

MECHANICAL
ENGINEERING
ASSOCIATION

MECHANICAL GRADUATE ROADMAP

KUMARAGURU
Institutions

TABLE OF CONTENTS

01	ABOUT THE DEPARTMENT	3
02	MECHANICAL GRADUATE DESIGN ENGINEER ROADMAP	7
03	MECHANICAL GRADUATE MANUFACTURING, INDUSTRIAL & PRODUCTION ENGINEER ROADMAP	8
04	MECHANICAL GRADUATE THERMO-FLUID ANALYST ROADMAP	9
05	MECHANICAL GRADUATE CAREER & HIGHER STUDIES ROADMAP	10
06	FUEL FOR THE FUTURE	11

About the Department

The **Department of Mechanical Engineering**, established in 1984, is one of the most dynamic and progressive departments of the institution. Over the years, it has evolved into a center of excellence in teaching and research, offering a balanced blend of theoretical knowledge and practical exposure. Equipped with state-of-the-art workshops, advanced laboratories, and modern computing facilities, the department meets the growing demands of contemporary engineering education.

With a team of highly qualified and experienced faculty members, the department ensures quality instruction and guidance across all domains of mechanical engineering. Accredited by the **National Board of Accreditation (NBA)** in 2019 and recognized as a **Research Center by Anna University** since 2003, the department consistently upholds high academic standards while promoting innovative research in emerging fields. Faculty members actively publish in reputed journals and engage in research and consultancy projects that strengthen the department's academic and industrial linkages.

Beyond academics, the department emphasizes the holistic development of students through extracurricular and co-curricular activities, encouraging leadership, teamwork, and creativity. Regular guest lectures and industrial visits bridge the gap between classroom learning and real-world applications. With a forward-looking vision, the department continues to nurture competent, ethical, and innovative engineers ready to make meaningful contributions to industry, research, and society.

Our Proud Alumni Network

Graduates from the Department of Mechanical Engineering have excelled across multiple domains, shaping innovation and leadership in every field they step into and With a strong global presence, the Department of Mechanical Engineering takes pride in its **3682** distinguished alumni who are making remarkable contributions across India and around the world, driving innovation, leadership, and excellence in every field they pursue.

Mechanical Entrepreneurs in Various Divisions

- **Automobile Components Manufacturing** – Innovating precision parts and systems for automotive excellence.
- **Defense Product Vendors** – Contributing to India's defense strength through design and manufacturing.
- **Textile Sector** – Driving efficiency and modernization in textile machinery and processes.
- **Food-Related Products** – Engineering smarter solutions for food processing and packaging.
- **HVAC Systems** – Enhancing comfort through advanced heating, ventilation, and cooling technologies.
- **Fisher Pumps** – Leading in fluid mechanics and industrial pump innovations.

Our Alumni in Leading Organizations

- **L&T** – Infrastructure and engineering excellence.
- **Alstom** – Powering sustainable mobility and transport solutions.
- **Oracle** – Integrating mechanical expertise with digital innovation.
- **JP Morgan** – Showcasing analytical and technical leadership in finance.
- **MIQ Digital India** – Bridging mechanical systems with digital transformation.

- **TVS** – Leading as Digital Heads in mobility innovation.
- **Ansys** – Serving as National Technical Managers driving simulation technology.
- **TATA Motors** – Shaping the future of automotive engineering.
- **Nayara Energy** – Advancing energy production and refinery operations.
- **Hindustan Aeronautics Limited (HAL)** – Strengthening India's aerospace capabilities.
- **Goldman Sachs** – Leveraging mechanical problem-solving in strategic domains.
- **Defense Sector** – Serving the nation with engineering excellence and innovation.

Institute Vision:

The vision of the college is to become a technical university of International Standards through continuous improvement.

Institute Mission:

Kumaraguru College of Technology (KCT) is committed to providing quality Education and Training in Engineering and Technology to prepare students for life and work equipping them to contribute to the technological, economic, and social development of India. The College pursues excellence in providing training to develop a sense of professional responsibility, social and cultural awareness and set students on the path to leadership.

Department Vision:

To achieve global recognition for the programs of the department by promoting innovation, sustainability, and leadership, contributing to the society.

Department Mission:

1. To promote innovation in the Mechanical Engineering through curriculum, focusing on sustainability and ethical practices.
2. To create an active learning ecosystem for acquiring knowledge and skills in Mechanical Engineering.
3. To facilitate research in mechanical systems and sustainable technologies that have an impact on industry and society.

Program Educational Outcomes (PEO's):

PEO 1: Graduates to pursue careers in Mechanical engineering and allied fields.

PEO 2: Graduates to engage in the execution of multi-disciplinary engineering activities.

PEO 3: Graduates to pursue professional development programs in Mechanical Engineering Science and Management.

Knowledge and Attitude Profile (WK):

WK1: A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.

WK2: Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.

WK3: A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.

WK4: Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.

WK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, reuse of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.

WK6: Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.

WK7: Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.

WK8: Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.

WK9: Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

Program Outcomes (POs)

Graduates of the Mechanical Engineering Program should have the ability to:

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)

PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)

PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.

PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change.

Program Specific Outcomes (PSO's):

1. Apply the fundamentals of science and mathematics to solve complex problems in the field of design and thermal sciences.
2. Apply the concepts of production planning and industrial engineering techniques in the field of manufacturing engineering.

STRENGTHEN CORE FUNDAMENTALS

1

- Engineering Drawing & GD&T (Geometric Dimensioning & Tolerancing)
- Mechanics of Materials
- Manufacturing Processes
- Thermodynamics & Fluid Mechanics for product context

LEARN CAD SOFTWARE (INDUSTRY STANDARD)

2

Beginner Level

- AutoCAD (2D Drafting, Basic 3D)

Intermediate Level

- SolidWorks / Creo (3D Modelling, Assemblies, Sheet Metal, Surfacing)
- CATIA / NX (for Automotive & Aerospace industries)

Pro Level

- Advanced Surface Modeling
- Motion Simulation

MASTER DESIGN TOOLS & ANALYSIS

3

- CAE (Computer Aided Engineering)
- ANSYS / Abaqus (Structural, Thermal, Vibrational analysis)
- CFD (Computational Fluid Dynamics)
- ANSYS Fluent / Star-CCM+ (for fluid & thermal design)
- CAM (Computer Aided Manufacturing)
- MasterCAM / NX CAM (for product manufacturing)

GET INDUSTRY PRACTICES

4

- PLM (Product Lifecycle Management) – Teamcenter, Windchill
- DfX (Design for Manufacturing, Assembly, Costing)
- D-RAP (Design Review and Approval Process)

GET INDUSTRY EXPOSURE

5

- Internships / Projects in Automotive, Aerospace, or Consumer Product Design
- Reverse Engineering → scan to CAD → prototype
- Work on real-life case studies & portfolio building

DEVELOP FUTURE-READY SKILLS

6

- CAD Automation (Python, VBA, MATLAB for design tasks)
- Data-driven Design (AI, ML integration with CAD)
- 3D Printing / Additive Manufacturing (for rapid prototyping)

1. FOUNDATION

GOAL

Build strong fundamentals in math, physics, and mechanical basics.

SKILLS TO DEVELOP

- Engineering Graphics (CAD basics)
- Drafting (AutoCAD basics)
- Understanding mechanical measurements & tools
- Safety awareness in workshops

2. MECHANICAL CORE

GOAL

Learn basic mechanical sciences and introduction to manufacturing.

CORE SUBJECTS

- Strength of Materials
- Thermodynamics
- Fluid Mechanics
- Material Science & Metallurgy
- Manufacturing Processes.

4. ADVANCED & INDUSTRY READINESS

GOAL

Integrate automation, modern technologies, and management.

CORE SUBJECTS

- Robotics & Automation
- Additive Manufacturing (3D Printing, AM processes)
- Industrial Safety & Maintenance
- Supply Chain & Production Planning
- Elective Options (Smart Manufacturing, IoT, Sustainable Manufacturing)

SKILLS TO DEVELOP

- PLC, SCADA basics (automation)
- Additive Manufacturing (FDM, SLM, DMLS)
- Industry 4.0 concepts (IoT, Digital Twin, Smart Factories)
- Project Management (MS Project, Primavera)

3. MANUFACTURING SPECIALIZATION

GOAL

Focus on advanced manufacturing methods and automation.

CORE SUBJECTS

- Manufacturing Processes – II (CNC, non-traditional machining – EDM, ECM, Laser cutting)
- Machine Design
- Metrology & Quality Control
- Computer Integrated Manufacturing (CIM)
- Industrial Engineering & Operations Research

SKILLS TO DEVELOP

- CNC programming (G & M codes)
- Quality inspection (CMM, GD&T, tolerance analysis)
- Lean manufacturing basics, Six Sigma
- CAM software (MasterCAM, Fusion 360)

5. CERTIFICATIONS (OPTIONAL BUT VALUABLE)

- Six Sigma (Green Belt/Black Belt)
- NDT Level II
- GD&T Certification
- CNC Programming Certificate
- Additive Manufacturing Specialist

INTERSHIPS/PROJECTS

- Short-term industry training in machining/fabrication/automation
- Mini project: CNC component design & fabrication

1. STRENGTHENING CORE FUNDAMENTALS

Core Mechanical Engineering Courses:

- Engineering Mechanics
- Engineering Thermodynamics
- Applied Thermodynamics
- Thermal Engineering
- Fluid Mechanics
- Heat & Mass Transfer
- Refrigeration and Air Conditioning
- Gas Dynamics and Jet Propulsion
- Energy Systems

2. MASTERING DESIGN AND ANALYSIS TOOLS

- Auto CAD
- CATIA
- ANSYS Workbench
- Ansys Fluent

3. GETTING INDUSTRY EXPOSURE

- **Internships:** in HVAC, Aerospace, Automotive, or Energy sectors
- **Skill Development:** CFD tools, Python/MATLAB scripting, data analytics
- **Work on real life case studies:** Experimental learning and numerical Simulation

4. FUTURE SKILLS FOR GROWTH

- Computational Methods
- ICEM [Integrated Computer Engineering and Manufacturing]
- CFD
- Hypermesh
- COMSOL Multiphysics
- MATLAB / Simulink

5. REAL-WORLD APPLICATIONS

- Automotive Aerodynamics
- HVAC and Refrigeration Systems
- Power Plant Optimization
- Renewable Energy Systems
- Aerospace Propulsion and Cooling

6. CAREER OUTLOOK

Job Roles:

- CFD Analyst
- Thermal Systems Engineer
- HVAC Design Engineer
- Energy Systems Consultant
- Oil & Gas / Petrochemical Engineer
- Aerospace Propulsion Engineer
- Nuclear Energy Engineer
- Aerodynamics Engineer
- Nanofluid & Microchannel Research Engineer

1. AFTER B.E. MECHANICAL (MANUFACTURING FOCUS)

JOBS

- Manufacturing/Production Engineer
- Quality/Process Engineer
- CNC/Automation Engineer
- Industrial Safety Engineer
- Supply Chain Analyst

2. AFTER B.E. MECHANICAL (INDUSTRIAL ENGINEERING FOCUS)

JOBS

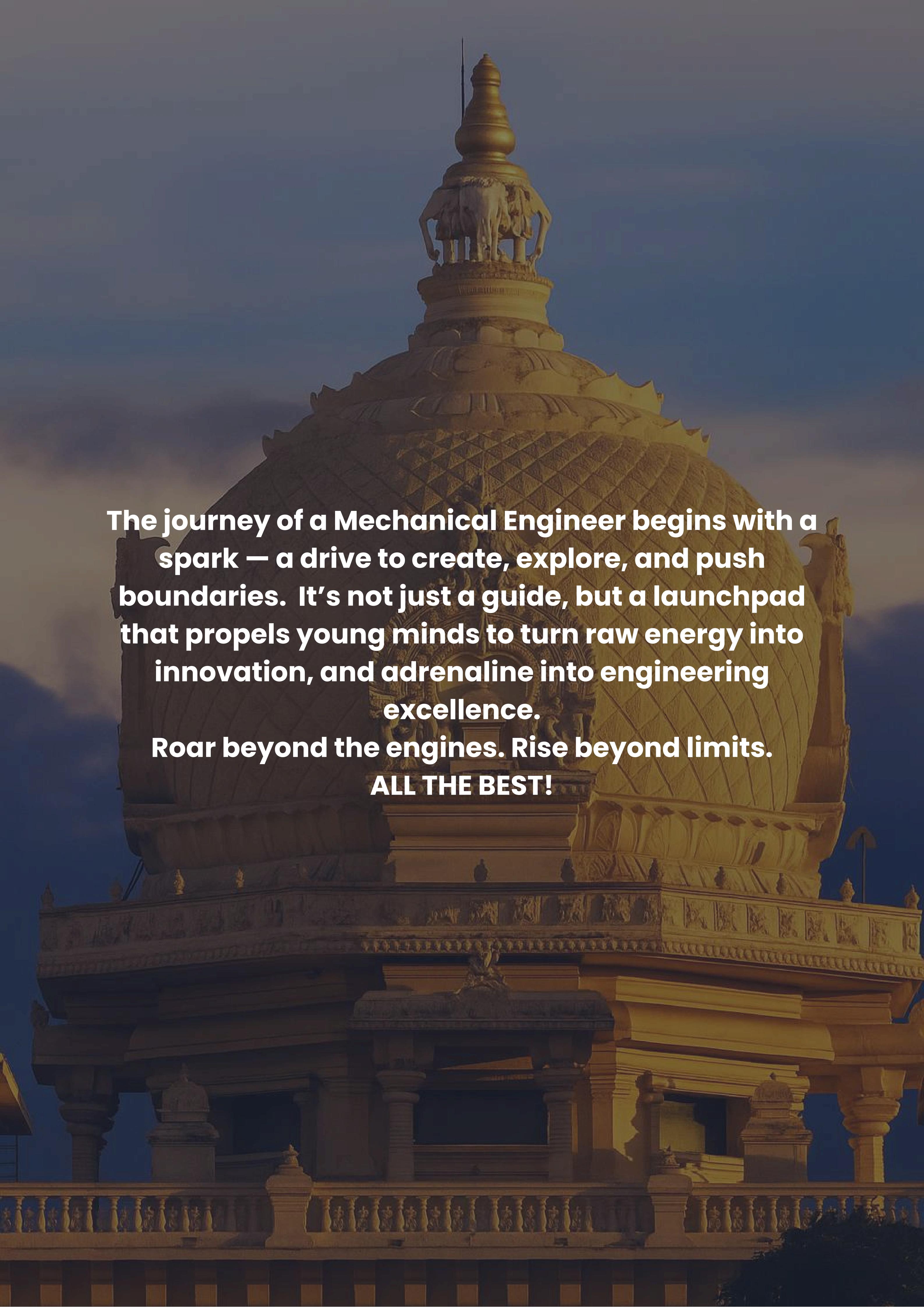
- Logistics Engineer
- Supply Chain Engineer
- Continuous Improvement Engineer
- Controls Engineer
- Data Analyst
- Operations Analyst
- Demand Planner
- Manufacturing Manager
- Operations Manager
- Production Supervisor
- Supply Chain Manager

3. AFTER B.E. MECHANICAL (DESIGN ENGINEERING FOCUS)

JOBS

- Design Engineer (e.g., Sheet Metal Design, Valve Design)
- Senior Hydraulics Engineer (Design)
- Product Design Engineer
- Motor Design Engineer
- NPD & R&D Manager (Mechanical)
- Mechanical CAD Designer
- Drone Assemble Engineer
- Mechanical & Physical Engineer

4. AFTER B.E. MECHANICAL (THERMAL ENGINEERING FOCUS)


JOBS

- Thermal Engineer
- CFD Engineer
- HVAC Engineer
- Simulation and Testing Engineer
- Project Engineer
- Sales Engineer

5. HIGHER STUDIES

- **M.S. (Master of Science)** – Pursue research-based studies in India or abroad.
- **MBA** – Transition into management, operations, or project management roles.
- **M.S. in Robotics / Mechatronics / Automotive / Aerospace Engineering** – For advanced technology and interdisciplinary domains.
- **M.S. in Industrial Engineering / Supply Chain / Production Management** – Blend engineering with optimization and management.
- **M.Tech in Energy Systems / Renewable Energy / Thermal Engineering** – Focus on sustainable and power systems.
- **Postgraduate Diplomas / PGDM** – Short-term professional courses in design, manufacturing, or management.
- **M.S. by Research / Ph.D.** – For those inclined toward teaching or advanced R&D.

“All the content given above is not limited”

The journey of a Mechanical Engineer begins with a spark – a drive to create, explore, and push boundaries. It's not just a guide, but a launchpad that propels young minds to turn raw energy into innovation, and adrenaline into engineering excellence.

Roar beyond the engines. Rise beyond limits.

ALL THE BEST!