No:28	Date 26.06.2025				

Signature of the BOS Chairman

24DSC006	NETWORK SCIENCE AND SOCIAL ANALYTICS			T 0	P 2	J 0	C 3
PE			SDC	J	9,	10,16	
Pre-requisite courses	24MAI505 Mathematics for Data Science	Data Book / Code book (If any)			NA	_	

Course	Course Objectives:							
The pur	pose of taking this course is to:							
1	Acquire knowledge of fundamental graph theory concepts, network data types, and key metrics used in social network analysis.							
2	Develop practical skills in collecting, processing, analyzing, and visualizing network data using standard Python libraries and visualization tools.							
3	Gain competency in interpreting network structures, identifying key actors and communities, and understanding basic network dynamics.							
4	Understand the application of SNA techniques in various domains, particularly social media and organizational contexts, while considering ethical implications.							
5	Develop the ability to critically evaluate network analysis results and communicate findings effectively through visualizations.							

Cour	se Outcomes	
After s	uccessful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Levels (RBT)
CO1	Design and implement advanced graph-based models to analyze and predict social network structures and dynamics.	Ap
CO2	Evaluate network properties and patterns using sophisticated statistical and machine learning techniques.	An
CO3	Develop scalable solutions for community detection, link prediction, and influence modeling in large networks.	Ap
CO4	Critically assess the ethical, societal, and methodological limitations of SNA applications in diverse domains.	Е
CO5	Communicate complex SNA findings effectively through advanced visualizations and research-oriented presentations.	Ap

	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)								
e mes	1	2	3	4	5				
Course Outcom (CO)	Research & Development	Technical Reporting	Domain Mastery	Data Science Applications	Ethical Analytics Solutions				
1		3	2	2	3				
2					3				
3		2	3						
4		2	3						
5	3			2					

Signature of the BOS Chairman

Course Content	
Foundations of Social Network Analysis	6 Hours
SNA Overview - Advanced applications in social media, epidemiology, organizational networks - Graph Theory - Directed/undirected graphs, weighted graphs, multiplex networks, temporal networks - Network Data - Multi-modal data, big data challenges, API-based data collection -Twitter, LinkedIn - Ethical Frameworks - Privacy, bias, fairness in network data analysis.	
Practical Component:	
Create/analyze multiplex and temporal graphs using NetworkX - Collect network data using Twitter/LinkedIn APIs -Tweepy, python-linkedin - Model a multi-layer social media network.	6 Hours
Network Metrics and Statistical Analysis	6 Hours
Centrality Measures - Katz centrality, PageRank, hub/authority scores - Statistical Properties - Homophily, assortativity, modularity, network autocorrelation Moran's I, Geary's C - P1/P* Models - Predicting dyadic relations using Exponential Random Graph Models (ERGMs) - Tools - Python NetworkX, igraph, R-statnet, sna.	
Practical Component:	
Compute Katz centrality and PageRank using NetworkX/igraph - Implement ERGMs using R statnet to model network ties - Analyze homophily in an organizational network.	6 Hours
Community Detection and Network Clustering	6 Hours
Advanced Community Detection - Spectral clustering, stochastic block models, overlapping communities - Modularity Optimization - Louvain, Infomap, hierarchical clustering - Evaluation Metrics - Normalized mutual information, adjusted Rand index - Visualization - Advanced Gephi layouts- Force Atlas 2, OpenOrd, Python - Matplotlib, Seaborn.	
Practical Component:	
Apply spectral clustering and evaluate with normalized mutual information - Detect communities in a social media dataset - Visualize communities using Gephi and Python.	6 Hours
Dynamic Networks and Machine Learning	6 Hours
Network Dynamics - Temporal network models, preferential attachment, network evolution - Diffusion Models - Epidemic models -SIR, SEIR-, information cascades, threshold models - Machine Learning - Graph Neural Networks (GNNs), node embedding -Node2Vec, DeepWalk - Link Prediction - Graph convolutional networks, temporal link prediction.	
Practical Component:	
Model/visualize temporal networks using Python -teneto - Simulate SIR diffusion on networks using NetworkX - Implement Node2Vec for node embeddings - Build a GNN for node classification using PyTorch Geometric.	6 Hours

Module 5: Applications, Ethics, and Research Communication

6 Hours

Advanced Applications - Social media analytics, organizational influence, epidemiological modeling - Ethical Considerations - Bias in algorithms, data privacy, societal impact - Research Communication - Designing research papers, advanced visualizations, stakeholder presentations - Case Studies - Misinformation spread, supply chain networks.

Practical Component:

Analyze misinformation spread in a social media network - Evaluate ethical implications of SNA in a dataset - Create interactive visualizations using Gephi with temporal/multiplex data

6 Hours

- Draft a research paper and deliver a visualized presentation.

Theory		Tutorial	Practical	Project	Total	
Hours:	30	Hours: 0	Hours: 30	Hours: 0	Hours: 60	

Learning Resources

Text books:

- 1. Barabási, A.-L. (2016). *Network Science*. Cambridge University Press. (http://networksciencebook.com/)
- 2. Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2018). *Analyzing Social Networks* (2nd ed.). SAGE Publications.

Reference books:

- 1. Hanneman, R. A., & Riddle, M., Introduction to Social Network Methods. University of California, Riverside. (2005).
- 2. Easley, D., & Kleinberg, J., Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press(2010).
- 3. Wasserman, S., & Faust, K., Social Network Analysis: Methods and Applications, Cambridge University Press(1994).
- 4. Newman, M. E. J. Networks: An Introduction. Oxford University Press, (2010).

Online Resources (Weblinks)

- 1. https://networkx.org/documentation/stable/
- 2. https://gephi.org/users/
- 3. http://web.stanford.edu/class/cs224w/
- 4. https://www.coursera.org/learn/social- network-analysis
- 5. https://pytorch-geometric.readthedocs.io/

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by						
Expert(s) from Industry		rom Higher Education Institution Internal Expert				
-	-		Dr. P.C	.Thirumal		
			Departi	ment of Information		
	Technology			logy		
Recommended by BoS on	09.05.2025					
Academic Council Approval	No:28 Date 26.06.2025			26.06.2025		

24DCC007	BUSINESS INTELLIGENCE A	L	T	P	J	C	
24DSC007 STRATEGIC DECISION ANALYTICS				0	2	0	3
PE			SDC	j		8,9	
Pre-requisite courses	24DSI503 Data Analysis and Visualization	Data book			ode	NA	

Course	Objectives:
The purp	ose of taking this course is to:
1	Acquire an in-depth understanding of advanced business analytics frameworks, statistical learning, and decision science approaches.
2	Develop skills in handling complex and unstructured data for business modelling and data-driven insights.
3	Apply machine learning and deep learning techniques for predictive and prescriptive analytics in varied business domains.
4	Master the use of advanced tools for dynamic visualization and decision support systems.
5	Integrate domain expertise to drive innovative, ethical, and sustainable business strategies using analytics.

Course	Course Outcomes				
After su	Revised Bloom's Taxonomy Levels (RBT)				
CO 1	Formulate and evaluate complex business problems using advanced analytics models and tools.	С			
CO 2	Design machine learning and optimization models for predictive and prescriptive business analytics.	С			
CO 3	Integrate unstructured and structured data sources to build decision support systems.	Ap			
CO 4	Perform analytics in domains like finance, HR, marketing, and operations using cutting-edge techniques.	An			
CO 5	Research and develop innovative and ethical analytics solutions addressing industrial or societal challenges.	Е			

Course Outcomes	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)						
	1	2	3	4	5		
	Research &	Technical	Domain	Data Science	Ethical		
	Development	Reporting	Mastery	Applications	Analytics Solutions		
1	3			2			
2		2	3				
3				3	2		
4	2	3					
5	3				2		

Signature of the BOS Chairman

<u>Course Content</u>	
Advanced Foundations of Business Analytics	6 Hours
Business analytics lifecycle – CRISP-DM – SEMMA – Hypothesis formulation in business context-Causal inference – A/B testing – Bayesian inference for decision- making – Experimental design for analytics	
Practical Component:	
Develop a CRISP-DM based business workflow – Perform hypothesis and A/B testing using Python or R	6 Hours
Predictive and Prescriptive Analytics	6 Hours
Supervised learning – Forecasting – Classification – Regression – Decision trees – Random Forest – XGBoost-Optimization techniques – Linear, Nonlinear, Integer programming – Simulation – What-if scenario analysis	
Practical Component:	
Build ensemble models using Python – Perform demand forecasting and prescriptive modeling using Tableau/Power BI	6 Hours
Unstructured Data Analytics	6 Hours
Text mining – Sentiment analysis – Web and social media analytics – NLP techniques – Named Entity Recognition-Topic modeling using LDA – Deep learning for customer insights – Transformers – BERT for unstructured text	
Practical Component:	
Analyze Twitter or Facebook data – Apply LDA and BERT for topic extraction and	6 Hours
feedback interpretation	
Industry-Specific Analytics Applications	6 Hours
Financial analytics – Credit scoring – Fraud detection – HR analytics – Attrition prediction – Workforce analysis-Marketing analytics – Churn prediction – Customer lifetime value – Operations and supply chain analytics	
Practical Component:	
Create industry-specific dashboards – Build ML models for fraud and churn	6 Hours
prediction	
Ethical, Sustainable and Innovative Analytics	6 Hours
Bias – Fairness – Privacy – Responsible AI – LIME – SHAP – Transparency and model explainability-Analytics for social impact – Sustainability – Healthcare – Education – Smart cities – Responsible innovation	
Practical Component:	
Build interpretable models using SHAP and LIME – Mini-project on analytics for social good	6 Hours

Signature	of the	BOS	Chairman
Signature	or the	DOS	CHAILING

Theory		Tutorial	Practical	Project	Total
Hours:	30	Hours: 0	Hours: 0	Hours:30	Hours: 60

Text books:

- 1. J. R. Evans, Business Analytics, 3rd ed., Boston, MA, USA: Pearson(2021).
- 2. B. Baesens, Analytics in a Big Data World: The Essential Guide to Data Science and its Applications, 2nd ed., Hoboken, NJ, USA: Wiley, (2021).
- 3. F. Provost and T. Fawcett, Data Science for Business: What You Need to Know About Data Mining and Data- Analytic Thinking, 2nd ed., Sebastopol, CA, USA: O'Reilly Media(2023).
- 4. M. Kuhn and K. Johnson, Applied Predictive Modeling, New York, NY, USA: Springer, (2013)
- 5. S. Sharda, D. Delen, and E. Turban, Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 5th ed., Upper Saddle River, NJ, USA: Pearson(2023)

Reference books:

- 1. D. Jurafsky and J. H. Martin, Speech and Language Processing, 3rd ed. Stanford, CA: Pearson (2023).
- 2. B. Baesens, Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications, 2nd ed., Hoboken, NJ: Wiley(2021).
- 3. C. O'Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, New York, NY: Broadway Books(2017).
- 4. G. Miner, J. Elder IV, T. Hill, R. Nisbet, D. Delen and A. Fast, Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications, Amsterdam: Academic Press (2012)
- 5. W. L. Winston, Operations Research: Applications and Algorithms, 4th ed., Boston, MA: Cengage Learning, (2021).

Online Resources (Weblinks)

- 1. https://www.coursera.org/specializations/business-analytics
- 2. https://www.coursera.org/learn/machine-learning-with-python
- 3. https://www.coursera.org/learn/python-text-mining
- 4. https://www.coursera.org/learn/wharton-people-analytics
- 5. https://www.edx.org/learn/ethics/international-compliance-association-ethics-and-ai

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by							
Expert(s) from Industry	Expert(s) from Higher Education Institution		intern		Internal Expert		
-	-		Ms. G. P	reethi G,			
			Departm	ent of Artificial			
			Intellige	nce & Data Science			
Recommended by BoS on	09.05.2025						
Academic Council Approval	No:28	Date 26.06.2025					

Signature of the BOS Chairman	

24DSC008	ADVANCED GEOSPAT SCIENCE	IAL DATA	L 2	T 0	P 2	J 0	C 3
PE			SDG	7	9, 11	,13,1	5
Pre-requisite	24DSI504 Artificial Intelligence	Data Book / Co	de		NA		
courses	and Machine Learning	book (If any)					

Cour	se Objectives:
The p	urpose of taking this course is to:
1	Master advanced geospatial concepts, data structures, spatial statistics, and geostatistical methods necessary for complex analysis.
2	Develop expertise in processing, analyzing, and modeling complex geospatial data using advanced Python libraries, spatial databases, and GIS integrations.
3	Critically evaluate and apply sophisticated spatial analysis, machine learning, and deep learning techniques to address complex, real-world geospatial problems and research questions.
4	Design, implement, and rigorously evaluate robust and innovative geospatial data science workflows, considering scalability, efficiency, uncertainty, and ethical implications.
5	Independently investigate geospatial problems and effectively communicate advanced analytical findings and solution designs through substantial technical reports and visualizations.

Cours	Course Outcomes				
After si	After successful completion of this course, the students shall be able to				
CO1	Apply advanced geospatial data processing and management techniques for complex vector, raster, and spatio-temporal datasets using specialized libraries and spatial databases.				
CO2	Apply advanced spatial statistical and geostatistical methods to model complex spatial dependencies and perform robust interpolation/ prediction.	Ap			
CO3	Analyze integrated geospatial data science workflows by examining the incorporation of advanced GIS functionalities, spatial feature engineering, and the selection of appropriate ML/DL model architectures for specific problem contexts.	An			
CO4	Analyze the performance, limitations, spatial considerations, and uncertainty of advanced ML/DL models when applied to complex geospatial problems	An			
CO5	Analyze the effectiveness, ethical considerations, and potential for innovation in geospatial solutions by examining complex case studies and assessing communication through technical reports	An			

Signature of the BOS Chairman	

Course Outcomes	Program Outcomes (PO) (Strong-3, Medium – 2, Weak-1)					
	1	2	3	4	5	
	Research Competence	Technical Communication	Domain Mastery	Data Science Applications	Ethical Innovation	
1			3	2		
2	2		3	2		
3	2		2	3	2	
4	3		3	2		
5	3	2				

Course Content			
Advanced Geospatial Data Foundations	6 Hours		
Review of Core Concepts Vector/Raster, CRS- Advanced Projection Theory & Transformations - Spatial Data Structures -Quadtrees, R-Trees, Grids - Topology Rules and Validation - Spatial Databases (PostGIS/SpatiaLite): Architecture, Data Types, Indexing - GiST, SP-GiST - Handling Large Geospatial Datasets -Chunking, Parallel I/O concepts.			
Practical Component:			
Setting up and querying spatial databases (PostGIS)-Implementing advanced geometric operations and topology checks using libraries like Shapely/GEOS- Working with spatial			
indexes in PostGIS. Processing moderately large vector datasets.	6 Hours		
Advanced Spatial Analysis & Geostatistics	6 Hours		
Advanced Point Pattern Analysis -Ripley's K, G-function - Spatial Autocorrelation Deep Dive -LISA, Geary's C, Moran Scatterplot - Geographically Weighted Regression (GWR) - Spatio-temporal Data Structures and Analysis Concepts - Geostatistics: Variogram Modeling (Advanced), Kriging Variants -Universal, Co- Kriging, Indicator Kriging, Introduction to Bayesian Geostatistics.			
Practical Component:			
Compute and interpret Local Moran's I -LISA-using PySAL or similar.	6 Hours		
Implement Geographically Weighted Regression (GWR) using relevant libraries. Perform advanced Kriging interpolation and compare results with basic methods. Analyze simple spatio-temporal patterns.	O HOUIS		

Geospatial Machine Learning	6 Hours
Handling Spatial Autocorrelation in ML Models -Spatial Lag/Error Models - SAR, SEM - Advanced Spatial Feature Engineering -Network-based features, Complex landscape metrics, multi-scale features - Applying ML to Geospatial Tasks -Land Use Classification, Object Detection from imagery - using standard ML. Introduction to Spatial Cross-Validation Techniques. Addressing scale and Modifiable Areal Unit Problem (MAUP).	
Practical Component:	
Implement spatial feature engineering techniques-Apply spatial regression models to account for spatial dependence-Perform spatial cross-validation and compare results with standard CV.	6 Hours
Geospatial Deep Learning	6 Hours
CNNs for Geospatial Raster Data: Applications - Semantic Segmentation, Object Detection, Architectures - U-Net variants-, Transfer Learning with Geo-referenced imagery. RNNs/LSTMs/Transformers for Spatio-temporal Prediction - Graph Neural Networks (GNNs) for Geospatial Networks: Applications, Basic GNN architectures. Evaluating Geospatial DL Models: Spatial metrics, Handling class imbalance in spatial data. Model interpretability.	
Practical Component:	6 Hours
Apply a pre-trained CNN model -U-Net for land cover segmentation on satellite imagery using libraries like Rasterio and TensorFlow/PyTorch/fastaiUse libraries like pytorch_geometric or dgl to apply a basic GNN to a geospatial network dataset	
-Evaluate model performance using appropriate spatial metrics.	
Advanced Geovisualization, Evaluation & Research Context	6 Hours
Advanced Visualization Techniques: 3D Visualization, Spatio-temporal animations, Visualizing Uncertainty, Web mapping libraries- Evaluating Complex Geospatial Solutions: Frameworks for assessment, Uncertainty analysis, Scalability and performance testing. Ethical Considerations Revisited: Fairness, Accountability, Transparency in Geospatial AI -FATE-GeoAI. Locational privacy techniques - aggregation, obfuscation. Research Frontiers and Case Studies: Analyzing current research papers, Critiquing existing solutions, Identifying open problems. Technical report structure for geospatial analysis.	
Practical Component	
Create advanced interactive web maps visualizing complex spatial or spatio- temporal dataImplement methods to visualize uncertainty associated with spatial predictions-Critically analyze and present findings from recent geospatial data science research paper-Develop a proposal/report outline for tackling a complex geospatial problem discussed in case studies.	6 Hours

Theory	Tutorial	Practical	Project	Total
Hours: 30	Hours: 0	Hours: 30	Hours: 0	Hours: 60

Text books:

- 1. Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. Geocomputation with R. CRC Press, 2019. (Excellent concepts, R focus but transferable).
- 2. Obe, Regina O., and Leo S. Hsu. PostGIS in Action. 3rd Edition, Manning Publications, 2021. (Spatial Databases).
- 3. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org

Reference books:

- 1. Brunsdon, Chris, and Lex Comber. An Introduction to R for Spatial Analysis and Mapping. 2nd Edition, Sage Publications, 2018. (Concepts applicable).
- 2. Hengl, Tomislav, and Robert A. MacMillan (Eds.). Geomorphometry: Concepts, Software, Applications. Vol. 33. Elsevier, 2009. (Advanced raster analysis).
- 3. PySAL Documentation: https://pysal.org/docs/ (Core library for spatial stats).
- 4. GeoPandas, Rasterio, Shapely Documentation (as per UG syllabus).
- 5. PostGIS Documentation: https://postgis.net/documentation/
- 6. Relevant Deep Learning library docs (PyTorch Geometric, DGL, TensorFlow Geo).
- 7. Key academic journals: Transactions in GIS, International Journal of Geographical Information Science, Computers, Environment and Urban Systems, Remote Sensing, IEEE TGRS.

Online Resources (Weblinks)

- 1. https://postgis.net/workshops/postgis-intro/
- 2. https://pysal.org/notebooks/
- 3. https://wvview.org/geospatdl.html
- 4. https://nptel.ac.in/courses/130106115
- 5. https://guide.wisc.edu/nondegree/capstone/advanced-gis-capstone-certificate/

Assessment (Embedded)

SA I, SA II, Activity and Learning Task(s), Mini project, MCQ, End Semester Examination (ESE), Lab Workbook, Experimental Cycle tests, viva-voce

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution			Internal Expert		
-	-		Ms. Rupashini P R,			
			Department of Artificial			
			Intellige	ence and Data Science		
Recommended by BoS on	09.05.2025					
Academic Council Approval	No: 28		Date	26.06.2025		

Signature of the BOS Chairman	

OPEN ELECTIVES

24MEO001 OE

SUSTAINABLE INNOVATIONS AND PRACTICES

L	T	ı	P	J	C
3	0		0	0	3
SD	G			3	

Pre-requisite: Nil

	Faculty Name:	Mr. M. Sathish
(2) TO	Designation:	Assistant Professor-II
	Concern/industry/Institution:	KCT
	LinkedIn profile	https://www.linkedin.com/in/sathish-mathiyazhagan-2a63b65b/

Course	Objectives:	The purpose of taking this course is to:
1	Gain a deep under	standing of sustainability principles.
2	Learn how to desi	gn and implement sustainable solutions.
3	Enhance knowled	ge of sustainable business practices.

Course (Outcomes:	After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)
CO 1	Understand the development.	fundamental principles of sustainability and sustainable	U
CO 2		act of human activities on the environment and society.	An
CO 3	Assess and design	gn sustainable solutions for various sectors.	An
CO 4	Evaluate the role achieving sustain	e of policy, technology, and global cooperation in nability goals.	Е

MODULE	Hours
INTRODUCTION TO SUSTAINABILITY	9
Introduction- Definition and history of sustainability-The three pillars: environmental,	
social, and economic sustainability-The Anthropocene: Human impact on the Earth-	
Sustainable Development Goals (SDGs) overview-Systems Thinking and Global	
Challenges-Systems thinking in sustainability-Global environmental challenges: Climate	
change, deforestation, pollution-Introduction to ecological footprints and planetary	
boundaries.	
ENVIRONMENTAL SUSTAINABILITY	8
Climate Change and Energy-Science of climate change and global warming-Renewable	
energy: Solar, wind, and other alternatives-Transitioning to a low-carbon economy-	
Biodiversity and Ecosystems-The importance of biodiversity and ecosystems-Threats to	
biodiversity: Habitat loss, pollution, and overexploitation-Conservation strategies and	
sustainable resource management.	

Signature of the BOS Chairman	

SOCIAL SUSTAINABILITY	8
Poverty, Inequality, and Development-The relationship between poverty, inequality, and	I
sustainability-Sustainable development in low-income countries-Social justice and equity in	I
the context of sustainable development-Sustainable Cities and Communities-Urbanization	1
and its impact on sustainability-Designing sustainable cities: Smart cities, green	1
infrastructure-Case studies of sustainable urban planning.	1
ECONOMIC SUSTAINABILITY	10
The Economics of Sustainability-Economic growth and sustainability: The concept of	1
decoupling-The circular economy and sustainable business models-Sustainable finance and	I
green investing-Corporate Responsibility and Policy-The role of businesses in sustainability-	1
Corporate social responsibility (CSR) and ethical practices-Government policies and	1
international agreements-Paris Agreement.	1
GLOBAL COOPERATION AND FUTURE DIRECTIONS	10
Global Cooperation for Sustainable Development-The role of international organizations -	I
UN, World Bank in sustainability-Global partnerships and collaborative efforts to achieve	I
the SDGs-Case studies of successful global sustainability initiatives-Innovations and Future	I
Trends-Technological innovations driving sustainability clean tech, AI-Future scenarios and	1
challenges in sustainability.	
Case Study: Developing a comprehensive sustainability plan for a real-world challenge.	1

Theory		Tutorial		Practical		Project	Total	
Hours:	45	Hours:	0	Hours:	0	Hours:	0 Hours:	45

Reference books/ Web Links

- 1. Tom Theis and Jonathan Tomkin, Sustainability: A Comprehensive Foundation, OpenStax CNX (2018).
- 2. Ken Webster, The Circular Economy: A Wealth of Flows, 2nd Edition Ellen MacArthur Foundation Publishing, Cowes, UK, (2017).
- 3. Jeffrey D. Sachs, The Age of Sustainable Development, Columbia University Press (2015).
- 4. Mark Maslin, Climate Change: A Very Short Introduction, Oxford University Press (2014).

Online Resources

- 1. "Introduction to Sustainability " https://www.coursera.org/learn/sustainability
- 2. "The Age of Sustainable Development" https://www.coursera.org/learn/sustainable-development

Assessment (Theory)

Course Curated by						
Expert(s) from Industry Expert(s) from Higher Education Institution Internal Expert						
	Mr. M. Sathish, Department of Computer Science and Engineering					
Recommended by BoS on	16.08.2024					
Academic Council Approval	No: 27		Date	24.08.2024		

Signature of the BOS Chairman

24MEO002 Electric and Autonomous Mobility Electric and Autonomous Mobility Electric and Autonomous Mobility Electric and Autonomous Mobility Electric and Autonomous Mobility Electric and Autonomous Mobility Electric and Autonomous Mobility Electric and Autonomous Mobility

Pre-requisite: Nil

	Faculty Name:	Mr. V. Senthilkumar
	Designation:	Assistant Professor-II
	Concern/industry/Institution:	KCT
		https://www.linkedin.com/in/senthil-
11111111111	LinkedIn profile	kumar-v-5498aa60/
	LinkedIn profile	https://www.linkedin.com/in/sent kumar-v-5498aa60/

Course	Objectives:	The purpose of taking this course is to:
1	Understand the desi	gn and evolution of electric vehicles and their market trends.
2	Analyse electric mo	bility ecosystems and emerging business models.
3	Apply deep learning autonomous vehicle	g techniques to enhance computer vision and sensor fusion in es.
4	Implement object d	etection and tracking methods using advanced computer vision and iques.

Course (Outcomes:	After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)		
CO1	Understand the de	esign and evolution of electric vehicles and their market trends.	U		
CO2	Evaluate EV com	Evaluate EV components, charging technologies, and infrastructure challenges.			
CO3	Analyse electric n	An			
CO4	Apply deep learni in autonomous ve	Ap			
CO5		detection and tracking methods using advanced computer fusion techniques.	Е		

Module	Hours
INTRODUCTION TO ELECTRIC VEHICLES (EVS)	6
Overview of Electric Vehicles: Historical development and evolution of EVs, Components and	_
Architecture of EVs: Key components of EVs: Electric motors, batteries, power electronics, and	
control systems. EV Market and Trends: Current global and regional market trends, Government	
policies, incentives, and regulations supporting EV adoption.	
EV CHARGING INFRASTRUCTURE AND TECHNOLOGY	9
EV Charging Basics: Types of EV charging (AC, DC, wireless), levels of charging (Level 1, Level	
2, Level 3) and their differences. Charging Infrastructure Deployment: Planning and implementation	
of public and private charging stations., Role of smart grids and Vehicle-to-Grid (V2G) technology.	
Challenges and Solutions in Charging Infrastructure: Addressing range anxiety and charging time	
issues, Infrastructure challenges in urban and rural areas.	
ELECTRIC MOBILITY ECOSYSTEM AND BUSINESS MODELS	10
Electric Mobility and Urban Planning: Impact of EVs on urban transportation systems, Role of EVs	
in reducing urban pollution and congestion, Integration of EVs with public transportation and shared	

Signature of the BOS Chairman

mobility services. Business Models for Electric Mobility: Emerging business models: Mobility-as-a-	
Service (MaaS), Car-as-a-Service (CaaS),EV fleet management for businesses and public	
transportation, Economic and environmental benefits of electric mobility. Case Studies in Electric	
Mobility: Successful case studies of electric mobility implementations in different regions.	
ADVANCED DEEP LEARNING TECHNIQUES FOR AUTONOMOUS VEHICLES	10
Advanced Computer Vision Techniques: Convolutional Neural Networks (CNNs): Used for detecting	
and classifying objects. Semantic Segmentation, Instance Segmentation: Identifies and distinguishes	
objects in complex environments. Deep Learning for Sensor Fusion: Sensor Integration, Ulti-Modal	
Learning, Data Handling, Reinforcement Learning for Autonomous Driving: Basics of Reinforcement	
Learning, Application in Driving, Simulations Safety and Reliability in Deep Learning Systems:	
Ensuring Safety, Testing and Validation.	
ADVANCED COMPUTER VISION TECHNIQUES FOR AUTONOMOUS VEHICLES	10
Object Detection and Tracking: YOLO (You Only Look Once),SSD (Single Shot MultiBox	
Detector), Kalman Filters, Semantic and Instance Segmentation: Semantic Segmentation, Instance	
Segmentation Sensor Fusion for Enhanced Perception: Integration of Camera and LiDAR Data,	
Multi-Modal Fusion Techniques, Noise Reduction and Data Synchronization.	

Theory		Tutorial		Practical		Project		Total	
Hours:	45	Hours:	0	Hours:	0	Hours:	0	Hours:	45

Reference books/ Web Links

- 1. Tom Denton, Electric and Hybrid Vehicles, Routledge, (2020).
- 2. Shai Shalev-Shwartz and Shaked Shammah, Deep Learning for Autonomous Vehicles, Springer, (2021).
- 3. James Larminie and John Lowry, Electric Vehicle Technology Explained, Wiley, (2012).

Online Resources

- 1. https://www.coursera.org/learn/electric-vehicles-mobility
- 2. https://www.coursera.org/learn/introduction-deep-learning-computer-vision?specialization=deep-learning-computer-vision
- 3. https://www.coursera.org/programs/coursera-for-campus-faculty-ovg1y/learn/advanced-deep-learning-techniques-computer-vision?specialization=deep-learning-computer-vision

Assessment (Theory)

Course Curated by				
Expert(s) from Industry	Expert(s) from Higher Education Internal Exp			Internal Expert
				enthilkumar, Department of er Science and Engineering
Recommended by BoS on	16.08.2024			a serence and Engineering
Academic Council Approval	No: 27		Date	24.08.2024

Signature of the BOS Chairman

24IEO074

OE

Modern Financial Strategies and Innovations

L	T	1	P	J	C
3	0		0	0	3
SDG			4	1, 9	

Pre-requisite: Nil

Faculty Name:	Mayuri P T
Designation:	Assistant Professor 1
Concern/industry/Institution:	KCT
LinkedIn profile	https://www.linkedin.com/in/mayuri- palanisamy

Course	Objectives:	The purpose of taking this course is to:
1	This course covers corporate finance.	essential financial principles and concepts useful for both personal and
This course provides an in-depth introduction to the ideas, methods, and institutions that he manage risks and foster enterprise in financial markets.		

Course Outcomes:		After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)
CO 1	Understanding the	e financial principles and concept of Finance	U
CO 2	CO 2 Equip learners with the financial decision-making skills.		
CO 3 Evaluate company performance using profitability, efficiency, leverage, and other		Е	
CO 4	Assess the working	An	
CO 5	Manage risks and	foster enterprise in financial markets.	Ap

MODULE	Hours
FINANCIAL STATEMENTS AND CASHFLOWS	9
Introduction to Finance- Balance sheet - Assets, Liabilities, and Stockholders & Equity-Income	
Statement- Profit & loss- Cash flows -Sources and use of cashflows- Liquidity Leverage Ratios-	
Turnover Ratios- Profitability Ratios-Financial Ratios: Market Value Ratios- Financial Forecasting.	
TIME VALUE OF MONEY	9
Introduction to Time Value of Money-Present Value (PV) and Future Value (FV)- difference between	
the quoted interest rate and effective annual rate- Annual Percentage Rate (APR) -Effective Annual	
Interest Rate (EAR)-Annuity and perpetuity- Applications of time value of money.	
VALUATION AND CAPITAL BUDGETING	9
Basic terms of bonds-Interest Rates-Zero Coupon bonds- Types of Bonds- Bond Ratings- structure	
of bond market- Basic Concepts of Stock- Parameter Estimation- Growth Opportunities- P/E ratio-	
Stock Markets- Tax salvage value - Opportunity Costs- Sunk Costs- Side Effects- Capital Budgeting	
with Example.	
RISK AND RETURN	9

Signature of the BOS Chairman	

\mathbf{C} 24IEO075 **Sports Analytics and Emerging** 3 0 0 0 3 **Technologies OE** 4, 8 **SDG** Historical record of return and risk-Trade-off between risk and return-Calculate return and risk-Systematic risk and unsystematic risk- Beta Coefficient-Valuation & Risk Estimation- The Capital Asset Pricing Model. FINANCIAL MARKETS 9 Financial Markets Introduction- Distribution and Outliers- Insurance Fundamentals-Forecasting--Introduction to Behavioural Finance- Prospect Theory- Leverage- Shares and Dividends- Investment

Theory		Tutorial		Practical		Project		Total	
Hours:	45	Hours:	0	Hours:	0	Hours:	0	Hours:	45

Learning Resources

Reference books/ Web Links

Banks Introduction-Importance of Financial Theory.

- 1. Introduction to Finance by Lawrence J. Gitman, Jeff Madura
- 2. The Financial Times Guide to Investing: The definitive companion to investment and the financial markets by Glen Arnold

Online Resources

- 1. https://www.coursera.org/learn/introduction-to-finance-the-basics
- 2. https://www.coursera.org/learn/financial-markets-global
- 3. https://www.coursera.org/learn/introduction-to-finance-the-role-of-financial-markets

Assessment (Theory)

Course Curated by				
Expert(s) from Industry	Expert(s) from Higher Education Institution		Internal Expert	
			Ms. May	ruri P T, MBA-IEV
Recommended by BoS on	16.08.2024			
Academic Council Approval	No: 27		Date	24.08.2024

Signature of the BOS Chairman	

Pre-requisite: Nil

Faculty Name:	Asmitha Shree R
Designation:	Assistant Professor 1
Concern/industry/Institution:	KCT
LinkedIn profile	https://www.linkedin.com/in/asmitha- shree

Course	Objectives:	The purpose of taking this course is to:			
1	To provide a foundation	tional understanding on the relation between sports and society.			
2	To enable students t	To enable students to apply core marketing principles in the context of sports.			
3	To develop analytic	To develop analytical skills for comparing sports marketing with other sectors.			
4	To foster an underst	anding of the influence of data-driven decision-making in sports.			
5	To develop critical	hinking and problem-solving skills in sports management.			

Course	e Outcomes:	After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)
CO 1	Understand the so world.	cial dynamics, cultural identity, and globalization's impacts on the sports	U
CO 2	Understand the Evolution and Commercialization of Sports.		U
CO 3	Apply Marketing	Principles to Sports.	Ap
CO 4	Analyse and differ	rentiate between sports marketing and other marketing industries.	An
CO 5	Understanding Ma	achine Learning Workflow in sports analytics.	U
CO 6	Apply regression a	analysis and machine learning models to predict sports outcomes.	Ap

Module	Hours
THE SOCIAL DYNAMICS OF SPORTS Exploring the concepts of games, play, and sports - Analyzing the impact of globalization, nationalism, and politics in sports - Understanding race, cultural identity, and their influence on the sports world.	8
THE EVOLUTION AND COMMERCIALIZATION OF SPORTS Examining the rise of women's sports, gender, and sexuality - Investigating why sports captivate global audiences - Understanding the mega business of sports- outdoor sports-extreme sports, and the search for adventure.	8
INTRODUCTION TO THE SPORTS MARKETING Introduction to the Sports Marketing- Sports Marketing Challenges- Marketing Basics Applied to Sports Marketing- The Traditional 4 P's: A Meaningful Update for Sports- Fan Marketing- Influence Marketing: Sports- Service vs. Product Marketing in Sports- Sports Marketing versus other Marketing Industries- Event Marketing & Management.	9
ENTERTAINMENT MARKETING Entertainment Marketing -Business Marketing- Creating Creative Content-Virtual Reality and Over the Top TV, Entertainment Branding (Placement) -Digital Viral Marketing- Dangers of Viral Marketing- Personal Entertainment Experience- Virtual Reality.	10
PREDICTION MODELS WITH SPORTS Machine Learning-The Machine Learning Workflow-Model: NHL Game Outcomes-Introduction to Regression Analysis -Building the Logistic Regression Model-Interpreting Regression Results -	10

Signature of the BOS Chairman

Considerations in Deploying The Model-Case Study: Regression Analysis - Batsman's performance and salary, Regression Analysis - Batsman's performance and salary, Regression Analysis with Cricket Data.

Theory		Tutorial		Practical		Project	Total	
Hours:	45	Hours:	0	Hours:	0	Hours:	0 Hours:	45

Learning Resources

Textbooks

- 1. Grant Jarvie., Sport, Culture and Society: An Introduction., Taylor & Francis, (4th Edition, 2021).
- 2. Matthew D. Shank and Mark R. Lyberger., Sports Marketing: A Strategic Perspective., Routledge, (6th Edition, 2021).
- 3. Thomas W. Miller Machine Learning and Data Mining for Sports Analytics, Pearson Education, Inc, (2017).

Reference books/ Web Links

- 1. Richard Giulianotti, The Globalization of Sport: The Politics, Economics, and Culture of Sports", (2005)
- 2. Manfred Bruhn, Peter Rohlmann, "Sports Marketing: Fundamentals Strategies ,Springer, Instruments", (2022).

Online Resources

- 1. https://www.coursera.org/learn/international-entertainment-sports-marketing
- 2. https://www.coursera.org/learn/sports-marketing
- 3. https://www.coursera.org/learn/prediction-models-sports-data#modules
- 4. https://www.coursera.org/learn/machine-learning-sports-analytics
- 5. https://www.coursera.org/learn/foundations-sports-analytics#modules

Assessment (Theory)

Course Curated by					
Expert(s) from Industry	Expert(s) from Higher Education Institution		Internal Expert		
	Ms. Asmitha Shree, Department of Computer Science and Engineering				
Recommended by BoS on	16.08.2024		<u>.</u>	8 8	
Academic Council Approval	No: 27		Date	24.08.2024	

Signature of the BOS Chairman

24100076		L T	P	J	C	
24IEO076	Healthcare Innovation and Technology	3	0	0	0	3
OE		SD	G		3	

Pre-requisite: Nil

Course	Objectives:	The purpose of taking this course is to:
1	Understand Health	ncare Systems and their Challenges.
2	Explore Ethical ar	nd AI-driven Approaches in Healthcare.
3	Investigation of H	ealthcare Marketplace Dynamics.

Course	Outcomes:	After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)
CO 1		ructure and functions of healthcare systems, along with the and technological frameworks.	U
CO 2	Understand the in (EHR) and eHealt	plementation and challenges of electronic health records h models.	U
CO 3	Analyse Healthca	re Market Dynamics over time.	An
CO 4		e and Medical Technology Markets and the impact of ancements on healthcare delivery and policy.	An
CO 5	Understand the gl the healthcare ind	obal medical innovations, their impact, and the trends shaping ustry.	U

Module	Hours
INTRODUCTION TO HEALTHCARE SYSTEMS	6
Overview of healthcare systems-Issue in healthcare – patients-Intermediaries -providers-challenges in healthcare access and delivery- Characteristics of Physician Practices -healthcare organizations and	
functions- Procedure Codes and Diagnosis Codes- Payment Systems- EMRs, EHRs, and PHRs-	
Stereotypical Plan Design- Public and Private Plans- Ethical frameworks - AI in health care delivery and payment structure.	
EHR MANAGEMENT SYSTEM	12
eHealth -model -challenges- Future scope- Collecting the data- Clinical use of personal health data-	
Mobile apps -social media apps -design of eHealth solutions-Evaluating health apps- Data and digital	
health records- Anatomy-Predictive and precision medicine- Privacy and security- performance-	
Interacting with healthcare professional – Advantages -Telehealth- personalize healthcare-EHR	
applications- patient journey -Features- Login, Authentication, Credentialing- Clinical Decision	
Support-types- CDS Committees-Introduction to Databases-Components of a SQL Server-EHR	
Interfaces- Training- Communications- Change Management.	
HEALTHCARE MARKETPLACE	10

Marketplace Overview, Healthcare Spending Drivers, Quality Trends, Market Evolution-Health Cost	
Growth- Issues -Effects of Health Behaviours.	
Physician and hospital Service Market: Provider Market Overview-Price Discrimination-Physician	
Market Evolution-Physician Sites of Care- Physician-Hospital Market Evolution: Hospital Features-	
Scale and Scope, Hospital Issues, Quality and Safety- Hospital Future Trends, Policy Impact on	
Hospitals.	
INSURANCE AND MEDICAL TECHNOLOGY MARKET	10
Risky Business, Utility of Wealth- working of Insurance model- Moral Hazard and Adverse Selection-	
Early Public Health Insurance- Healthcare Laws and Regulations (HIPAA, FDA, etc.)	
Quality and Safety Standards in Healthcare-Role of Policy -Future Health Reform.	
Medical Technology Market: Device- Drug-Medical Device Evolution-Medical Devices -Vision -	
New Technology Make Money-Measuring Medical Technology Value -FDA Approval for	
Pharmaceuticals- FDA Approval for Medical Devices- Drive Towards Cost-Effectiveness-preparing a	
Global Health Technology -Pharma & Device Convergence-Medical Technology Market.	
GLOBAL MEDICAL INNOVATION	7
Globalization of the Medical Industry, Medical Tourism Evolution & Growth, Medical Tourism in	
India, Key Issues, Health Bads and Their Consequences-Goals of Health Information Technology-	
Value of Health Information Technology- Insurer Information Technology- Provider Information	
Technology-Integrated Health Care Delivery-Key Questions for an Innovation Valuation-Technology-	
Secure- Return Investment on Technology.	

Theory		Tutorial		Practical		Project		Total	
Hours:	45	Hours:	0	Hours:	0	Hours:	0	Hours:	45

Reference books/ Web Links

- 1. Robert E. Hoyt, Ann K. Yoshihashi, Health Informatics: Practical Guide for Healthcare and Information Technology Professionals, Lulu.com (2019).
- 2. Peter M. Ginter, Linda E. Swayne, and Robert J. Duncan, Healthcare Systems: An Introduction, Health Administration Press (2018).
- 3. Sharon B. Buchbinder, Nancy H. Shanks, Introduction to Healthcare Management, Jones & Bartlett Learning (2017).
- 4. Richard Gartee, Electronic Health Records: Understanding and Using Computerized Medical Records, Pearson (2014).
- 5. Peter R. Kongstvedt, Healthcare Economics and Policy, Jones & Bartlett Learning (2013).

Online Resources

- 1. https://www.coursera.org/learn/intro-to-healthcare
- 2. https://www.coursera.org/learn/health-it-fundamentals
- 3. https://www.coursera.org/learn/ehealth
- 4. https://www.coursera.org/specializations/healthcare-marketplace

Assessment (Theory)

Course Curated by					
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert			
		Ms.G.Shobana, Department of			
		Information Technology			

24IEO077 Corporate Strategy and Innovation Corporate Strategy and Innovation SDG 4, 9

Pre-requisite: Nil

Faculty Name:	Ms. P. T Mayuri
Designation:	Assistant Professor 1
Concern/industry/Institutio	KCT
n:	
LinkedIn profile	https://www.linkedin.com/in/mayur i-palanisamy

Course	Objectives:	The purpose of taking this course is to:
1		gned to help learners develop structured approaches to making sound
	strategic decisions i	n multi-business firms.
2	This focuses on mo	dern practices in product management, especially for digital products.
3	It covers essential s	kills for product managers, emphasizing the need to understand customer
	needs, use actionab	le analytics, and apply agile methodologies.

Course Outcomes:		After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)
CO 1	Develop structure strategy decisions	d, decision-based frameworks for making key corporate	Ap
CO 2	Understand how t	U	
CO 3	Learn how to desi	Ap	
CO 4	Develop the ability decisions.	Е	
CO 5	Understand how feedback and anal	to iterate and enhance digital products continuously, using ytics.	An

Module	Hours
CORPORATE ADVANTAGE	9
Introduction to Corporate strategy- Understanding Differences: Number of Businesses, Corporate	
Advantage, Competition- Sum-of-the-parts Analysis- Corporate Strategy Decisions- value multi-	
business firms.	
DIVERSIFICATION AND DIVESTITURE	9
Understanding the Basic Modes of Diversification Diversification Test -Five-step Approach-	
Understanding the Basic Modes of Divestiture- Divestiture Test- Three-step Approach to the	
Divestiture Decision.	

CORPORATE HEADQUARTERS	9	
Example of Corporate Headquarters- Controls of Corporate Headquarters- HQ Influence Models-		
Financial Perspective- Uncertainty Perspective- Synergy Perspective- Social Perspective-		
Synergistic Portfolio Framework.		
FOCUS AND PRODUCT INNOVATING METHODS	9	
Introduction to Product Management Journey- Creating, Testing and Facilitating- Product Owner-		
Team Collaboration- Qualitative Analytics- Quantitative Analytics- Managing Habits- Customer		
Collaboration- Funnel Focus- Managing Product.		
EXPLORING AND AMPLIFYING PRODUCTS	9	
Introduction to Exploring a new Product Idea- Building for learning- Horizons of growth- Corporate		
Innovation Pipeline- Business Model Design- Introduction to Amplifying an existing products-		
Business model types- Actionable analytics- Data science- Chanel - Modality- Roadmap.		

Theory	Tutorial	Practical		Project		Total	
Hours: 45	Hours: 0	Hours:	0	Hours:	0	Hours:	45

Reference books/ Web Links

- 1. Competitive Strategy: Techniques for Analyzing Industries and Competitors, Michael E. Porter
- 2. User Experience Is Brand Experience: The Psychology Behind Successful Digital Products and Services by Felix Van De Sand, Anna-Katharina Frison, Pamela Zotz
- 3. Corporate Strategy and Product Innovation by Robert R. Rothberg

Online Resources

- 1. https://www.coursera.org/learn/corporatestrategy
- 2. https://www.coursera.org/learn/uva-darden-digital-product-management

Assessment (Theory)

Course Curated by		
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert
		Ms. Mayuri P T, MBA-IEV

Signature of the BOS Chairman

24IEO078 OE

Gamification and Gaming

L	T	1	P	J	C
3	0		0	0	3
SDG			3,	4, 9	

Pre-requisite: Nil

	Faculty Name:	Dr. K. Saranya
	Designation:	Assistant Professor-II
(63)	Concern/industry/Institution:	Kumaraguru college of Technology
	LinkedIn profile	https://www.linkedin.com/in/dr- saranya-k-b3a93313a/

Course	Objectives:	The purpose of taking this course is to:
1	Understand the core	e differences between Gamification and Games.
2	Explore how gamification drives innovation in business.	
3	Analyse the effectiveness of gamification in Advocacy, Media, Politics, and Education.	
4	Identify the risks ar	nd future trends in gamification.

Course (Outcomes:	After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)
CO 1		knowledge of gamification principles and identify specific s various contexts.	U
CO 2	Develop a comprehensive conceptual framework for gamification tailored to different sectors.		С
CO 3	Critically analyse and evaluate the benefits and risks associated with gamification.		Е
CO 4	Analyse the role of the game market.	of motivation in gamification and how it drives innovation in	An

Module	Hours
GAMIFICATION	9
Core concepts, distinctions between gamification and games, Motivation in Gamification,	
Gamification drive Innovation, Game Market.	
GAMIFICATION IN BUSINESS	8
Business sector adopts gamification techniques -Case studies, features of gamification in	
business, marketing strategies.	
GAMIFICATION FOR ADVOCACY AND MEDIA	10
Applications in civil society, differences from business gamification, effectiveness in raising	
awareness, media outlets adopt gamification techniques, features of gamification in media,	
journalism and communication benefiting from gamification.	
GAMIFICATION IN POLITICS AND EDUCATION	10
Political gamification, effectiveness for political campaigns, differences from other sectors,	
gamification effective for policymaking. Educational applications, effectiveness in teaching	
and learning.	
RISKS AND FUTURE IN GAMIFICATION	8
Gamification desirability, Social and mental sickness, features of gamification in social	
networks, need of gamers-Future with games.	

Theory	Tutorial		Practical		Project		Total
Hours: 4	5 Hours:	0	Hours:	0	Hours:	0	Hours: 45

Reference books/ Web Links

- Yu-Kai Chou," Actionable Gamification: Beyond Points, Badges, and Leaderboards", Fremont (CA), 2014.
- 2. B. Burke, "Gamify: How Gamification Motivates People to Do Extraordinary Things", Bibliomotion, 2014.
- 3. J. Lerner, "Making Democracy Fun: How Game Design Can Empower Citizens and Transform Politics", Boston (MA), 2014.

Online Resources

- 1. https://www.coursera.org/specializations/esports
- 2. https://www.coursera.org/learn/gamification

Assessment (Theory)

Course Curated by					
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert			
		Dr. K. Saranya, Department of Computer Science and Engineering			

Signature of the BOS Chairman	

24IEO079 OE

Environmental Innovations and Management

L	T	1	P	J	C
3	0		0	0	3
SDG			6	, 15	

Pre-requisite: Nil

	•
	(20)
	A MA
1111	

Faculty Name:	Dr. N. Rajathi
Designation:	Professor
Concern/industry/Institution:	KCT
LinkedIn profile	https://www.linkedin.com/in/dr- rajathi-natarajan-7748758b/

Course	Objectives:	The purpose of taking this course is to:
1	•	on, climate change, sustainability, and circular economy principles in
	managing environm	iental challenges.
2		ted water resource management and pollution control in relation to
	environmental haza	rds and public health.
3		ion dynamics, agriculture's impact on the environment, and ethical
	approaches to solving	ng complex environmental issues.

Course	Outcomes:	After successful completion of this course, the students shall be able to	Revised Bloom's Taxonomy Level (RBT)
CO 1	Analyse and addre	ess the environmental challenges associated with global trends.	An
CO 2	Evaluate and appl complex water-re	Ap	
CO 3	Explain the impac	U	
CO 4	Explain the relati soil resources.	U	
CO 5	Identify and apply issues.	y environmental ethics and management principles to complex	Ap

Module	Hours
GLOBAL TRENDS AND ENVIRONMENT MANAGEMENT Sustainability and the SDGs-Demographic Trends-Global urbanization-Environment Management -Cities and the rising sea level-Climate Change and Water-Circular Thinking in Waste	9
Management-Plastic as Part of the Circular Economy-Stakeholder and Social Sustainability Analysis—Utility Management -Environmental Management in Rural Areas-Phases in Solid Waste Management -Regulation -Outdoor and Indoor air pollution —Technologies for the environment built.	
WATER RESOURCE MANAGEMENT AND POLICY The rules of resource, uses and their circumvention- Integrated water resource management to water-food-energy —Integrated Water shed management —water as source of conflict and cooperation.	9

Signature of the BOS Chairman	

ENVIRONMENTAL HAZARDS AND GLOBAL PUBLIC HEALTH	9
Air and water pollution –key concepts – controlling air pollution –key concepts in water pollution-	
controlling water pollution -physical hazards and soil waste - Solid Waste Disposal Methods-	
Hazardous Waste Disposal Methods-Population pressure –Build environment.	
POPULATION, FOOD, AND SOIL	9
Population the world- population changes-Global population – Global population dynamics -	
Agriculture and Environment – Agriculture and Human Nutrition- Modern Agriculture Effects and	
Alternatives -Soil and Environment –Soil resource and Profile.	
ENVIRONMENTAL MANAGEMENT & ETHICS	9
Introduction – Environmental Ethics- Environmental management of tame and wicked problems-	
Decision support tools-Environmental regulation and principles.	

Theory		Tutorial		Practical		Project		Total	
Hours:	45	Hours:	0	Hours:	0	Hours:	0	Hours:	45

Reference books/ Web Links

- 1. Circular Economy for the Management of Operations. United States, CRC Press, (2020).
- 2. Pangare, Vasudha. Global Perspectives on Integrated Water Resources Management. India, Academic Foundation, (2006).
- 3. Hutchinson, Emma, and Kovats, Sari. Environment, Health and Sustainable Development. United Kingdom, McGraw-Hill Education, (2017).
- 4. Wild, Alan. Soils, Land and Food: Managing the Land during the Twenty-First Century. United Kingdom, Cambridge University Press, (2003).
- 5. Krishnamoorthy, Bala. Environmental Management: Text and Cases. India, Prentice Hall India Pvt., Limited, (2017).
- 6. Politics and Policies for Water Resources Management in India. United Kingdom, Taylor & Francis, (2020).

Online Resources

- 1. https://onlinecourses.nptel.ac.in/noc23 hs155/preview
- 2. https://www.coursera.org/learn/global-environmental-management
- 3. https://www.coursera.org/learn/water-management
- 4. https://www.coursera.org/learn/environmental-hazards-and-global-public-health
- 5. https://www.coursera.org/learn/population-food-and-soil
- 6. https://www.coursera.org/learn/environmental-management-ethics

Assessment (Theory)

Course Curated by						
Expert(s) from Industry	Expert(s) from Higher Education Institution	Internal Expert				
		Dr.N.Rajathi, Department of				
		Information Technology				

Signature of the BOS Chairman	